Semi-parametric prediction intervals in small areas

when auxiliary data are measured with error

Gauri Datta ${ }^{1}$, Aurore Delaigle ${ }^{2}$, Peter Hall ${ }^{2}$ and Li Wang ${ }^{3}$
${ }^{1}$ Department of Statistics, University of Georgia, Athens, GA 30602, USA.
${ }^{2}$ Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS) and School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia.
${ }^{3}$ Department of Statistics and the Statistical Laboratory, Iowa State University, Ames, IA 50011, USA.

Supplementary Material

S1 Conditional distribution of T

We have

$$
\begin{align*}
f_{T \mid Q, W, Y}(t \mid q, w, y) & =\int f_{T \mid Q, W, X, Y}(t \mid q, w, x, y) f_{X \mid Q, W, Y}(x \mid q, w, y) d x \\
& =\int f_{T \mid Q, X, Y}(t \mid q, x, y) f_{X \mid Q, W, Y}(x \mid q, w, y) d x \tag{S1.1}
\end{align*}
$$

Then, using basic properties of conditional densities, we note that

$$
\begin{aligned}
& f_{T \mid Q, X, Y}(t \mid q, x, y)=f_{\epsilon}(y-t) f_{V}\left(t-\beta_{0}-\beta_{1} x-\beta_{2}^{\mathrm{T}} q\right) / f_{V+\epsilon}\left(y-\beta_{0}-\beta_{1} x-\beta_{2}^{\mathrm{T}} q\right) \\
& f_{X \mid Q, W, Y}(x \mid q, w, y)=\frac{f_{V+\epsilon}\left(y-\beta_{0}-\beta_{1} x-\beta_{2}^{\mathrm{T}} q\right) f_{X}(x) f_{U}(w-x) f_{Q}(q)}{f_{Q, W, Y}(q, w, y)} \\
& f_{Q, W, Y}(q, w, y)=f_{Q}(q) \int f_{V+\epsilon}\left(y-\beta_{0}-\beta_{1} x-\beta_{2}^{\mathrm{T}} q\right) f_{U}(w-x) f_{X}(x) d x
\end{aligned}
$$

Hence,

$$
\begin{align*}
& f_{T \mid Q, X, Y}(t \mid q, x, y) f_{X \mid Q, W, Y}(x \mid q, w, y) \\
& \quad=\frac{f_{\epsilon}(y-t) f_{V}\left(t-\beta_{0}-\beta_{1} x-\beta_{2}^{\mathrm{T}} q\right) f_{X}(x) f_{U}(w-x)}{\int f_{V+\epsilon}\left(y-\beta_{0}-\beta_{1} x-\beta_{2}^{\mathrm{T}} q\right) f_{U}(w-x) f_{X}(x) d x} . \tag{S1.2}
\end{align*}
$$

Combining (ST..1) and (ST.2), and recalling that ϵ has a symmetric distribution, we deduce that

$$
\begin{equation*}
f_{T \mid Q, W, Y}(t \mid q, w, y)=\frac{f_{\epsilon}(t-y) \int f_{V}\left(t-\beta_{0}-\beta_{1} x-\beta_{2}^{\mathrm{T}} q\right) f_{X}(x) f_{U}(w-x) d x}{\int f_{V+\epsilon}\left(y-\beta_{0}-\beta_{1} x-\beta_{2}^{\mathrm{T}} q\right) f_{U}(w-x) f_{X}(x) d x} \tag{S1.3}
\end{equation*}
$$

S2 Estimating the unknown parameters in (2.2)

Let $\sigma_{U}^{2}=\operatorname{var}(U), \sigma_{W}^{2}=\operatorname{var}(W)$ and $\sigma_{X}^{2}=\operatorname{var}(X)$. We can estimate the unknown parameters using standard approaches employed in classical measurement error linear models (see e.g. Fuller, 2009 and Buonaccorsi, 2010). Like there, since $\sigma_{W}^{2}=\sigma_{X}^{2}+\sigma_{U}^{2}$ and σ_{U}^{2} is known, we start by estimating σ_{X}^{2} by $\hat{\sigma}_{X}^{2}=\max \left(0, \hat{\sigma}_{W}^{2}-\sigma_{U}^{2}\right)$, where $\hat{\sigma}_{W}^{2}=n^{-1} \sum_{j=1}^{n}\left(W_{j}-\bar{W}\right)^{2}$ and $\bar{W}=n^{-1} \sum_{j} W_{j}$. Then, letting $Z_{j}=\left(1, W_{j}, Q_{j}^{\mathrm{T}}\right)^{\mathrm{T}}$ and $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{n}\right)^{\mathrm{T}}$, and defining the $(p+2) \times(p+2)$ matrix $\Sigma_{U}=\left(\Sigma_{U, i, j}\right)_{i, j=1, \ldots, p+2}$
to be zero everywhere except for the $(2,2)$ th component, which is equal to σ_{U}^{2}, we take $\widehat{M}=n^{-1} \mathbf{Z}^{\mathrm{T}} \mathbf{Z}-\Sigma_{U}$. Then, letting $\bar{Y}=n^{-1} \sum_{j} Y_{j}, T_{W Y}=n^{-1} \sum_{j=1}^{n} W_{j} Y_{j}$, $T_{Q Y}=n^{-1} \sum_{j=1}^{n} Q_{j} Y_{j}$, and assuming that det $\widehat{M}>0$, we estimate β_{0}, β_{1} and β_{2} by

$$
\begin{equation*}
\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}^{\mathrm{T}}\right)^{\mathrm{T}}=\widehat{M}^{-1}\left(\bar{Y}, T_{W Y}, T_{Q Y}^{\mathrm{T}}\right)^{\mathrm{T}} \tag{S2.1}
\end{equation*}
$$

Finally, to estimate σ_{V}^{2}, let $\bar{\tau}=n^{-1} \sum_{j} \tau_{j}$ and $\hat{\sigma}_{Y}^{2}=n^{-1} \sum_{j=1}^{n}\left(Y_{j}-\bar{Y}\right)^{2}$. It follows from ([2.]) that $\operatorname{var}\left(Y_{j}\right)=\beta_{1}^{2} \sigma_{X}^{2}+\beta_{2}^{\mathrm{T}} \Sigma_{Q} \beta_{2}+\sigma_{V}^{2}+\tau_{j}$, which suggests using

$$
\begin{equation*}
\hat{\sigma}_{V}^{2}=\max \left\{0, \hat{\sigma}_{Y}^{2}-\hat{\beta}_{1}^{2} \hat{\sigma}_{X}^{2}-\hat{\beta}_{2}^{\mathrm{T}} \widehat{\Sigma}_{Q} \hat{\beta}_{2}-\bar{\tau}\right\} . \tag{S2.2}
\end{equation*}
$$

In our numerical examples in Section 田, our sample sizes are small, and in that case, Fuller (2009) and Buonaccorsi (2010) noted that, although it is a covariance matrix, the matrix \widehat{M} is not always invertible. To overcome this difficulty, we apply to it the same correction as in page 121 of Buonaccorsi (2010). A similar problem arises with $\hat{\sigma}_{V}^{2}$, and we overcome it by applying the bagging technique described in Section 2.2 of Delaigle and Hall (2011).

The next theorem establishes root- n consistency of the estimators $\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}$ and $\hat{\sigma}_{V}^{2}$, defined at (S2.U]) and (S2.2). The proof follows the arguments in Fuller (2009) and thus is omitted.

Theorem 1. If the random quantities Q, U, V and X all have finite fourth moments, if $M=E\left\{\left(1, X, Q^{\mathrm{T}}\right)^{\mathrm{T}}\left(1, X, Q^{\mathrm{T}}\right)\right\}$ is nonsingular and $\sigma_{V}^{2} \sigma_{X}^{2} \neq 0$, then $\hat{\beta}_{0}-\beta_{0}, \hat{\beta}_{1}-\beta_{1}$, $\left\|\hat{\beta}_{2}-\beta_{2}\right\|$ and $\hat{\sigma}_{V}^{2}-\sigma_{V}^{2}$ all equal $O_{p}\left(n^{-1 / 2}\right)$ as n increases. Moreover, as $n \rightarrow \infty$ we
have

$$
n^{1 / 2}\left\{\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}^{\mathrm{T}}\right)^{\mathrm{T}}-\left(\beta_{0}, \beta_{1}, \beta_{2}^{\mathrm{T}}\right)^{\mathrm{T}}\right\} \xrightarrow{D} N(0, \Sigma),
$$

where, using the notation $\tau^{*}=\lim _{n \rightarrow \infty} \bar{\tau}$ and $\sigma_{\text {err }}^{2}=\tau^{*}+\sigma_{V}^{2}+\beta_{1}^{2} \sigma_{U}^{2}$,

$$
\Sigma=\sigma_{\text {err }}^{2} M^{-1}+\left\{\beta_{1}^{2} \operatorname{var}\left(U^{2}\right)+\left(\tau^{*}+\sigma_{V}^{2}\right) \sigma_{U}^{2}\right\} M^{-1}\left(\begin{array}{ccc}
0 & 0 & 0_{1 \times p} \\
0 & 1 & 0_{1 \times p} \\
0 & 0 & 0_{p \times p}
\end{array}\right) M^{-1}
$$

S3 Discussion of the conditions in Section 3.1

It can be proved from the definition of χ, and the first assumption in (3.1)(ii), that ρ_{j} and ρ_{j}^{\prime} are both bounded on any compact interval. If $\phi_{U}(t)$ is asymptotic to a constant multiple of $t^{-2 r}$ as $|t| \rightarrow \infty$, as it would be if (for example) the distribution of U were that of an r-fold convolution of Laplace-distributed random variables, then (3. ل1) (iv) is readily proved. When (3. ل1) holds, integrations by parts (see Appendix [5.5) can be used to prove that, as $|t| \rightarrow \infty$,

$$
\begin{align*}
& \rho_{1}(t)=\beta(t)^{-1}\left[\cos (t w) s_{k}+\frac{\sin t}{t}\left\{\Psi_{k r}^{\prime}(w-)-\Psi_{k r}^{\prime}(w+)\right\}\right]+O\left(t^{-2}\right), \tag{S3.1}\\
& \rho_{2}(t)=\beta(t)^{-1}\left[\sin (t w) s_{k}-\frac{\cos t}{t}\left\{\Psi_{k r}^{\prime}(w-)-\Psi_{k r}^{\prime}(w+)\right\}\right]+O\left(t^{-2}\right), \tag{S3.2}
\end{align*}
$$

and so $\left|\rho_{j}\right|$ is bounded on \mathbb{R}. Moreover, in the Laplace case, (S3.]]) and (S.3.2) continue to hold if both sides of each equation are differentiated naively with respect to t. Therefore, in this case, $\left|\rho_{j}^{\prime}\right|$ is bounded on \mathbb{R}, establishing the last part of (3. $\mathbb{1}$)(ii).

Also, (3. $\mathrm{Cl}_{\text {) (i) }}$ (i) holds if the distribution of U is an r-fold convolution of Laplace distributions.

S4 Theorem [2]

The methods used to derive Theorem 眐can be employed to show that, under the same conditions, all partial derivatives of $\widehat{F}_{T \mid Q, W, Y}(t \mid q, w, y)$ with respect to t converge at the same rate to the respective derivatives of $F_{T \mid Q, W, Y}(t \mid q, w, y)$. In particular, if for each integer $r \geq 0$ we define

$$
\begin{aligned}
\widehat{F}_{T \mid Q, W, Y}^{(r)}(t \mid q, w, y) & =\left(\frac{\partial}{\partial t}\right)^{r} \widehat{F}_{T \mid Q, W, Y}(t \mid q, w, y), \\
F_{T \mid Q, W, Y}^{(r)}(t \mid q, w, y) & =\left(\frac{\partial}{\partial t}\right)^{r} F_{T \mid Q, W, Y}(t \mid q, w, y),
\end{aligned}
$$

then the following result holds.

Theorem 2. Assume the conditions imposed in Theorem [], and that (3.1) $-(3.3)$ and (3.5) hold, and let $r \geq 0$ be an integer. Then: (i) For each real t and y, and each $q \in \mathbb{R}^{p}$,

$$
\widehat{F}_{T \mid Q, W, Y}^{(r)}(t \mid q, w, y)-F_{T \mid Q, W, Y}^{(r)}(t \mid q, w, y)= \begin{cases}O_{p}\left\{(n h)^{-1 / 2}+h^{\ell}\right\} & \text { if } w=0 \tag{S4.1}\\ O_{p}\left(n^{-1 / 2}+h^{\ell}\right) & \text { if } w \neq 0\end{cases}
$$

and (ii) For each $\eta>0$,

$$
\widehat{F}_{T \mid Q, W, Y}^{(r)}(t \mid q, w, y)-F_{T \mid Q, W, Y}^{(r)}(t \mid q, w, y)= \begin{cases}O_{p}\left\{\left(n^{1-\eta} h\right)^{-1 / 2}+h^{\ell}\right\} & \text { if } w=0 \\ O_{p}\left(n^{-(1-\eta) / 2}+h^{\ell}\right) & \text { if } w \neq 0\end{cases}
$$

uniformly in t, q and y in any compact subsets of their respective domains, where in the case $w=0$ we ask in addition that $n^{1-\eta} h \rightarrow \infty$.

The methods employed to establish these results are similar to those used to derive Theorem \boldsymbol{l}. The reason the convergence rates of estimators of the distribution function derivatives $F_{T \mid Q, W, Y}^{(r)}(t \mid q, w, y)$ do not depend on r is that the derivatives have the same form as the original function estimators. For example, if we define

$$
\Psi_{k}^{(r)}(t, y, q, w)=\left(\frac{\partial}{\partial t}\right)^{r} \Psi_{k}(t, y, q, w), \quad \widehat{\Psi}_{k}^{(r)}(t, y, q, w)=\left(\frac{\partial}{\partial t}\right)^{r} \widehat{\Psi}_{k}(t, y, q, w)
$$

then it can be proved that $\widehat{\Psi}_{k}^{(r)}(t, y, q, w)=\Psi_{k}^{(r)}(t, y, q, w)+O_{p}\left\{(n h)^{-1 / 2}+h^{\ell}\right\}$ for each (t, y, q, w), each $r \geq 0$ and $k=1,2$. Therefore, using standard formulae for derivatives, such as

$$
\widehat{F}_{T \mid Q, W, Y}^{(2)}(t \mid q, w, y)=\frac{\widehat{\Psi}_{1}^{\prime}(t, y, q, w) \widehat{\Psi}_{2}(t, y, q, w)-\widehat{\Psi}_{1}(t, y, q, w) \widehat{\Psi}_{2}^{\prime}(t, y, q, w)}{\widehat{\Psi}_{2}(t, y, q, w)^{2}}
$$

(compare (2.7)), it can be proved that (54.7) holds.

S5 Proof of (S3.1) and (S3.2)

Define

$$
\begin{aligned}
\gamma_{r}(t) & =\int \Psi_{k r}(x)\left(\frac{\partial}{\partial x} e^{i t x}\right) d x=-\int e^{i t x} d \Psi_{k r}(x) \\
& =-\left\{e^{i t w} s_{k}+\left(\int_{-\infty}^{w-}+\int_{w+}^{\infty}\right) e^{i t x} \Psi_{k r}^{\prime}(x) d x\right\}=-\left\{e^{i t w} s_{k}+\delta_{r}(t)\right\}
\end{aligned}
$$

where, in view of (5. $\mathbf{\text { B }}$) (i), the function δ_{r} satisfies $\sup _{-\infty<t<\infty}\left|\delta_{r}(t)\right|<\infty$. Recall that $\chi_{1}=\Re \chi$ and $\chi_{2}=\Im \chi$, and put $\gamma_{r 1}=\Re \gamma_{r}, \gamma_{r 2}=\Im \gamma_{r}, \alpha_{1}(t)=\cos (t w)+\Re \delta_{r}(t)$ and $\alpha_{2}(t)=\sin (t w)+\Im \delta_{r}(t)$. In this notation,

$$
\begin{equation*}
\rho_{j}(t)=\frac{\chi_{j}(t)}{\phi_{U}(t)}=-\frac{\gamma_{r j}(t)}{t^{2 r} \phi_{U}(t)}=\frac{\alpha_{j}(t)}{\beta(t)} . \tag{S5.1}
\end{equation*}
$$

Using (3.1)(i) it can be shown that

$$
\begin{aligned}
-\gamma_{r}(t)= & e^{i t w} s_{k}+\frac{1}{i t}\left(\int_{-\infty}^{w-}+\int_{w+}^{\infty}\right) \Psi_{k r}^{\prime}(x)\left(\frac{\partial}{\partial x} e^{i t x}\right) d x \\
= & e^{i t w} s_{k}+(i t)^{-1} e^{i t w}\left\{\Psi_{k r}^{\prime}(w-)-\Psi_{k r}^{\prime}(w+)\right\} \\
& -\frac{1}{i t}\left(\int_{-\infty}^{w-}+\int_{w+}^{\infty}\right) \Psi_{k r}^{\prime \prime}(x) e^{i t x} d x \\
= & e^{i t w} s_{k}+(i t)^{-1} e^{i t w}\left\{\Psi_{k r}^{\prime}(w-)-\Psi_{k r}^{\prime}(w+)\right\} \\
& -\frac{1}{(i t)^{2}}\left(\int_{-\infty}^{w-}+\int_{w+}^{\infty}\right) \Psi_{k r}^{\prime \prime}(x)\left(\frac{\partial}{\partial x} e^{i t x}\right) d x \\
= & e^{i t w} s_{k}+(i t)^{-1} e^{i t w}\left\{\Psi_{k r}^{\prime}(w-)-\Psi_{k r}^{\prime}(w+)\right\}+O\left(t^{-2}\right)
\end{aligned}
$$

Hence, the functions α_{1} and α_{2} can be written as

$$
\begin{equation*}
\alpha_{1}(t)=\cos (t w) s_{k}+\frac{\sin t}{t}\left\{\Psi_{k r}^{\prime}(w-)-\Psi_{k r}^{\prime}(w+)\right\}+O\left(t^{-2}\right), \tag{S5.2}
\end{equation*}
$$

$$
\begin{equation*}
\alpha_{2}(t)=\sin (t w) s_{k}-\frac{\cos t}{t}\left\{\Psi_{k r}^{\prime}(w-)-\Psi_{k r}^{\prime}(w+)\right\}+O\left(t^{-2}\right) \tag{S5.3}
\end{equation*}
$$

where the remainders are of that order as $|t| \rightarrow \infty$; and more simply, $\left|\rho_{1}\right|$ and $\left|\rho_{2}\right|$ are bounded uniformly on \mathbb{R}. The desired results (S.3.]) and (S.3.2) follow from (S.5.2) and (5.5.3), respectively.

S6 Proof of (6.11)

Recall that χ_{j}, and hence also $\rho_{j}=\phi_{j} / \phi_{U}$, depends on k, which equals 1 or 2 , and that $\phi_{W 0}=\Re \phi_{W}$ or $\Im \phi_{W}$. Therefore $R_{1}(h)$, at (\quad. ${ }^{(0)}$), depends on j_{1}, j_{2} and k. In each step the quantities B_{1}, B_{2}, \ldots denote generic constants.

Step 1: Difference between R_{1} and R_{2}; see (56.1). Define
$R_{2}(h)=\frac{1}{h} \int_{t_{1}: h<\left|t_{1}\right|<1} \rho_{j_{1}}\left(t_{1} / h\right) \phi_{K}\left(t_{1}\right) d t_{1} \int \phi_{W 0}(t) \rho_{j_{2}}\left\{ \pm\left(t-t_{1} / h\right)\right\} \phi_{K}\left(h t-t_{1}\right) d t$.
Then,

$$
\begin{equation*}
\left|R_{1}(h)-R_{2}(h)\right| \leq \frac{B_{1}}{h} \int_{-h}^{h}\left|\phi_{K}\left(t_{1}\right)\right| d t_{1} \int_{-\infty}^{\infty}\left|\phi_{W 0}(t)\right| d t \leq \frac{B_{2}}{h} \int_{-h}^{h} d t_{1}=2 B_{2} . \tag{S6.1}
\end{equation*}
$$

Step 2: Difference between R_{2} and R_{3}; see (S6.3). In view of (S.5.]) to (S.5.3) in Appendix [5.5 we can write

$$
\begin{equation*}
\rho_{j}(t)=\beta(t)^{-1}\left[\operatorname{cs}_{j 1}(t w) s_{k}+(-1)^{j+1} \frac{\operatorname{cs}_{j 2} t}{t}\left\{\Psi_{k r}^{\prime}(w-)-\Psi_{k r}^{\prime}(w+)\right\}\right]+O\left(t^{-2}\right), \tag{S6.2}
\end{equation*}
$$

where $\left(\operatorname{cs}_{j 1}, \operatorname{cs}_{j 2}\right)=(\cos , \sin)$ or ($\left.\sin , \cos \right)$ according as $j=1$ or 2 , respectively. In this
notation, define

$$
\begin{aligned}
R_{3}(h)= & \frac{1}{h} \int_{t_{1}: h<\left|t_{1}\right|<1} \beta\left(t_{1} / h\right)^{-1}\left[\operatorname{cs}_{j_{1} 1}\left(t_{1} w / h\right) s_{k}\right. \\
& \left.\quad+(-1)^{j_{1}+1} \frac{\operatorname{cs}_{j_{1} 2}\left(t_{1} / h\right)}{t_{1} / h}\left\{\Psi_{k r}^{\prime}(w-)-\Psi_{k r}^{\prime}(w+)\right\}\right] \phi_{K}\left(t_{1}\right) d t_{1} \\
& \quad \times \int \phi_{W 0}(t) \rho_{j_{2}}\left\{ \pm\left(t-t_{1} / h\right)\right\} \phi_{K}\left(h t-t_{1}\right) d t
\end{aligned}
$$

Then,

$$
\begin{equation*}
\left|R_{2}(h)-R_{3}(h)\right| \leq \frac{B_{3}}{h} \int_{h}^{1}\left(t_{1} / h\right)^{-2} d t_{1} \int_{-\infty}^{\infty}\left|\phi_{W 0}(t)\right| d t \leq B_{4} h \int_{h}^{1} t_{1}^{-2} d t_{1} \leq B_{4} \tag{S6.3}
\end{equation*}
$$

Step 3: Difference between R_{3} and R_{4}; see (56.5). For b_{1} as in (3.1), define

$$
\begin{aligned}
& R_{4}(h)=\frac{1}{h} \int_{t_{1}: h<\left|t_{1}\right|<1}\left[\beta\left(t_{1} / h\right)^{-1} \operatorname{cs}_{j_{1} 1}\left(t_{1} w / h\right) s_{k}\right. \\
&\left.\quad+(-1)^{j_{1}+1} b_{1}^{-1} \frac{\operatorname{cs}_{j_{1} 2}\left(t_{1} / h\right)}{t_{1} / h}\left\{\Psi_{k r}^{\prime}(w-)-\Psi_{k r}^{\prime}(w+)\right\}\right] \phi_{K}\left(t_{1}\right) d t_{1} \\
& \times \int \phi_{W 0}(t) \rho_{j_{2}}\left\{ \pm\left(t-t_{1} / h\right)\right\} \phi_{K}\left(h t-t_{1}\right) d t
\end{aligned}
$$

Now,

$$
\begin{equation*}
\left|\beta(t)^{-1}-b_{1}^{-1}\right| \leq B_{5}(1+|t|)^{-b_{2}} \tag{S6.4}
\end{equation*}
$$

for all $|t|>1$, where $B_{5}>0$ is a constant. See (B.])(iv). Hence,

$$
\begin{align*}
\left|R_{3}(h)-R_{4}(h)\right| \leq & \frac{B_{5}}{h} \int_{t_{1}: h<\left|t_{1}\right|<1}\left(1+\left|t_{1} / h\right|\right)^{-b_{2}}\left|t_{1} / h\right|^{-1}\left|\Psi_{k r}^{\prime}(w-)-\Psi_{k r}^{\prime}(w+)\right| \\
& \times\left|\phi_{K}\left(t_{1}\right)\right| d t_{1} \int\left|\phi_{W 0}(t) \rho_{j_{2}}\left\{ \pm\left(t-t_{1} / h\right)\right\} \phi_{K}\left(h t-t_{1}\right)\right| d t \\
\leq & \frac{B_{6}}{h} \int_{h}^{1}\left(t_{1} / h\right)^{-\left(1+b_{2}\right)} d t_{1} \leq B_{7} . \tag{S6.5}
\end{align*}
$$

 (S6.2) and (S6.4) it can be proved that, for constants $B_{8}, B_{9}>0$, and for all $|t|>1$,

$$
\begin{equation*}
\left|\rho_{j}(t)-b_{1}^{-1} \operatorname{cs}_{j 1}(t w) s_{k}\right| \leq B_{8}(1+|t|)^{-B_{9}} \tag{S6.6}
\end{equation*}
$$

Let

$$
\begin{aligned}
R_{5}(h)=\frac{s_{k}}{h} \int_{t_{1}: h<\left|t_{1}\right|<1} & \beta\left(t_{1} / h\right)^{-1} \operatorname{cs}_{j_{1} 1}\left(t_{1} w / h\right) \phi_{K}\left(t_{1}\right) d t_{1} \\
& \times \int \phi_{W 0}(t) \rho_{j_{2}}\left\{ \pm\left(t-t_{1} / h\right)\right\} \phi_{K}\left(h t-t_{1}\right) d t
\end{aligned}
$$

Then,

$$
\begin{align*}
&\left|b_{1}\left\{R_{4}(h)-R_{5}(h)\right\}\right|= \left.\frac{1}{h} \right\rvert\, \Psi_{k r}^{\prime}(w-)- \\
& \times \Psi_{k r}^{\prime}(w+)| | b_{1} \int_{t_{1}: h<\left|t_{1}\right|<1} \frac{\operatorname{cs}_{j_{1} 2}\left(t_{1} / h\right)}{\beta\left(t_{1} / h\right) t_{1} / h} \phi_{K}\left(t_{1}\right) d t_{1} \\
& \times \int \phi_{W 0}(t) \rho_{j_{2}}\left\{ \pm\left(t-t_{1} / h\right)\right\} \phi_{K}\left(h t-t_{1}\right) d t \mid \tag{S6.7}\\
& \leq h^{-1}\left|\Psi_{k r}^{\prime}(w-)-\Psi_{k r}^{\prime}(w+)\right|\left\{S_{1}(h)+S_{2}(h)\right\},
\end{align*}
$$

where, in view of (B.]) (ii), (B..7) (iii), (B.7) (iv), (S.3.7), (S.3.2) and (S6.6),

$$
\begin{align*}
S_{1}(h)= & b_{1}^{-1} \left\lvert\, s_{k} \int_{t_{1}: h<\left|t_{1}\right|<1} \frac{\operatorname{cs}_{j_{1} 2}\left(t_{1} / h\right)}{t_{1} / h} \phi_{K}\left(t_{1}\right) d t_{1}\right. \\
& \times \int \phi_{W 0}(t) \operatorname{cs}_{j_{2} 1}\left\{ \pm\left(t-t_{1} / h\right)\right\} \phi_{K}\left(h t-t_{1}\right) d t \mid, \quad(\mathrm{S} 6.8 \tag{S6.8}\\
S_{2}(h)= & B_{10} \int_{t_{1}: h<\left|t_{1}\right|<1}\left|t_{1} / h\right|^{-1}\left|\phi_{K}\left(t_{1}\right)\right| d t_{1} \int\left|\phi_{W 0}(t)\right|\left(1+\left|t-t_{1} / h\right|\right)^{-B_{9}} d t \\
\leq & B_{10} B_{11} h \int_{t_{1}: h<\left|t_{1}\right|<1}\left|t_{1}\right|^{-1}\left|\phi_{K}\left(t_{1}\right)\right| d t_{1} \int(1+|t|)^{-B_{13}}\left(1+\left|t_{1} / h\right|\right)^{-B_{12}} d t \\
\leq & B_{14} h^{1+B_{12}} \int_{t_{1}: h<\left|t_{1}\right|<1}\left|t_{1}\right|^{-1-B_{12}} d t_{1} \leq B_{15} h . \tag{S6.9}
\end{align*}
$$

Here we have used the fact that there exist constants $B_{11}, B_{12}>0$ and $B_{13}>1$ so
that, for all t and all t_{1},

$$
(1+|t|)^{-C_{2}}\left(1+\left|t-t_{1} / h\right|\right)^{-B_{9}} \leq B_{11}(1+|t|)^{-B_{13}}\left(1+\left|t_{1} / h\right|\right)^{-B_{12}}
$$

We claim that

$$
\begin{equation*}
S_{1}(h) \leq B_{18} h . \tag{S6.10}
\end{equation*}
$$

To appreciate why, assume for the sake of definiteness that $j_{1}=j_{2}=1$. Then, $\mathrm{cs}_{j_{1} 2}=\sin$ and $\mathrm{cs}_{j_{2} 1}=\cos$, and so

$$
\operatorname{cs}_{j_{2} 1}\left\{ \pm\left(t-t_{1} / h\right)\right\}=\cos (t) \cos \left(t_{1} / h\right) \mp \sin (t) \sin \left(t_{1} / h\right)
$$

whence by (56.8),

$$
\begin{aligned}
& b_{1} S_{1}(h) \\
& =\left\lvert\, \int_{t_{1}: h<\left|t_{1}\right|<1} \frac{\sin \left(t_{1} / h\right) \cos \left(t_{1} / h\right)}{t_{1} / h} \phi_{K}\left(t_{1}\right) d t_{1} \int \phi_{W 0}(t) \cos (t) \phi_{K}\left(h t-t_{1}\right) d t\right. \\
& \left.\quad-\int_{t_{1}: h<\left|t_{1}\right|<1} \frac{\sin \left(t_{1} / h\right) \sin \left(t_{1} / h\right)}{t_{1} / h} \phi_{K}\left(t_{1}\right) d t_{1} \int \phi_{W 0}(t) \sin (t) \phi_{K}\left(h t-t_{1}\right) d t \right\rvert\, .
\end{aligned}
$$

The two terms on the right-hand side can be bounded using similar arguments. In either case the integral over $h<\left|t_{1}\right|<1$ is broken up into two parts, addressing respectively $h<t_{1}<1$ and $-1<t_{1}<-h$. We illustrate by treating the first term on the right-hand side, and the first of the two integrals, which we multiply here by $2 / h$:

$$
\frac{2}{h}\left|\int_{h}^{1} \frac{\sin \left(t_{1} / h\right) \cos \left(t_{1} / h\right)}{t_{1} / h} \phi_{K}\left(t_{1}\right) d t_{1} \int \phi_{W 0}(t) \cos (t) \phi_{K}\left(h t-t_{1}\right) d t\right|
$$

$$
\begin{aligned}
= & \frac{1}{h}\left|\int_{h}^{1} \frac{\sin \left(2 t_{1} / h\right)}{t_{1} / h} \phi_{K}\left(t_{1}\right) d t_{1} \int \phi_{W 0}(t) \cos (t) \phi_{K}\left(h t-t_{1}\right) d t\right| \\
= & \left|\int_{h}^{1} \phi_{K}\left(t_{1}\right)\left\{\frac{\partial}{\partial t_{1}} \xi_{1}\left(t_{1} / h\right)\right\} d t_{1} \int \phi_{W 0}(t) \cos (t) \phi_{K}\left(h t-t_{1}\right) d t\right| \\
\leq & B_{19}+\int_{h}^{1}\left|\phi_{K}^{\prime}\left(t_{1}\right) \xi_{1}\left(t_{1} / h\right)\right| d t_{1} \int\left|\phi_{W 0}(t) \phi_{K}\left(h t-t_{1}\right)\right| d t \\
& \quad+\int_{h}^{1}\left|\phi_{K}\left(t_{1}\right) \xi_{1}\left(t_{1} / h\right)\right| d t_{1} \int\left|\phi_{W 0}(t) \phi_{K}^{\prime}\left(h t-t_{1}\right)\right| d t \leq B_{20},
\end{aligned}
$$

where we have defined

$$
\xi_{1}(u)=\int_{1}^{u} \frac{\sin (2 v)}{v} d v
$$

and we have used the fact that $\left|\phi_{K}\right|,\left|\phi_{K}^{\prime}\right|$ and $\left|\phi_{W 0}\right|$ are integrable, and $\left|\phi_{K}\right|,\left|\phi_{K}^{\prime}\right|$ and $\left|\xi_{1}\right|$ are uniformly bounded (see (3.1))(ii) and (3.11)(iii)). This proves (56.10).

Combining (56.7), (56.9) and (56.10) we deduce that

$$
\begin{equation*}
\left|R_{5}(h)-R_{6}(h)\right| \leq B_{21} . \tag{S6.11}
\end{equation*}
$$

Step 5: Bound for R_{6}; see (S6.1.3). First we treat the case where $w \neq 0$. There, defining

$$
\xi_{2}(u)=\int_{0}^{u} \operatorname{cs}_{j_{1} 1}(v) d v
$$

we have:

$$
\begin{aligned}
R_{6}(h)= & s_{k} \int_{t_{1}: 1<\left|t_{1}\right|<1 / h} \beta\left(t_{1}\right)^{-1} \operatorname{cs}_{j_{1} 1}\left(t_{1} w\right) \phi_{K}\left(h t_{1}\right) d t_{1} \\
& \quad \times \int \phi_{W 0}(t) \rho_{j_{2}}\left\{ \pm\left(t-t_{1}\right)\right\} \phi_{K}\left(h t-h t_{1}\right) d t \\
= & \frac{s_{k}}{w} \int_{t_{1}: 1<\left|t_{1}\right|<1 / h} \beta\left(t_{1}\right)^{-1} \phi_{K}\left(h t_{1}\right)\left\{\frac{\partial}{\partial t_{1}} \xi_{2}\left(t_{1} w\right)\right\} d t_{1}
\end{aligned}
$$

$$
\begin{align*}
& \quad \times \int \phi_{W 0}(t) \rho_{j_{2}}\left\{ \pm\left(t-t_{1}\right)\right\} \phi_{K}\left(h t-h t_{1}\right) d t \\
& =s_{k} w^{-1}\left\{R_{61}(h)+\ldots+R_{64}(h)\right\}+O(1), \tag{S6.12}
\end{align*}
$$

where

$$
\begin{aligned}
R_{61}(h)= & \int_{t_{1}: 1<\left|t_{1}\right|<1 / h} \beta^{\prime}\left(t_{1}\right) \beta\left(t_{1}\right)^{-2} \phi_{K}\left(h t_{1}\right) \xi_{2}\left(t_{1} w\right) d t_{1} \\
& \times \int \phi_{W 0}(t) \rho_{j_{2}}\left\{ \pm\left(t-t_{1}\right)\right\} \phi_{K}\left(h t-h t_{1}\right) d t \\
R_{62}(h)= & -h \int_{t_{1}: 1<\left|t_{1}\right|<1 / h} \beta\left(t_{1}\right)^{-1} \phi_{K}^{\prime}\left(h t_{1}\right) \xi_{2}\left(t_{1} w\right) d t_{1} \\
& \times \int \phi_{W 0}(t) \rho_{j_{2}}\left\{ \pm\left(t-t_{1}\right)\right\} \phi_{K}\left(h t-h t_{1}\right) d t \\
= & -\int_{t_{1}: h<\left|t_{1}\right|<1} \beta\left(t_{1} / h\right)^{-1} \phi_{K}^{\prime}\left(t_{1}\right) \xi_{2}\left(t_{1} w / h\right) d t_{1} \\
& \times \int \phi_{W 0}(t) \rho_{j_{2}}\left\{ \pm\left(t-t_{1} / h\right)\right\} \phi_{K}\left(h t-t_{1}\right) d t \\
R_{63}(h)= & h \int_{t_{1}: 1<\left|t_{1}\right|<1 / h} \beta\left(t_{1}\right)^{-1} \phi_{K}\left(h t_{1}\right) \xi_{2}\left(t_{1} w\right) d t_{1} \\
& \times \int \phi_{W 0}(t) \rho_{j_{2}}\left\{ \pm\left(t-t_{1}\right)\right\} \phi_{K}^{\prime}\left(h t-h t_{1}\right) d t \\
R_{64}(h)= & \pm \int_{t_{1}: 1<\left|t_{1}\right|<1 / h} \beta\left(t_{1}\right)^{-1} \phi_{K}\left(h t_{1}\right) \xi_{2}\left(t_{1} w\right) d t_{1} \\
& \times \int \phi_{W 0}(t) \rho_{j_{2}}^{\prime}\left\{ \pm\left(t-t_{1}\right)\right\} \phi_{K}\left(h t-h t_{1}\right) d t
\end{aligned}
$$

and the term represented by $O(1)$ is equal to

$$
\begin{aligned}
& \frac{s_{k}}{w}\left[\beta\left(t_{1}\right)^{-1} \phi_{K}\left(h t_{1}\right) \xi_{2}\left(t_{1} w\right) d t_{1} \int \phi_{W 0}(t) \rho_{j_{2}}\left\{ \pm\left(t-t_{1}\right)\right\} \phi_{K}\left(h t-h t_{1}\right) d t\right]_{1}^{1 / h} \\
& +\frac{s_{k}}{w}\left[\beta\left(t_{1}\right)^{-1} \phi_{K}\left(h t_{1}\right) \xi_{2}\left(t_{1} w\right) d t_{1} \int \phi_{W 0}(t) \rho_{j_{2}}\left\{ \pm\left(t-t_{1}\right)\right\} \phi_{K}\left(h t-h t_{1}\right) d t\right]_{-1 / h}^{-1}
\end{aligned}
$$

It can be proved from (3..1), the fact that $\left|\xi_{2}\right|$ and each $\left|\rho_{j}^{\prime}\right|$ is bounded, and the fact that $\left|\phi_{K}\right|,\left|\phi_{K}^{\prime}\right|$ and $\left|\phi_{W 0}\right|$ are bounded and integrable, that $R_{6 \ell}(h)=O(1)$ for $\ell=1, \ldots, 4$. This result and (56.12) imply that, when $w \neq 0$,

$$
\begin{equation*}
R_{6}(h)=O(1) \tag{S6.13}
\end{equation*}
$$

When $w=0, \operatorname{cs}_{j_{1} 1}\left(t_{1} w / h\right) \equiv 1$ or 0 according as $j_{1}=1$ or 2 , respectively, and so $R_{6}(h)=0$ if $j_{1}=2$, whereas if $j_{1}=1$,

$$
\begin{aligned}
h s_{k}^{-1} R_{6}(h)= & \int_{t_{1}: h<\left|t_{1}\right|<1} \beta\left(t_{1} / h\right)^{-1} \phi_{K}\left(t_{1}\right) d t_{1} \\
& \quad \times \int \phi_{W 0}(t) \rho_{j_{2}}\left\{ \pm\left(t-t_{1} / h\right)\right\} \phi_{K}\left(h t-t_{1}\right) d t \\
= & s_{k} b_{1}^{-2} \int_{-1}^{1}\left|\phi_{K}\left(t_{1}\right)\right|^{2} d t_{1} \cdot \int \phi_{W 0}(t) d t+o(1)
\end{aligned}
$$

where the last identity holds if $j_{2}=1$; whereas if $j_{1}=1$ and $j_{2}=2, R_{6}(h)=o(1)$. Now, $\phi_{W 0}$ denotes either $\Re \phi_{W}$ when $k=1$, or $\Im \phi_{W}$ when $k=2$, and so, since $\int \phi_{W}=2 \pi f_{W}(0)$, then $\int \phi_{W 0}=2 \pi f_{W}(0)$ when $k=1$ and equals 0 when $k=2$. Moreover, $\int\left|\phi_{K}\right|^{2}=2 \pi \int K^{2}$. Therefore, when $w=0$,

$$
R_{6}(h)= \begin{cases}(2 \pi)^{2} s_{k}^{2}\left(b_{1}^{2} h\right)^{-1}\left(\int K^{2}\right) f_{W}(0)+o\left(h^{-1}\right) & \text { if } j_{1}=j_{2}=k=1 \tag{S6.14}\\ o\left(h^{-1}\right) & \text { otherwise }\end{cases}
$$

Result (5.7]) follows from (56.7), (56.3), (56.5), (56.7]), (56.7.3) and (56.14), which hold in the cases $w \neq 0$ and $w=0$ respectively.

S7 Proof of Theorem 2

We treat only the case where $w=0$. Write $\widehat{F}(t)$ and $F(t)$ for $\widehat{F}_{T \mid Q, W, Y}(t \mid q, w, y)$ and $F_{T \mid Q, W, Y}(t \mid q, w, y)$, respectively. It can be proved from Theorem \boxtimes in Appendix [5] that, if the conditions of Theorem hold, then for each $r \geq 1$,

$$
F\left(t_{\alpha}\right)=\alpha=\widehat{F}\left(\hat{t}_{\alpha}\right)=\widehat{F}\left(t_{\alpha}\right)+\sum_{j=1}^{r} \frac{\left(\hat{t}_{\alpha}-t_{\alpha}\right)^{j}}{j!} \widehat{F}^{(j)}\left(t_{\alpha}\right)+O_{p}\left(\left|\hat{t}_{\alpha}-t_{\alpha}\right|^{r+1}\right),
$$

where, in the case of part (i) of the theorem, the remainder is of the stated order for each fixed q, w, y and $\alpha \in(0,1)$, and, in the case of part (ii), the remainder is of that order uniformly in q and y in compact sets, and $\alpha \in\left[\alpha_{1}, \alpha_{2}\right]$. It is straightforward to show that $\widehat{F}\left(t_{\alpha}\right)-F\left(t_{\alpha}\right)=o_{p}(1)$ and $\widehat{F}^{\prime}\left(t_{\alpha}\right)-F^{\prime}\left(t_{\alpha}\right)=o_{p}(1)$, where, here and immediately below, the remainders are interpreted as in the previous sentence, and therefore it can be proved in succession that $\hat{t}_{\alpha}-t_{\alpha}=O_{p}\left\{\left|\widehat{F}\left(t_{\alpha}\right)-F\left(t_{\alpha}\right)\right|\right\}=o_{p}(1)$,

$$
\hat{t}_{\alpha}-t_{\alpha}=-\left\{1+o_{p}(1)\right\} \frac{\widehat{F}\left(t_{\alpha}\right)-F\left(t_{\alpha}\right)}{F^{\prime}\left(t_{\alpha}\right)}
$$

and

$$
\hat{t}_{\alpha}-t_{\alpha}=-\frac{\widehat{F}\left(t_{\alpha}\right)-F\left(t_{\alpha}\right)}{F^{\prime}\left(t_{\alpha}\right)}+ \begin{cases}O_{p}\left\{(n h)^{-1}+h^{2 \ell}\right\} & \text { for part (i) } \tag{S7.1}\\ O_{p}\left\{\left(n^{1-\eta} h\right)^{-1}+h^{2 \ell}\right\} & \text { for part (ii) }\end{cases}
$$

where $\eta>0$ is arbitrarily small. Parts (i) and (ii) of Theorem ∇ follow from (S7.]) and parts (i) and (ii), respectively, of Theorem II.

S8 Proof of Theorem 3

We treat only the case where $w=0$ ．Let F and \widehat{F} be as in the proof of Theo－ rem［］．Note that，as established in Theorem［］，each derivative $\widehat{F}^{(r)}$ converges to the respective $F^{(r)}$ at the same rate，$O_{p}\left\{(n h)^{-1 / 2}+h^{\ell}\right\}$ for each q, w and y ，or $O_{p}\left\{\left(n^{1-\eta} h\right)^{-1 / 2}+h^{\ell}\right\}$ uniformly on compacts．Therefore，by Taylor expansion，

$$
\begin{equation*}
\alpha=F\left(t_{\alpha}\right)=\widehat{F}\left(\hat{t}_{\alpha}\right)=\widehat{F}\left(t_{\alpha}\right)+\left(\hat{t}_{\alpha}-t_{\alpha}\right) \widehat{F}^{\prime}\left(t_{\alpha}\right)+\frac{1}{2}\left(\hat{t}_{\alpha}-t_{\alpha}\right)^{2} \widehat{F}^{\prime \prime}\left(t_{\alpha}\right)+\ldots, \tag{S8.1}
\end{equation*}
$$

where，here and in（58．2）below，it can be proved from Theorem \square that the remainder ＂．．．＂denotes a sum of successive terms of respective sizes $\left\{(n h)^{-1 / 2}+h^{\ell}\right\}^{j}$ ，for $j \geq 3$ ， and equals $O_{p}\left[\left\{(n h)^{-1 / 2}+h^{\ell}\right\}^{r+1}\right]$（or $O_{p}\left[\left\{\left(n^{1-\eta} h\right)^{-1 / 2}+h^{\ell}\right\}^{r+1}\right]$ in a uniform sense） if the last included term is that involving $\left(\hat{t}_{\alpha}-t_{\alpha}\right)^{r}$ ．

In a slight abuse of previous notation，write $\Psi_{k}(t)$ and $\widehat{\Psi}_{k}(t)$ for $\Psi_{k}(t, y, q, w)$ and $\widehat{\Psi}_{k}(t, y, q, w)$ ，respectively，and define $\Delta_{k}=\widehat{\Psi}_{k}-\Psi_{k}$ ．Recall from（2．⿹⿻丁𠃋㇒日）and（2．7）that

$$
\begin{align*}
\widehat{F} & =\frac{\Psi_{1}+\Delta_{1}}{\Psi_{2}+\Delta_{2}}=\Psi_{2}^{-1}\left(\Psi_{1}+\Delta_{1}\right)\left(1-\Psi_{2}^{-1} \Delta_{2}+\Psi_{2}^{-2} \Delta_{2}^{2}-\ldots\right) \\
& =F+\left(\Psi_{2}^{-1} \Delta_{1}-\Psi_{2}^{-2} \Psi_{1} \Delta_{2}\right)+\left(\Psi_{2}^{-3} \Psi_{1} \Delta_{2}^{2}-\Psi_{2}^{-2} \Delta_{1} \Delta_{2}\right)+\ldots \tag{S8.2}
\end{align*}
$$

The advantage of working with this expanded form of \widehat{F} is that it does not involve a random denominator．Write \widehat{F}_{r} for the version of（58．2）when the expansion on the right－hand side is terminated after terms of size $\left\{(n h)^{-1 / 2}+h^{\ell}\right\}^{r}$ ．For example，

$$
\begin{equation*}
\widehat{F}_{2}=F+\left(\Psi_{2}^{-1} \Delta_{1}-\Psi_{2}^{-2} \Psi_{1} \Delta_{2}\right)+\left(\Psi_{2}^{-3} \Psi_{1} \Delta_{2}^{2}-\Psi_{2}^{-2} \Delta_{1} \Delta_{2}\right) . \tag{S8.3}
\end{equation*}
$$

Since (T, Q, W, Y) is independent of the data $\left\{\left(Q_{j}, W_{j}, Y_{j}\right), 1 \leq j \leq n\right\}$, then, conditionally on Q, W, Y,

$$
\begin{align*}
F_{0}(\alpha & \mid q, w, y) \\
& \equiv P\left(T \leq \hat{t}_{\alpha} \mid Q=q, W=w, Y=y\right)=E\left\{F\left(\hat{t}_{\alpha}\right)\right\} \\
& =E\left[\left\{F\left(t_{\alpha}\right)+\left(\hat{t}_{\alpha}-t_{\alpha}\right) F^{\prime}\left(t_{\alpha}\right)+\frac{1}{2}\left(\hat{t}_{\alpha}-t_{\alpha}\right)^{2} F^{\prime \prime}\left(t_{\alpha}\right)\right\} I(\mathcal{E})\right] \\
& +O\left\{\delta^{3}+P(\widetilde{\mathcal{E}})\right\}, \tag{S8.4}
\end{align*}
$$

where \mathcal{E} represents the event that $\left|\hat{t}_{\alpha}-t_{\alpha}\right| \leq \delta, \widetilde{\mathcal{E}}$ denotes the complement of \mathcal{E}, and $\delta=\delta(n)$ is a positive sequence decreasing to 0 as $n \rightarrow \infty$. Here and below, all expected values are taken conditionally on Q, W, Y. Furthermore, this expansion at (S8.4) holds uniformly in t, q and y in any compact subsets of their respective domains, and in $\alpha \in\left[\alpha_{1}, \alpha_{2}\right]$ for any $0<\alpha_{1}<\alpha_{2}<1$.

Recall from (58.1]) that $F\left(t_{\alpha}\right)=\widehat{F}\left(\hat{t}_{\alpha}\right)=\alpha$. Using this result, and Taylorexpanding as at (58.7), we deduce that

$$
\begin{aligned}
E[& {\left.\left[\left(\hat{t}_{\alpha}-t_{\alpha}\right) F^{\prime}\left(t_{\alpha}\right)+\frac{1}{2}\left(\hat{t}_{\alpha}-t_{\alpha}\right)^{2} F^{\prime \prime}\left(t_{\alpha}\right)\right\} I(\mathcal{E})\right] } \\
= & E\left[\left\{\left(\hat{t}_{\alpha}-t_{\alpha}\right) \widehat{F}_{2}^{\prime}\left(t_{\alpha}\right)+\frac{1}{2}\left(\hat{t}_{\alpha}-t_{\alpha}\right)^{2} \widehat{F}_{2}^{\prime \prime}\left(t_{\alpha}\right)\right\} I(\mathcal{E})\right] \\
& -E\left(\left[\left(\hat{t}_{\alpha}-t_{\alpha}\right)\left\{\widehat{F}_{2}^{\prime}\left(t_{\alpha}\right)-F^{\prime}\left(t_{\alpha}\right)\right\}+\frac{1}{2}\left(\hat{t}_{\alpha}-t_{\alpha}\right)^{2}\left\{\widehat{F}_{2}^{\prime \prime}\left(t_{\alpha}\right)-F^{\prime \prime}\left(t_{\alpha}\right)\right\}\right] I(\mathcal{E})\right) \\
= & -\alpha-E\left[\left\{\widehat{F}_{2}\left(t_{\alpha}\right)-F\left(t_{\alpha}\right)\right\}\right] I(\mathcal{E})+E\left\{\widehat{F}_{2}\left(\hat{t}_{\alpha}\right) I(\mathcal{E})\right\}+O\left\{\delta^{3}+P(\widetilde{\mathcal{E}})\right\} \\
& -E\left(\left[\left(\hat{t}_{\alpha}-t_{\alpha}\right)\left\{\widehat{F}_{2}^{\prime}\left(t_{\alpha}\right)-F^{\prime}\left(t_{\alpha}\right)\right\}+\frac{1}{2}\left(\hat{t}_{\alpha}-t_{\alpha}\right)^{2}\left\{\widehat{F}_{2}^{\prime \prime}\left(t_{\alpha}\right)-F^{\prime \prime}\left(t_{\alpha}\right)\right\}\right] I(\mathcal{E})\right) \\
= & -E\left[\left\{\widehat{F}_{2}\left(t_{\alpha}\right)-F\left(t_{\alpha}\right)\right\} I(\mathcal{E})\right]+O\left\{\delta^{3}+P(\widetilde{\mathcal{E}})\right\}
\end{aligned}
$$

$$
-E\left(\left[\left(\hat{t}_{\alpha}-t_{\alpha}\right)\left\{\widehat{F}_{2}^{\prime}\left(t_{\alpha}\right)-F^{\prime}\left(t_{\alpha}\right)\right\}+\frac{1}{2}\left(\hat{t}_{\alpha}-t_{\alpha}\right)^{2}\left\{\widehat{F}_{2}^{\prime \prime}\left(t_{\alpha}\right)-F^{\prime \prime}\left(t_{\alpha}\right)\right\}\right] I(\mathcal{E})\right)
$$

Hence, by (58.4),

$$
\begin{align*}
F_{0}(\alpha \mid q, w, y)= & \alpha-E\left[\left\{\widehat{F}_{2}\left(t_{\alpha}\right)-F\left(t_{\alpha}\right)\right\} I(\mathcal{E})\right]-E\left(\left[\left(\hat{t}_{\alpha}-t_{\alpha}\right)\left\{\widehat{F}_{2}^{\prime}\left(t_{\alpha}\right)-F^{\prime}\left(t_{\alpha}\right)\right\}\right.\right. \\
& \left.\left.+\frac{1}{2}\left(\hat{t}_{\alpha}-t_{\alpha}\right)^{2}\left\{\widehat{F}_{2}^{\prime \prime}\left(t_{\alpha}\right)-F^{\prime \prime}\left(t_{\alpha}\right)\right\}\right] I(\mathcal{E})\right)+O\left\{\delta^{3}+P(\widetilde{\mathcal{E}})\right\}, \tag{S8.5}
\end{align*}
$$

where this identity holds uniformly in q and y in any compact subsets of their respective domains, and in $\alpha \in\left[\alpha_{1}, \alpha_{2}\right]$ for any $0<\alpha_{1}<\alpha_{2}<1$.

A modification of the Taylor-expansion argument leading to Theorem (see e.g. (S7.7)) can be used to show that

$$
\begin{align*}
E & {\left[\left(\hat{t}_{\alpha}-t_{\alpha}\right)\left\{\widehat{F}_{2}^{\prime}\left(t_{\alpha}\right)-F^{\prime}\left(t_{\alpha}\right)\right\} I(\mathcal{E})\right] } \\
& =-F^{\prime}\left(t_{\alpha}\right)^{-1} E\left[\left\{\widehat{F}_{2}\left(t_{\alpha}\right)-F\left(t_{\alpha}\right)\right\}\left\{\widehat{F}_{2}^{\prime}\left(t_{\alpha}\right)-F^{\prime}\left(t_{\alpha}\right)\right\}\right]+O\left\{\delta^{3}+P(\widetilde{\mathcal{E}})\right\} \\
& =-F^{\prime}\left(t_{\alpha}\right)^{-1} E\left[\left\{\widehat{F}_{1}\left(t_{\alpha}\right)-F\left(t_{\alpha}\right)\right\}\left\{\widehat{F}_{1}^{\prime}\left(t_{\alpha}\right)-F^{\prime}\left(t_{\alpha}\right)\right\}\right]+O\left\{\delta^{3}+P(\widetilde{\mathcal{E}})\right\}+o\left(\delta_{1}^{2}\right), \tag{S8.6}
\end{align*}
$$

where $\delta_{1}=(n h)^{-1 / 2}+h^{\ell}$. Similarly but more simply,

$$
\begin{equation*}
E\left[\left(\hat{t}_{\alpha}-t_{\alpha}\right)^{2}\left\{\widehat{F}_{2}^{\prime \prime}\left(t_{\alpha}\right)-F^{\prime \prime}\left(t_{\alpha}\right)\right\} I(\mathcal{E})\right]=O\left\{\delta^{3}+P(\widetilde{\mathcal{E}})\right\}+o\left(\delta_{1}^{2}\right) \tag{S8.7}
\end{equation*}
$$

Combining (58.5) - (58.7) we deduce that

$$
\begin{aligned}
F_{0}(\alpha \mid q, w, y)= & \alpha-E\left\{\widehat{F}_{2}\left(t_{\alpha}\right)-F\left(t_{\alpha}\right)\right\} \\
& +F^{\prime}\left(t_{\alpha}\right)^{-1} E\left[\left\{\widehat{F}_{1}\left(t_{\alpha}\right)-F\left(t_{\alpha}\right)\right\}\left\{\widehat{F}_{1}^{\prime}\left(t_{\alpha}\right)-F^{\prime}\left(t_{\alpha}\right)\right\}\right]
\end{aligned}
$$

$$
\begin{equation*}
+O\left\{\delta^{3}+P(\widetilde{\mathcal{E}})\right\}+o\left(\delta_{1}^{2}\right) \tag{S8.8}
\end{equation*}
$$

uniformly in the sense described below (58.5).
Define $\widetilde{\Psi}_{k}(s, y, q, w)=\int \psi_{k}(s, y, q, w, x) \hat{f}_{X}(x) d x$, where ψ_{k} is as at ([2.6)), and recall that $\Delta_{k}=\widehat{\Psi}_{k}-\Psi_{k}$, that $\widehat{\Psi}_{k}(s, y, q, w)=\int \hat{\psi}_{k}(s, y, q, w, x) \hat{f}_{X}(x) d x$, and that $\hat{\psi}_{k}$ is given by (2.8). It can be proved from these definitions that

$$
\begin{align*}
& \widehat{\Psi}_{k}=\widetilde{\Psi}_{k}+O_{p}\left(n^{-1 / 2}\right), \quad E\left(\widehat{\Psi}_{k}\right)=E\left(\widetilde{\Psi}_{k}\right)+O\left(n^{-1}\right) \tag{S8.9}\\
& E\left\{\widetilde{\Psi}_{k}(s, y, q, w)\right\}=\int \psi_{k}(s, y, q, w, x) E\left\{\hat{f}_{X}(x)\right\} d x \\
& =\iint \psi_{k}(s, y, q, w, x+h u) K(u) f_{X}(x) d u d x=\int \lambda_{k}(h u \mid s, y, q, w) K(u) d u \\
& =\lambda_{k}(0 \mid s, y, q, w)+O\left(h^{\ell}\right)=\Psi_{k}(s, y, q, w)+O\left(h^{\ell}\right) \tag{S8.10}
\end{align*}
$$

in a uniform sense. (Recall that λ_{k} was defined at (3.3).) For example, in (58.9) uniformity means that $\sup |\widehat{\Psi}(s, y, q, w)-\widetilde{\Psi}(s, y, q, w)|=O_{p}\left(n^{-1 / 2}\right)$ and $\sup \mid E\left(\widehat{\Psi}_{k}\right)-$ $E\left(\widetilde{\Psi}_{k}\right) \mid=O\left(n^{-1}\right)$, where in each case the supremum is taken over s, y and q in any compact subsets of their respective domains. To derive the last identity in (58.10) we used (3.3) and (3.5).

Note that

$$
\begin{aligned}
& E\left\{\left|\widehat{\Psi}_{k}(s, y, q, w)-\widetilde{\Psi}_{k}(s, y, q, w)\right|^{2}\right\} \\
& =E\left[\int\left\{\hat{\psi}_{k}(s, y, q, w, x)-\psi_{k}(s, y, q, w, x)\right\} \hat{f}_{X}(x) d x\right]^{2} \\
& \leq\left[\int E\left\{\hat{\psi}_{k}(s, y, q, w, x)-\psi_{k}(s, y, q, w, x)\right\}^{2} d x\right] \int E\left\{\hat{f}_{X}(x)^{2}\right\} d x
\end{aligned}
$$

$$
\begin{equation*}
=O\left[n^{a} \int E\left\{\hat{\psi}_{k}(s, y, q, w, x)-\psi_{k}(s, y, q, w, x)\right\}^{2} d x\right] \tag{S8.11}
\end{equation*}
$$

uniformly in the sense described in the previous paragraph. To obtain the last identity in (58.7]) we used the fact that, by (3.6)(a), $\int E\left\{\hat{f}_{X}(x)^{2}\right\} d x=O\left(n^{a}\right)$ for a constant $a \geq 0$. Let D_{0}, \ldots, D_{3} denote the respective quantities $\left|\hat{\beta}_{0}-\beta_{0}\right|,\left|\hat{\beta}_{1}-\beta_{1}\right|,\left\|\hat{\beta}_{2}-\beta_{2}\right\|$ and $\left|\hat{\sigma}_{V}^{2}-\sigma_{V}^{2}\right|$. If

$$
\begin{equation*}
\max _{0 \leq j \leq 3} P\left(D_{j}>n^{-\left(1-a_{1}\right) / 2}\right)=O\left(n^{-\left(1-a_{2}\right)}\right), \tag{S8.12}
\end{equation*}
$$

where $0<a_{1}, a_{2}<1$, then it can be proved by Taylor expansion that

$$
\int E\left\{\hat{\psi}_{k}(s, y, q, w, x)-\psi_{k}(s, y, q, w, x)\right\}^{2} d x=O\left(n^{\max \left(a_{1}, a_{2}\right)-1}\right) .
$$

Therefore, by (58.1]),

$$
E\left\{\left|\widehat{\Psi}_{k}(s, y, q, w)-\widetilde{\Psi}_{k}(s, y, q, w)\right|^{2}\right\}=O\left(n^{a+\max \left(a_{1}, a_{2}\right)-1}\right)
$$

uniformly in the sense described in the previous paragraph. Hence, provided that

$$
\begin{equation*}
n^{a+\max \left(a_{1}, a_{2}\right)} h=O(1), \tag{S8.13}
\end{equation*}
$$

we have:

$$
\begin{equation*}
E\left\{\left|\widehat{\Psi}_{k}(s, y, q, w)-\widetilde{\Psi}_{k}(s, y, q, w)\right|^{2}\right\}=O\left\{(n h)^{-1}\right\} \tag{S8.14}
\end{equation*}
$$

again uniformly. Suppose that, as asserted in (3.6)(b), $n^{a+\varepsilon} h=O(1)$ for some $\varepsilon>0$. By assuming enough finite moments of Q, U, V and X (here we are invoking (3.6)(c)) we can ensure that (S8.12) holds for a_{1}, a_{2} in the range $0<a_{1}, a_{2} \leq \varepsilon$. In this case (58.13), and hence also (58.14), follow from the property $n^{a+\varepsilon} h=O(1)$ in (3.61).

Define $\widetilde{\Delta}_{k}=\widetilde{\Psi}_{k}-\Psi_{k}$, and let $\widetilde{\Psi}_{k}^{\prime}$ and Ψ_{k}^{\prime} be the derivatives of $\widetilde{\Psi}_{k}$ and Ψ_{k} with respect to s, so that $\widetilde{\Delta}_{k}^{\prime}=\widetilde{\Psi}_{k}^{\prime}-\Psi_{k}^{\prime}$. Using this notation, and combining (58.3), the second part of (58.9), (58.10) and (58.14), we deduce that

$$
\begin{align*}
E\left(\widehat{F}_{2}\right)-F= & \Psi_{2}^{-3} \Psi_{1} E\left(\widetilde{\Delta}_{2}^{2}\right)-\Psi_{2}^{-2} E\left(\widetilde{\Delta}_{1} \widetilde{\Delta}_{2}\right)+O\left\{(n h)^{-1}+h^{\ell}\right\} \\
= & O\left\{(n h)^{-1}+h^{\ell}\right\}, \tag{S8.15}\\
E\left\{\left(\widehat{F}_{1}-F\right)\left(\widehat{F}_{1}^{\prime}-F^{\prime}\right)\right\}= & E\left\{\left(\Psi_{2}^{-1} \widetilde{\Delta}_{1}-\Psi_{2}^{-2} \Psi_{1} \widetilde{\Delta}_{2}\right)\left(\Psi_{2}^{-1} \widetilde{\Delta}_{1}-\Psi_{2}^{-2} \Psi_{1} \widetilde{\Delta}_{2}\right)^{\prime}\right\} \\
& +O\left\{(n h)^{-1}+h^{\ell}\right\} \\
= & O\left\{(n h)^{-1}+h^{\ell}\right\}, \tag{S8.16}
\end{align*}
$$

where in each case the functions on the left-hand side are evaluated at t_{α}, and the last identities are derived using standard calculations. Hence, by (58.8), and again in the uniform sense prescribed two paragraphs above,

$$
\begin{align*}
F_{0}(\alpha \mid q, w, y)-\alpha & =O\left\{(n h)^{-1}+h^{\ell}+\delta^{3}+P(\widetilde{\mathcal{E}})\right\}+o\left(\delta_{1}^{2}\right) \\
& =O\left\{(n h)^{-1}+h^{\ell}+\delta^{3}+P(\widetilde{\mathcal{E}})\right\} . \tag{S8.17}
\end{align*}
$$

We know from Theorem \boxtimes that $\hat{t}_{\alpha}-t_{\alpha}=O_{p}\left\{(n h)^{-1 / 2}+h^{\ell}\right\}$, and so if we define $\delta=$ $\left\{(n h)^{-1 / 2}+h^{\ell}\right\} n^{\eta}$, where $\eta>0$ is chosen so small that $\left\{(n h)^{-1 / 2} n^{\eta}\right\}^{3}=O\left\{(n h)^{-1}\right\}$, then we shall have $\delta^{3}=O\left\{(n h)^{-1 / 2}+h^{\ell}\right\}$. Moreover, Markov's inequality can be used to prove that $P(\widetilde{\mathcal{E}})=O\left\{(n h)^{-1 / 2}+h^{\ell}\right\}$. Hence, by (58.17), $F_{0}(\alpha \mid q, w, y)-\alpha=$ $O\left\{(n h)^{-1 / 2}+h^{\ell}\right\}$, uniformly in q and y in compact subsets of their respective domains. This result is equivalent to (3.8).

Finally we sketch a proof of the variant of Theorem discussed immediately below that theorem. If in Theorem 3 we assume (3.4) then the far right-hand side of (58.10) can be refined to $\Psi_{k}(s, y, q, w)+c_{k} h^{\ell}+o\left(h^{\ell}\right)$, where c_{k} is a constant, and therefore (58.10) becomes

$$
\begin{equation*}
E\left\{\widetilde{\Psi}_{k}(s, y, q, w)\right\}=\Psi_{k}(s, y, q, w)+c_{k} h^{\ell}+o\left(h^{\ell}\right) . \tag{S8.18}
\end{equation*}
$$

Furthermore, if in (3.6) (a) we replace $O\left(h^{a}\right)$ by $o\left(h^{a}\right)$, so that $\int E\left(\hat{f}_{X}\right)^{2}=o\left(n^{a}\right)$, then (58.13) holds with the right-hand side replaced by o(1), and so (58.14) becomes

$$
\begin{equation*}
E\left\{\left|\widehat{\Psi}_{k}(s, y, q, w)-\widetilde{\Psi}_{k}(s, y, q, w)\right|^{2}\right\}=o\left\{(n h)^{-1}\right\} \tag{S8.19}
\end{equation*}
$$

Using (S8.18) and (58.19) instead of (58.10) and (58.14), respectively, the strings of identities at (58.15) and (58.16) can be refined to

$$
\begin{align*}
E\left(\widehat{F}_{2}\right)-F= & \Psi_{2}^{-3} \Psi_{1} E\left(\widetilde{\Delta}_{2}^{2}\right)-\Psi_{2}^{-2} E\left(\widetilde{\Delta}_{2} \widetilde{\Delta}_{2}\right)+o\left\{(n h)^{-1}+h^{\ell}\right\} \\
= & d_{1}(n h)^{-1}+d_{2} h^{\ell}+o\left\{(n h)^{-1}+h^{\ell}\right\}, \tag{S8.20}\\
E\left\{\left(\widehat{F}_{1}-F\right)\left(\widehat{F}_{1}^{\prime}-F^{\prime}\right)\right\}= & E\left\{\left(\Psi_{2}^{-1} \widetilde{\Delta}_{1}-\Psi_{2}^{-2} \Psi_{1} \widetilde{\Delta}_{2}\right)\left(\Psi_{2}^{-1} \widetilde{\Delta}_{1}-\Psi_{2}^{-2} \Psi_{1} \widetilde{\Delta}_{2}\right)^{\prime}\right\} \\
& +o\left\{(n h)^{-1}+h^{\ell}\right\} \\
= & d_{3}(n h)^{-1}+o\left\{(n h)^{-1}+h^{\ell}\right\}, \tag{S8.21}
\end{align*}
$$

where d_{1}, d_{2} and d_{3} are constants and, as in (58.15) and (58.16), the functions on the left-hand sides are evaluated at t_{α}. The remainder $O\left\{\delta^{3}+P(\widetilde{\mathcal{E}})\right\}+o\left(\delta_{1}^{2}\right)$ on the right-hand side of (58.8) equals $o\left\{(n h)^{-1}+h^{\ell}\right\}$ if δ is chosen appropriately, and so,
on substituting (58.20) and (58.21) into (58.8), we obtain:

$$
F_{0}(\alpha \mid q, w, y)=\alpha+\left\{F^{\prime}\left(t_{\alpha}\right)^{-1} d_{3}-d_{1}\right\}(n h)^{-1}-d_{2} h^{\ell}+o\left\{(n h)^{-1}+h^{\ell}\right\} .
$$

This is the version of (3.8) discussed in the paragraph immediately below Theorem

