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Abstract: This paper is dedicated to the memory of Peter G. Hall. It concerns a

deceptively simple question: if one observes variables corrupted with measurement

error of possibly very complex form, can one recreate asymptotically the clusters

that would have been found had there been no measurement error? We show that

the answer is yes, and that the solution is surprisingly simple and general. The

method itself is to simulate, by computer, realizations with the same distribution

as that of the true variables, and then to apply clustering to these realizations.

Technically, we show that if one uses K-means clustering or any other risk minimiz-

ing clustering, and a multivariate deconvolution device with certain smoothness and

convergence properties, then, in the limit, the cluster means based on our method

converge to the same cluster means as if there were no measurement error. Along

with the method and its technical justification, we analyze two important nutrition

data sets, finding patterns that make sense nutritionally.

Key words and phrases: Clustering, deconvolution, k-means, measurement error,

mixtures of distributions.

Dedication to the memory of Peter G. Hall

The last author, Raymond J. Carroll, was very fond of Peter and visited him

many times. His facets included brilliance, dedication, kindness, sense of humor,

graciousness to young researchers, puzzle solving, madcap driving to take photos

of trains, discussions about airplanes, love of cats, and photographic advice.

As Peter said in his Statistical Science interview Delaigle and Wand (2016), I

always like working with Ray, because I felt I could contribute something from the

problem solving side, the theoretical side, whereas he is more an applied person,

... in working with Ray we bring to the table things that don’t overlap, and which

complemented each other very well.

In his interview, Peter also mentioned that a lot of his joint work with Ray-

mond grew out of nutrition research, and hence this paper is an appropriate

contribution to this special issue. It involves a deceptively simple question: if

https://doi.org/10.5705/ss.202017.0093
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one observes variables corrupted with measurement error of possibly complex

form, such as occurs in nutritional and radiation applications, can one recreate

the clusters that would have been found had there been no measurement error?

We show that the answer is yes, and that the solution is surprisingly simple and

general.

1. Introduction

We consider the question of how to perform a cluster analysis in measurement

error problems when the variable of interest is latent, and to do this clustering in

such a way that, in large samples, it reproduces the clusters that would have been

formed had the latent variable actually been observed. We develop a surprisingly

simple, general strategy, to address this goal, and give theoretical evidence that

it does have the requisite convergence.

There are many types of measurement error problems, depending on the

problem at hand: (a) classical additive homoscedastic error; (b) classical het-

eroscedastic measurement error; (c) additive Berkson error; (d) multiplicative

Berkson error; (e) combinations of (a)-(d); (f) multiplicative measurement error

with excess zeros Kipnis et al. (2009); Zhang et al. (2011); (g) various multi-

variate versions of all of these; (h) combinations of misclassified and continuous

variables Yi et al. (2015), etc. Full-length books on the topic include Gustafson

(2004), Carroll et al. (2006), Buonaccorsi (2010), and Yi (2016).

Whatever the particular situation, measurement error problems have a few

commonalities. There are data X, multivariate in our case, which are not ob-

servable and the desire is to cluster them. There are observed proxies W that

are related to X, and there are additional error-free data, Z, that can include

covariates. In some cases, there may also be responses Y and a regression model

relating these responses to X and some components of Z; in this paper, we ab-

sorb Y into W for simplicity of notation. See Section 3 for the application of

our ideas to two complex nonlinear measurement error model settings.

The problem is to find clusters for the distribution of X, even though they

were not observable. The solution to this problem is surprisingly simple, and

consists of the following algorithm.

Algorithm 1.

• Perform a measurement error analysis, of whatever kind.

• Estimate the distribution FX(·) of X as F̃X,mes(·), where the “mes” empha-

sizes that the estimation is based on a measurement error analysis.
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• Generate realizations of X from the distribution of F̃X,mes(·). Depending on

the initial sample size, it may be advisable to generate multiple realizations

for each individual in the study so as to remove simulation variability.

• Perform one’s favorite cluster analysis on these realizations.

Clearly, the algorithm is intuitive, since it involves generating data that have,

asymptotically, the same distribution as that of X.

Our main result is this algorithm. In Section 2, we discuss the classical de-

convolution setting that estimates FX(·). We show theoretically, under technical

conditions, that if the algorithm is a generalization of K-means clustering, the

algorithm converges, as the sample size tends to∞, to the same cluster solutions

as if the true variable were observed. In Section 3, we describe two data analyses

where the measurement error models are very different, and describe how the

clusters found make scientific sense.

We emphasize that we are not advertising that we can cluster the individual

X. We can only estimate the algorithm that would assign an individual X to

a cluster if it were observed. Since these variables are latent, the only thing we

can possibly hope to do for an individual is to estimate the probabilities that the

particular individual X is in the various clusters, see the discussion in Section 4.

2. The Case of Nonparametric Deconvolution

Algorithm 1 works very generally, as we indicate at the end of this section.

However, for specificity, we first consider here the special case of nonparametric

deconvoluting density estimation in the classical measurement error model when

observations are d-dimensional. The literature on this problem is large with

very strong theoretical results; a small sample includes Carroll and Hall (1988),

Stefanski and Carroll (1990), Fan (1991), Masry (1991), Li and Vuong (1998),

and Comte and Lacour (2013). In this model, W = X + U, where X and U

are independent, have distribution functions FX and FU , respectively, and where

FX is unknown but, as is often assumed in the deconvolution literature, FU is

known; there are also papers where this last assumption is weakened.

In this case, Algorithm 1 works as follows. Suppose an independent identi-

cally distributed sample W1, . . . ,Wn is observed. Then the distribution function

of X is estimated through deconvoluting density estimation, which is denoted as

F̃X,mes. The theory that we give is based on the Fourier series estimator in Li

and Vuong (1998), and on their theoretical results, but refer to Remark 1 to see

why it holds for deconvoluting kernel density estimation.
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Following such estimation, a pseudo-sample X̃1, . . . , X̃n is generated from

F̃X,mes, and a clustering procedure is applied to this pseudo-sample.

For specificity, we consider a class of clustering procedures defined as follows.

Consider a clustering algorithm characterized by empirical risk (loss) minimiza-

tion, where the risk function is chosen among a function class HK . Mathemati-

cally, if X could be observed, we define the clustering result as

ĥn = arg min
h∈HK

n−1
n∑

i=1

h(Xi). (2.1)

In K-means clustering, the aim is to find a set of cluster centers C = (ĉ1, . . . , ĉK)

corresponding to the optimization problem

C = arg min
c1,...,cK

n−1
n∑

i=1

K∑
k=1

‖Xi − ck‖2I(ck is closest to Xi). (2.2)

With HK = {h(z) =
∑K

k=1 ‖z − ck‖2I(ck is closest to z) : c1, . . . , cK ∈ Rd},
K-means clustering (2.2) is a special case of (2.1).

Similarly, since we cannot observe X, with pseudo-observations X̃ we do

actual data clustering by solving

h̃n = arg min
h∈HK

n−1
n∑

i=1

h(X̃i). (2.3)

The question of whether Algorithm 1 gives, asymptotically, a solution that con-

verges to the solution if X were observable, can be rephrased as whether the

distance between h̃n and ĥn converges to zero as n→∞. Of course, the empiri-

cal risk is a sample version of the expected risk. The underlying measure for the

expected risk would vary as the method of constructing F̃X,mes differs.

Remark 1. To see why Algorithm 1 works quite generally, observe that the

difference in the empirical risk for any function h ∈ HK between observing X

and instead using X̃ is ∆(h) =
∫
h(x)d{F̂X(x) − F̃n,m(x)}, where F̂X and F̃n,m

are the empirical distribution function of the latent Xi and the pseudo-sample

X̃i. Standard theory has established that F̂X(·) converges to the true FX(·).
Assuming that similar theory in relation to the measurement error analysis is

justified, it is also the case that F̃n,m(·) converges to FX(·). It is then a technical

matter of showing that ∆(h)→ 0 uniformly for all h ∈ HK .

Using this insight, in the Supplementary Material, Section S.1.1 under As-

sumption 1, we show that within the function class HK , as the sample size

n→∞, ĥn− h̃n → 0, and so asymptotically the clustering done using the X̃ and
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the clustering done using the unmeasured data X have the same asymptotic risk.

For K-means clustering, this means that the cluster centers for the two converge

to the same values.

Remark 2. For the classical measurement error model considered in this sec-

tion, in the Supplementary Material, Section S.1.2, we also consider the scenario

that the distribution of X is estimated parametrically in a misspecified family.

Generally, in that case, the clusters thus found do not converge to the clusters

based on the unobserved true variable. A semiparametric generalization is given

in Section 3.3 and in the Supplementary Material, Section S.1.3.

3. Examples

3.1. Background

The Dietary Patterns Methods Project is a collaborative project among mul-

tiple institutions (Fred Hutchinson Cancer Research Center, National Cancer

Institute, University of Hawaii Cancer Center, University of South Carolina) in-

vestigating what dietary patterns there are and the relationship of such patterns

with mortality and disease Reedy et al. (2014); McCullough (2014); George et al.

(2014); Liese et al. (2015); Harmon et al. (2015). One way to define such patterns

is through the use of cluster analysis, which is commonly used in this context

Wirfält et al. (2009); Reedy et al. (2010); Thorpe et al. (2016); Kim et al. (2015);

Villegas et al. (2004); Freitas-Vilela et al. (2016).

However, it is well-known that usual (long-term average) dietary intakes are

impossible to measure accurately, and the instruments used, such as 24 hour

recalls and food frequency questionnaires, are subject to bias and measurement

error. It is thus of considerable interest to understand dietary clusters based on

usual intake, and not based on biased and error-prone measurements. In this

section, we report on two data sets, in different contexts, and show the results of

what our methodology obtains, and make good nutritional sense.

The examples considered are based on complex parametric multivariate mea-

surement error models, not fitting into the classical measurement error model

context, with the estimation of the parameters being done in a Bayesian way

using MCMC. There is no asymptotic theory for such complex problems but,

because they are in the end parametric models, we are assuming (reasonably)

that the necessary convergence described in Remark 1 and the Supplementary

Material, Section S.1.2, holds. The methods for both Sections 3.2 and 3.3 have

been demonstrated in simulations to have good finite-sample behavior with little
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bias, so that such an assumption seems reasonable.

3.2. Clustering of dietary pattern scores

We first consider clustering of usual dietary intakes using the National In-

stitutes of Health-AARP Diet and Health Study (NIH-AARP) Schatzkin et al.

(2001); Reedy et al. (2008). There are n = 293, 615 men in our analysis. The

clustering is based on 12 components of the Healthy Eating Index-2005 HEI-2005,

Guenther et al. (2008), a multi-component index meant to measure adherence

to the 2005 U. S. Department of Agriculture (USDA) Dietary Guidelines for

Americans. Each food or nutrient is adjusted for energy (caloric) intake. The

index components are listed in Table 1, as is the scoring system used, e.g., low

amounts of saturated fat intake relative to energy intake produces a maximum

component score of 10, while higher amounts of whole grains relative to energy

in the diet produces a maximum total score of 5. It is traditional to sum up the

scores into a total score and relate it to disease, but there is also great interest

in understanding the dietary patterns of the 12 components, which is our aim.

The data are described in Section 2.1 of Potgieter et al. (2016). The data gen-

erating mechanism for that data is extremely complex, consisting of two types of

dietary data and multiple nutrition variables that have excess zeros, the episod-

ically consumed foods. Consequently, W is extremely complex. One type of

dietary variables measured is 24-hour recalls of diets, a measures of what the

subject consumed in the previous day. These variables are considered unbiased

for long-term dietary intakes X, and if we call them W, then E(W|X) = X.

Unlike in the classical measurement error model, however, some of the variables

W measured by the 24-hour recall have excess zeros because, for example, a

subject might not consume whole fruit on a given day. The observed data are

also highly heteroscedastic. The other type of dietary variables measured in the

study is food frequency questionnaires that measure the subject’s estimate of X

over the past six months, although they are biased for X.

Much more detailed background of how the measurement error is mod-

elled and how the scores are adjusted for measurement error is given in Zhang

et al. (2011) and Potgieter et al. (2016). Supplementary material to Zhang

et al. (2011) gives Matlab code, and SAS programs being used by many re-

searchers in nutrition are at the web site https://epi.grants.cancer.gov/

diet/usualintakes/method.html.

The details of the modeling efforts are quite lengthy, and we take it as a

given that the methodology can be applied. Instead, in the interest of brevity,

https://epi.grants.cancer.gov/diet/usualintakes/method.html
https://epi.grants.cancer.gov/diet/usualintakes/method.html
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Table 1. Description of the HEI-2005 scoring system. Except for saturated fat and So-
FAAS, density is obtained by multiplying usual intake by 1,000 and dividing by usual
intake of kilo-calories. For saturated fat, density is 900 usual saturated fat (grams)
divided by usual calories, i.e., the percentage of usual calories coming from usual satu-
rated fat intake. For SoFAAS, the density is the percentage of usual intake that comes
from usual intake of calories, i.e., the division of usual intake of SoFAAS by usual in-
take of calories. Here, “DOL” is dark green and orange vegetables and legumes. Also,
“SoFAAS” is calories from solid fats, alcoholic beverages and added sugars. The total
HEI-2005 score is the sum of the individual component scores.

Component Units HEI-2005 score calculation
Total Fruit cups min (5, 5× (density/.8))
Whole Fruit cups min (5, 5× (density/.4))
Total Vegetables cups min (5, 5× (density/1.1))
DOL cups min (5, 5× (density/.4))
Total Grains ounces min (5, 5× (density/3))
Whole Grains ounces min (5, 5× (density/1.5))
Milk cups min (10, 10× (density/1.3))
Meat and Beans ounces min (10, 10× (density/2.5))
Oil grams min (10, 10× (density/12))
Saturated Fat % of if density ≥ 15 score = 0

energy else if density ≤ 7 score = 10
else if density > 10 score = 8− (8× (density− 10)/5)
else, score = 10− (2× (density− 7)/3)

Sodium milligrams if density ≥ 2,000 score=0
else if density ≤ 700 score=10
else if density ≥ 1,100

score = 8− {8× (density− 1,100)/(2,000− 1,100)}
else score = 10− {2× (density− 700)/(1,100− 700)}

SoFAAS % of if density ≥ 50 score = 0
(Empty Calories) energy else if density ≤ 20 score=20

else score = 20− {20× (density− 20)/(50− 20)}

here we denote by Z covariates that affect the usual intake component scores X.

In the NIH-AARP Study, Z is of dimension 36, with 23 demographic components

(age, body mass index category, etc.), and 13 components as measured by a food

frequency questionnaire; these components are described in Table 1. Then, for a

complex but known nonlinear function F , as described in Zhang et al. (2011) and

Potgieter et al. (2016), and for a normally distributed but unobserved random

variable U , the HEI component scores based on long-term average intakes are of

the form X = F(Z,U): in our setting, X is 12-dimensional. Of course, since we

do not observe U , we cannot observe X. We also add here that, for simplicity,

we have suppressed notation that indicates that the model has parameters which
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are estimated.

To implement the method described in Section 1, we use the following pro-

cedure. For each individual i, we generated j = 1, . . . , J = 5 normal random

variables Uij , and then formed the realizations X̃ij = F(Zi,Uij) for a total sam-

ple size of n× J . We assume the measurement error model is properly specified

so that these realizations have the same distribution, asymptotically, as the true

but unobserved Xi, and thus fit into the framework in Sections 1-2. We then

combined the data across i = 1, . . . , n and j = 1, . . . , J and applied K-means

clustering to the entire data set, setting the number of clusters to K = 3. The

Supplementary Material, Table S.1 and Figure S.1, gives results for K = 4, which

are similar. When applying K-means, we first centered and standardized the X̃ij ,

computed the resulting cluster means, and then back-calculated to the original

data scale.

Table 2 gives the resulting cluster means, with the following interesting re-

sults.

• The cluster means differ largely only in total fruit, whole fruit, saturated

fat, and empty calories. For total fruit and whole fruit, Clusters 2 and 3

have much higher cluster means than does Cluster 1. For whole grains and

DOL (dark-green and orange vegetables and legumes), Cluster 3 has higher

cluster means than Clusters 1 and 2.

• Cluster means are also somewhat higher for Cluster 3 for two other com-

ponents: whole grains, and DOL (dark-green and orange vegetables and

legumes).

• The clusters are ordered by the total of the cluster means, an important

finding not guaranteed a priori. Since lower scores mean worse diets, it is

also clear that Cluster 1 has the worst diets (48.4 points out of 100 possible

points), while Cluster 3 has the best diets (69.9 points), and Cluster 2 has

the in-between diets (60.3 points).

• For saturated fat and empty calories, Cluster 3 has higher means than does

Cluster 2, and Cluster 2 has cluster means that are much higher than those

of Cluster 1.

Figure 1 provides a different view via a radar plot. Here, because it is of

nutritional interest and fairly standard practice, what is plotted is the % of the

maximum possible score for each dietary component. This is useful because the

HEI-2005 scoring system uses different maximum scores for each component,
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Table 2. Cluster mean scores for the NIH-AARP analysis of Section 3.2, and their
maximum possible values. The Total Score is the sum of the cluster means. The four
bold-faced dietary components show the greatest difference between Cluster 1, the poor
diet group, and Cluster 3, the best diet group. The cluster “sizes”, i.e., the sum of the
probabilities of being in each cluster, are 85,878, 98,014 and 109,723, respectively.

Maximum
Cluster 1 Cluster 2 Cluster 3 Possible

Total Fruit 1.60 4.18 4.30 5
Whole Fruit 1.45 4.63 4.55 5
Total Grains 4.66 4.63 4.93 5
Whole Grains 1.07 1.24 2.41 5
Total Vegetables 3.80 4.11 4.73 5
DOL 1.30 1.58 2.77 5
Milk 5.05 5.12 5.68 10
Meat & Beans 9.76 9.69 9.62 10
Oil 5.73 6.55 5.79 10
Saturated Fat 4.57 5.79 8.44 10
Sodium 1.97 2.65 1.26 10
Empty Calories 7.42 10.15 15.44 20
Total Score 48.38 60.32 69.92 100

as described above. We see in Figure 1 that the worst diet group is vastly

different from the best diet group as a % of total score for total fruit, whole fruit,

saturated fat, and SoFAAS (empty calories), as before. However, visually, we see

important differences as well for whole grains and dark green/orange vegetables

and legumes.

A striking feature of these results is how the cluster with the best diets,

Cluster 3, has higher component scores than the worst diets, Cluster 1, on every

dietary component except an essential tie for Meat & Beans, and a clear discrep-

ancy for Sodium. Thus, the clustering done here makes a great deal of scientific

sense: the scores were based on the USDA Dietary Guidelines, and the scoring

system explicitly gives higher scores to those who more closely adhere to these

guidelines.

For a recent look at the complexities of the issue of the benefit of low sodium

intake on cardiovascular health, see Oparil (2014).

3.3. Clustering of relative dietary amounts

Next, we use data from the Eating at America’s Table Study Subar et al.

(2001), which consists of 965 subjects who completed four 24 hour dietary recalls

over the course of a year. Because absolute nutrient intakes are highly correlated
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Figure 1. Data analysis for the NIH-AARP HEI-2005 analysis in Section 3.2. Radar
plot of usual intake HEI-2005 scores. The listed amounts for the clusters are the means
of the HEI-2005 total score within the clusters, although the total score was not part of
the clustering algorithm. The cluster sizes were 85,878, 90,104 and 109,723, respectively.
The online version of this plot is in color, but the 3 clusters are easily distinguished in
the black and white plot.

with total energy/calories, it is common to normalize these numbers for the

amount of energy consumed, as was done in Section 3.2, see Table 2. Nutritionists

call such quantities nutrient or food “densities”. The variables considered here

are the percentage of kilocalories/energy coming from protein, saturated fat, and

fiber. The percentages are computed as protein density = 400 * protein in grams

/ energy, saturated fat density = 900 * saturated fat in grams / energy and fiber

density = 400 * fiber in grams /energy.

There are covariates Z that are also predictive of the observed mean nutrient

densities, including age, sex, body mass index in 4 categories, ethnicity in 3

categories and education in 4 categories, and it makes sense to include these as

predictors of usual intake. Thus, the 24 hour recalls are Wij , and a natural

model is

Wij = Xi + Uij , Xi = AZi + ξi, (3.1)

where ξi is independent of Xi and has mean zero. This is a far different model
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Table 3. Analysis of the EATS data in Section 3.3. The table displays the cluster centers
using K-means clustering with K = 3. The estimated sizes for these clusters are 10,830,
13,326 and 14,404.

Cluster Protein Saturated Fat Fiber
1 17.49 8.62 4.67
2 16.85 12.51 2.85
3 13.76 10.51 2.94

than that used in Section 3.2. We thus need to model the joint distribution

of (ξ,Ui) flexibly. To do this, we follow the flexible semiparametric approach

of Sarkar et al. (2017), see also Sarkar et al. (2014) for a univariate version.

Computation was done using their R program. In the model of Sarkar et al.

(2017), the distribution of ξ was modelled by a flexible multivariate mixture

of normals. Then the measurement error distribution of Ui was modeled as

conditionally heteroscedastic, so that

Uij = S(ξi)εij , (3.2)

where S(ξ) is a diagonal matrix, with each diagonal function a Bspline. In

addition, εij was also modeled as a flexible multivariate mixture of normals. In

the Supplementary Material, Section S.1.3, we show a theoretical justification for

Algorithm 1 to cluster the X̃i under model (3.1) is given.

In practice what we do is to regress the mean recalls Wi· of the dietary

variables on the covariates, obtain an estimate Â, form the residuals, and then

fit the model of Sarkar et al. (2017) to the residuals: computation of the last step

was done via an R program included in their Supplementary Material. Sarkar

et al. (2017) do the multivariate deconvolution using an MCMC approach. In our

example, we took a burn-in of 1,000 steps, and then generated a further sample

with 4,000 steps. Upon convergence of the sampler, the MCMC allows us to

use the MCMC steps to generate realizations of the ξ̃i, and hence to generate

realizations of usual intake X̃i by adding on ÂZi. To do this, after the burn-in,

we took a realization of ξ̃i for every 100th iteration in the MCMC.

After creating the realizations of usual intake X̃i, we used K-means clustering

based on K = 3 clusters, the resulting cluster means are given in Table 3. The

results are striking here as well. Cluster 1 has the highest protein intake, the

highest fiber intake, and the lowest saturated fat intake. Clusters 2 and 3 have

much lower fiber intakes, while differing on protein intakes. These are very

different dietary configurations.
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Table 4. Cluster membership probabilities for the first 10 subjects in the HEI-2005
example of Section 3.2. A cluster “call” is difficult to make for subjects 3, 4, 5, 6, 7, 9
and 10.

Subject Cluster 1 Cluster 2 Cluster 3
1 0.980 0.016 0.004
2 0.719 0.265 0.016
3 0.191 0.351 0.458
4 0.468 0.515 0.017
5 0.217 0.478 0.305
6 0.001 0.545 0.454
7 0.045 0.447 0.508
8 0.118 0.735 0.147
9 0.472 0.320 0.208

10 0.194 0.488 0.318

4. Discussion

At the end of Section 1, we emphasized that our method, and indeed no

method, can actually and precisely place the latent variables X into a cluster,

and that one can only estimate the probabilities that an individual is in a clus-

ter. At least for the discussion of dietary patterns, estimating these individual

probabilities is not a major practical or scientific issue. However, it becomes

so when the interest is in relating cluster membership to a disease. It is quite

easy to estimate the probabilities that an individual is in a cluster. Recall that

in Section 3.2, in order to cut down on simulation variability for building the

clusters, for j = 1, . . . , J = 5 we generated realizations X̃ij . We then created a

pseudo-sample (X̃1j , . . . , X̃nj) across i and j, and performed the clustering. We

did the same thing in Section 3.3, but there J = 40, because the sample size in

Section 3.3 is much smaller than that in Section 3.2.

Having formed the clusters, we now set J to be a rather large number, and

again create pseudo-observations X̃ij for i = 1, . . . , n and j = 1, . . . , J , but this

time J is much larger. Then, for an arbitrary person i∗, compute the cluster

assignments for X̃i∗j for j = 1, . . . , J . By the law of large numbers, the fraction

of the time that the pseudo-observations are assigned to Cluster 1 (say) is an

estimate of the probability that the individual i∗ is in Cluster 1. This is done for

each cluster and each individual, thus forming cluster probabilities for the entire

sample. The procedure itself is entirely general, and of course can be applied in

the two examples in Section 3.

In Table 4, for the example in Section 3.2, we give a listing of the cluster

membership probabilities for the first 10 subjects in the data file for the example
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of Section 3.2, which were formed by taking J = 1,000. For a few subjects, it is

obvious which cluster they are probably in, e.g., Subject 1 has a 98% chance of

being in Cluster 1. However, for other subjects, a “cluster call” makes no sense,

e.g. Subject 7 is essentially equally likely to be in Cluster 2 or Cluster 3. Table

S.3 of the Supplementary Material gives the same information for the example in

Section 3.3, with similar results, there we just continued the MCMC and formed

pseudo-observations with J = 1,000. How to use these probabilities efficiently in

an analysis of disease risk is a topic for future research.

Supplementary Materials

The online Supplementary Material includes proofs, the analysis of Section

3.2 but with K = 4 clusters (table and radar plot), cluster membership probabil-

ities for 10 individuals in the analysis of Section 3.3, and additional references.
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