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5. Proof of the Theorem.

Assume, without loss of generality, that the support [a, b] = [−1, 1]. The proof includes

several steps.

Step 1: First approximation to S(α). The approximation is given at (5.3) below. It follows

from the formula for g in (2.1) that

E{g(Xi)|Wi}fW (Wi) =
∑

j

α
0
j

∫ 1

−1

φj(x)fU (Wi − x)fX(x)dx

+
∞
∑

k=0

∑

j

α
0
jk

∫ 1

−1

ψjk(x)fU (Wi − x)fX(x)dx. (5.1)

Define too V ′
i = Vif̂W (Wi), ∆Wi = g(Xi){f̂W (Wi)− fW (Wi)}.

∆Xi,φ =
∑

j

αj

∫ 1

−1

φj(x)fU (Wi − x){f̂X(x)− fX(x)}dx,

∆Xi,ψ =
m
∑

k=0

∑

j

αjk

∫ 1

−1

ψjk(x)fU (Wi − x){f̂X(x)− fX (x)}dx,

g(x|α,m) =
∑

j

αjφj(x) +
m
∑

k=0

∑

j

αjkψjk(x).
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Then,

E{g(X|α,m)|W = w} =
1

fW (w)

{

∑

j

αj

∫ 1

−1

φj(x)fU (w − x)fX(x)dx

+
m
∑

k=0

∑

j

αjk

∫ 1

−1

ψjk(x)fU (w − x)fX(x)dx
}

. (5.2)

Since Yi = g(Xi) + Vi then, in view of the definition of S(α), (5.1) and (5.2),

S(α) =

n
∑

i=1

[

g(Xi)fW (Wi) + ∆Wi + V
′
i −∆Xi,φ −∆Xi,ψ

−
∑

j

αj

∫ 1

−1

φj(x)fU(Wi − x)fX(x)dx−
m
∑

k=0

∑

j

αjk

∫ 1

−1

ψjk(x)fU(Wi − x)fX(x)dx
]2

=

n
∑

i=1

(

[

g(Xi)− E{g(Xi|α,m)|Wi}
]

fW (Wi) +∆Wi + V
′
i −∆Xi,φ −∆Xi,ψ

)2

Therefore, defining

S1(α) =

n
∑

i=1

(

[

g(Xi)−E{g(Xi|α,m)|Wi}
]

fW (Wi) + ∆Wi + V
′
i

)2

,

S2(α) =
n
∑

i=1

∆2
Xi,φ

, S3(α) =
n
∑

i=1

∆2
Xi,ψ

,

we have:

|S(α)− S1(α)| ≤ 2
[

2S1(α){S2(α) + S3(α)}
]1/2

+ 2{S2(α) + S3(α)}. (5.3)

Note that Assumptions A1(a) and A1(b) together imply that fW is bounded.

Step 2: Second approximation to S(α). The approximation is given at (5.7). To derive it,

we put sU = supu∈R
fU (u), and let β = f̂X − fX and ∆2

β =
∫ 1

−1
β2. Then note that the support

of β is [−1, 1]. Without loss of generality, the supports of φ and ψ are also confined to [−1, 1].

Then, since φj(u) = ρ1/2φ(ρu− j) and ψjk(u) = ρ
1/2
k φ(ρku− j), the integrals

∫ 1

−1

φj(x)fU (w − x)β(x)dx,

∫ 1

−1

ψjk(x)fU(w − x)β(x)dx
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vanish, regardless of the value of w, unless, for some u ∈ [−1, 1],−1 + ρu ≤ j ≤ 1 + ρu or

−1 + ρku ≤ j ≤ 1 + ρku, respectively. In particular, if it is not true that |j| ≤ ρ + 1 or

|j| ≤ ρk +1 then the respective integral vanishes. Let ν and νk denote the integer parts of ρ+1

and ρk +1, respectively. Since φj and ψjk are orthonormal then, writing χ for either φj or ψjk,

and using the Cauchy-Schwarz inequality for integrals, we obtain:

sup
w∈R

{
∫ 1

−1

χ(x)fU(w − x)β(x)dx

}2

≤ s
2
U∆

2
β. (5.4)

Employing (5.4) and the Cauchy-Schwartz inequality for series we see that

S2(α) =
n
∑

i=1

(

∞
∑

j=−∞

αj

∫ 1

−1

φj(x)fU (Wi − x){f̂X(x)− fX(x)}dx

)2

≤
n
∑

i=1

(

ν
∑

j=−ν

α
2
j

)(

ν
∑

j=−ν

sup
w∈R

[∫ 1

−1

φj(x)fU (Wi − x){f̂X(x)− fX(x)}dx

]2
)

≤ n(2ν + 1)s2U∆
2
β

∑

j

α
2
j = S21(α), (5.5)

say. Similarly,

S3(α) =

n
∑

i=1





m
∑

k=0

νk
∑

j=−νk

αjk

∫ 1

−1

ψjk(x)fU (Wi − x){f̂X(x)− fX(x)}dx





2

≤
n
∑

i=1





m
∑

k=0

νk
∑

j=−νk

α
2
jk









m
∑

k=0

νk
∑

j=−νk

sup
w∈R

[∫ 1

−1

ψjk(x)fU (w − x){f̂X(x)− fX(x)}dx

]2




≤ ns
2
U∆

2
β

{ m
∑

k=0

(2νk + 1)

}

(

m
∑

k=0

∑

j

α
2
jk

)

= S31(α). (5.6)

Combining (5.3)-(5.6) we deduce that

|S(α) − S1(α)| ≤ 2[2S1(α){S21(α) + S31(α)}]
1/2 + 2{S21(α) + S31(α)}. (5.7)

Step 3: Third approximation to S(α). The approximation is given at (5.11). To establish

it, define S6 =
∑

i(∆Wi + V ′
i )

2, not depending on α, and

S4(α) =

n
∑

i=1

(

[

g(Xi)− E{g(Xi|α,m)|Wi}
]

fW (Wi)
)2

, (5.8)
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S5(α) =

n
∑

i=1

(

[

g(Xi)− E{g(Xi|α,m)|Wi}
]

fW (Wi)
)

(∆Wi + V
′
i ).

Then

S1(α) = S4(α) + 2S5(α) + S6. (5.9)

Using a lattice argument it can be proved that, for all ǫ > 0,

sup
α∈Am

|S4(α)− ES4(α)| = Op

(

n
ǫ+(1+r)/2

)

, sup
α∈Am

|S5(α)| = Op

(

n
ǫ+(1+r)/2

)

. (5.10)

We shall outline the arguments in the next paragraph. Combining (5.7), (5.9) and (5.10)

we deduce that, uniformly in α ∈ Am, and for all ǫ > 0,

|S(α) − {ES4(α) + S6}| ≤ 2[2{ES4(α) + S6 +Op(n
ǫ+(1+r)/2)}{S21(α) + S31(α)}]

1/2

+ 2{S21(α) + S31(α)}+Op(n
ǫ+(1+r)/2), (5.11)

where r is as in Assumption A2.

Finally in this step we derive (5.10). Observe from the definition of Am (see (4.1) and

(4.2)) that

∑

j

α
2
j +

m
∑

k=0

∑

j

α
2
jk =

∫

d

c

g(x|α,m)2dx ≤ (d− c)B2
3 = C7,

say, where c and d are as in (4.1). Note too that ν ≤ ρ+1 and νk ≤ 2kρ+1. Then, supj∈N
|αj | ≤

C
1/2
7 and supk∈{0,...,m} supj∈N

|αjk| ≤ C
1/2
7 for m ≤ m0.

Given a constant C1 > r, let A∗
m denote the set of all α ∈ Am for which each αj and

αjk lies among the points {0,±n−C1 , ...., Kn−C1}, where K is the smallest integer such that

Kn−C1 ≥ C
1/2
7 . If α ∈ Am, with components αj and αjk, let α

∗, with respective components

α∗
j and α∗

jk, denote an element of A∗
m that has the property that α∗

j is as close as possible to

αj , and α
∗
jk is as close as possible to αjk, for each αj and αjk, that is, supj∈N

|αj −α∗
j | ≤ n−C1

and supk∈{0,...,m} supj∈N
|αjk − α∗

jk| ≤ n−C1 . Then, recalling the definitions of ν < ρ + 1 and

νk ≤ ρk + 1 ,
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max
m≤m0

sup
α∈Am

sup
w∈R

∣

∣E{g(X|α,m)|W = w} − E{g(X|α∗
,m)|W = w}

∣

∣fW (w)

= max
m≤m0

sup
α∈Am

sup
w∈R

∣

∣

∣

∑

j

(αj − α
∗
j )

∫ 1

−1

φj(x)fU(w − x)fX(x)dx

+

m
∑

k=0

∑

j

(αjk − α
∗
jk)

∫ 1

−1

ψjk(x)fU (w − x)fX(x)dx
∣

∣

∣

≤ max
m≤m0

sup
α∈Am

{ ν
∑

j=−ν

|αj − α
∗
j | sup

w∈R

∣

∣

∣

∫ 1

−1

φj(x)fU (w − x)fX(x)dx
∣

∣

∣

+

m
∑

k=0

νk
∑

j=−νk

|αjk − α
∗
jk| sup

w∈R

∣

∣

∣

∫ 1

−1

ψjk(x)fU (w − x)fX(x)dx
∣

∣

∣

}

≤ n
−C1sU‖fX‖2

{

(2ν + 1) +

m0
∑

k=0

(2νk + 1)
}

≤ n
−C1sU‖fX‖2

{

(2ρ+ 3) +

m0
∑

k=0

(2k+1
ρ+ 3)

}

= n
−C1sU‖fX‖2{(2ρ+ 3) + 2(2m0+1 − 1) + 3m0}

≤ C3n
r−C1 (5.12)

for large enough constant 0 < C3 <∞, by Assumption A2.

Therefore, by (5.12),

max
m≤m0

sup
α∈Am

sup
w∈R

∣

∣E{g(X|α,m)|W = w} − E{g(X|α∗
,m)|W = w}

∣

∣fW (w) ≤ C3n
r−C1 .

Hence, noting the definition of S4(α) at (5.8), we see that if C1 > r + 1 then

P

{

sup
α∈Am

|S4(α)− S4(α
∗)| ≤ C4n

r+1−C1

}

= 1, (5.13)

for some constant 0 < C4 <∞. Similarly, for some constant 0 < C5 <∞, Bernstein’s inequality

can be used to prove that for 0 ≤ t ≤ n1/2,

sup
α∈Am

P{|S4(α)− ES4(α)| > n
1/2
t} ≤ 2 exp(−C5t

2). (5.14)
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The number of elements of A∗
m equals

O(nC62
m0(n)

) = O{exp(C6n
r log n)},

where 0 < r < 1
2
(see Assumption A2(a)) and where we also used Assumption A2(b) to derive

the above identity. Therefore, by (5.14), if 1
2
r < u ≤ 1

2
,

P

{

sup
α∈A∗

m

|S4(α)− ES4(α)| > n
(1/2)+u

}

= O{exp(−C5n
2u) exp(nr log n)} → 0. (5.15)

In particular, (5.15) implies that, for all ǫ > 0,

n
−1 sup

α∈A∗

m

|S4(α)− ES4(α)| = Op(n
ǫ−(1−r)/2). (5.16)

Taking C1 sufficiently large in (5.13) we deduce the first part of (5.10) from (5.13) and

(5.16). The second part can be derived similarly. (It is here that Assumption A1(f) is used.)

Step 4: Fourth approximation to S(α). Here we prove that

n
−1 max

m≤m0(n)
sup

α∈Am

|S(α) − {ES4(α) + S6}| = op(1). (5.17)

By(5.5) and (5.6):

n
−1
S21(α) ≤ C8

∫ 1

−1

(f̂X − fX)2, n
−1
S31(α} ≤ C

′
82

m

∫ 1

−1

(f̂X − fX)2, (5.18)

where C8 = s2U (2ρ+ 3)C7 and C′
8 = (4ρ+ 3)C7s

2
U . The right-hand sides of the two inequalities

in (5.18) do not depend on α, and Assumption 2(a) implies that they equal Op(n
−2r) and

Op(2
mn−2r), respectively. Moreover, Assumption 2(b) asserts that m ≤ m0(n) where 2m0(n) =

o(nr), and therefore the right-hand sides of the inequalities in (5.18) both equal op(1), uniformly

in α ∈ Am and m ≤ m0. Hence, n−1S21(α) and n−1S31(α) both equal op(1), uniformly in

α ∈ Am and m ≤ m0(n) :

n
−1 max

m≤m0(n)
sup

α∈Am

{S21(α) + S31(α)} → 0, (5.19)
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where the convergence is in probability. By Assumption 1(a) and Assumption 1(d),

n
−1
E{S4(α)} ≤ 4B2

3

∫

fW (w)3dw <∞, (5.20)

where B3 is as in (4.2).(Note that Assumption 1(b) implies that fW is bounded.) It is straight-

forward to show that

n
−1
S6 = Op(1); (5.21)

recall that S6 does not depend on α. Combining (5.11) and (5.19)-(5.21) we deduce that (5.17)

holds.

Step 5: Completion of proof of theorem. First, we note that by Step 4, n−1S(α) =

n−1ES4(α) + n−1S6 + op(1), uniformly in α ∈ Am. Then

n
−1
ES4(α) = E

(

[

g(X)− E{g(X|α,m)|W }
]

fW (W )
)2

= E
(

[

g(X)− E{g(X)|W }+ E{g(X)} − E{g(X|α,m)|W }
]

fW (W )
)2

= S41 + 2S42(α) + S43(α) (5.22)

where

S41 = E ([g(X)− E{g(X)|W }] fW (W ))2

S42(α) = E
(

[g(X)−E{g(X)|W }] [E{g(X)|W } − E{g(X|α,m)|W }] fW (W )2
)

S43(α) = E
(

[E{g(X)|W } − E{g(X|α,m)|W }]2 fW (W )2
)

. (5.23)

Using the total expectation property E{h(X)} = E [E{h(X)|W }] for any measurable function

h we see that S42(α) = 0 holds for all α ∈ Am. Therefore

n
−1
ES4(α) = S41 + S43(α).

Define the functional κ1(h) = E
(

[E{g(X)|W } − E{h(X)|W }]2 fW (W )2
)

and observe that with

gα,m(x) = g(x|α,m) we have that κ1(gα,m) = S43(α). Since κ1 ≥ 0 and κ1 = 0 when h = g
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we see that h = g is a minimizer of κ1. This minimizer is unique. Indeed, suppose that

κ1(h) = E
(

[E{g(X)|W } − E{h(X)|W }]2 fW (W )2
)

= 0, then E{g(X)|W } = E{h(X)|W } al-

most surely. By Assumption A1 e), we have that h(X) = g(X) almost surely. Therefore, κ1 is

uniquely minimized at g.

Noting that n−1S(α) = n−1ES4(α) + n−1S6 + op(1) = S41 + κ1(gα,m) + n−1S6 + op(1)

uniformly in Am, and that S(α) is minimized at α = α̂, we have that

κ1(gα̂,m)
p
→ κ1(g) = 0 (5.24)

as n→ ∞.

We will now show that
∫ 1

−1
{gα̂,m(x)− g(x)}2dx

p
→ 0 by showing that for each subsequence

nk of n there exists a subsubsequence nk(s) of nk such that
∫ 1

−1
{gα̂,m(x) − g(x)}2dx

p
→ 0 as

s→ ∞.

Let nk be an arbitrary subsequence of n. Let C(B3) denote the class of functions h that

satisfy (4.1) and (4.2). Then C(B3) includes gα̂,m by the definition of α̂. Functions in C(B3)

can be approximated uniformly and arbitrarily closely in L2 on [−1, 1] by a lattice laid down

in [−1, 1]. Specifically, for any ǫ ∈ (0, 1) there exists an integer l = l(ǫ) > 0 such that for each

h ∈ C(B3) there is a right continuous step function h∗ defined on (the subintervals created by)

a regular l-point lattice in [−1, 1], and taking values only in [−B3, B3] (where B3 is as in (4.2)),

such that
∫ 1

−1

(h− h
∗)2 ≤ ǫ.

Taking h = gα̂,m we obtain the step-function approximation g∗α̂,m :

P

{
∫ 1

−1

(gα̂,m − g
∗
α̂,m)2 ≤ ǫ

}

= 1. (5.25)

In this paragraph we keep ǫ > 0 fixed, and define cj , j = 1, ..., l(ǫ), to be the steps of g∗α̂,m

(we suppress the dependency of cj on ǫ and n). Define E = (ǫ1, ǫ2, . . . ) to be a positive sequence
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decaying to zero. Then, along a subsequence nk(s) by the Prohorov - Varadajan theorem (see,

e.g., p. 303 in Athreya and Lahiri (2006)), cj converges in distribution to some random variable

c∞j . By the Kolmogorov extension theorem, there exists a probability space (Ω,Σ, P) such that

cj,nk(s) is defined on (Ω,Σ, P) such that cj = cj,nk(s) + op(1), so that Gǫ,nk(s) , Gǫ are step

functions defined by the values cj,nk(s) and c∞j for j = 1, ..., l(ǫ) respectively, and they satisfy

(4.1) and (4.2). Then by construction,

∫ 1

−1

(g∗α̂,m − Gǫi,nk(s))
2 p
→ 0 (5.26)

as s → ∞ for a fixed natural number i. Combining (5.24)-(5.26) we see that we can construct

a sequence ǫi ≡ ǫnk(s) converging to zero sufficiently slowly enough so that the corresponding

sequence Gǫi , satisfies

κ1(Gǫi) → κ1(g) = 0 (5.27)

in probability as i → ∞. Here the value of l = li will diverge as ǫi decreases, and without loss

of generality it diverges dyadically: li = 2i for i ≥ 1. Express Gǫi using the Haar wavelet basis

rescaled to [−1, 1]. Then, for any δ > 0, we can approximate Gǫi to within δ, in L2 and for all

i, using at most the first Nδ terms in a complete sequence of orthonormal functions χ1, χ2, . . .

representing an enumeration of the Haar basis. Since each Gǫi ∈ C(B3) then neither Nδ nor our

ordering of the functions χj need depend on i, and so for each value of that index,

P

{

∥

∥

∥
Gǫi −

Nδ
∑

j=1

(

∫ 1

−1

Gǫiχj

)

χj

∥

∥

∥

2
≤ δ

}

= 1. (5.28)

Take ik to be a subsequence of i. Define Gδ
ǫi =

∑Nδ
j=1

( ∫ 1

−1
Gǫiχj

)

χj . Define D = (δ1, δ2, . . . )

to be a sequence decaying to zero. Note that GδK
ǫik is defined by the uniformly bounded finite

dimensional vector
(

GδK
ǫik

)

1≤j≤Nδ
, and hence by the Prohorov-Varadajan Theorem, we can con-

struct a further subsequence ǫik(s) such that GδK
ǫik(s) converges in distribution to a random
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function Gδ
0 . Then by the continuous mapping theorem,

∫ 1

−1

GδK
ǫik(s)

χj =

∫ 1

−1

Gǫik(s)χj
D
→

∫ 1

−1

GδK
0 χj ,

for each fixed K ≥ 1, j ≤ NδK . Since the left hand side does not depend on δK , we have that

Gδk
0 ≡ G0.

Hence, by (5.27) and by choosing δ ≡ δ(i) to converge slowly to 0, κ1(G0) = κ1(g) = 0

almost surely. Note that Assumption A1 e) implies that if κ1(h) = 0 then h(X) = g(X) almost

surely, and therefore, G0 = g almost surely. Hence, Geik(s)
converges weakly to g. Since this

holds for any subsubsequence ik(s) of any arbitrary subsequence ik, we have that Gǫi converges

weakly to g. Armed with this result and (5.28), an argument by contradiction can now be used

to prove that as ǫi = ǫi(n) → 0,
∫ 1

−1
(Gǫi,nks

− g)2
p
→ 0. Hence, by (5.25) and (5.26),

∫ 1

−1

(gα̂,m − g)2 → 0 (5.29)

in probability as nks → ∞. Since we have found a subsubsequence nks for any arbitrary sub-

sequence nk of n such that (5.29) holds, then (5.29) holds as n → ∞. Since, by construction,

g(x|α̂,m) and g are bounded then (5.29), which is equivalent to (4.3) in the case q = 2, implies

(4.3) for all q ∈ (0,∞).
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