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Abstract: In statistics P -values are mostly used in the context of hypothesis testing.

Software for linear regression assigns a P -value to every covariate which corresponds

to testing the hypothesis that the ‘true’ value of the regression coefficient is zero.

In this paper several different uses and interpretations of P -values will be discussed

ranging from the use of P -values as measures of approximation for parametric

models, for location-scale M -functionals to Jeffreys’ criticism of P -values and to

the choice of covariates in linear regression without an error term. The approach is

neither frequentist nor Bayesian. It is not frequentist as the P -values are calculated

and interpreted for the data at hand, and simply being a P -value makes it non-

Bayesian.

Key words and phrases: Approximate models, approximation regions, choice of

covariates, functionals, prediction, P -values and approximation.

1. Peter Hall

I met Peter Hall for the first time in 1996. Robert Staudte had invited me

to La Trobe where we discussed my ideas on statistics (Davies (1995)). Staudte

decided to arrange a one-day workshop and invited Peter Hall to give a talk.

After that I met Peter several times at various conferences and workshops. He

did not agree with my approach but nevertheless encouraged me to continue,

one of the very few people who did so. In particular he invited me to contribute

Davies (2008) to the Journal of the Korean Statistical Society and arranged for

the discussants. In 2010 we were colleagues for a short time at the University of

California, Davis, and in 2013 he invited me to Melbourne for a six-week stay.

That was the last time I saw him. We have lost a wonderful colleague and a

wonderful man.

2. Introduction

All branches of knowledge which require the analysis of data make use of P -

values. Unfortunately in many cases ‘make use of’ could be replaced by ‘abuse’,

the many reports of widespread abuse are convincing. In response The American
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Statistician published a statement on P -values by the American Statistical Asso-

ciation together with supplementary material consisting of statements by several

statisticians and philosophers (Wasserstein and Lazar (2016)).

The most detailed of the supplementary material is Greenland et al. (2016).

The authors point out that there are many ways in which any usefulness of a

P -value can be invalidated. One example is to perform several experiments and

report only the one with the smallest P -value. Problems of this nature will not be

discussed here. The paper will be concerned only with the relationship between

the data and a posited model or posited parameter values.

All figures were produced using R R Core Team (2014). The calculations

were done with FORTRAN 77 source code.

3. Probability Models and Approximation

There are two meaning of the word ‘model’ is statistics. The first meaning

refers to a parametric family of distributions, for example the normal model

as the family of all normal distributions. This meaning of the word ‘model’ is

common in much of statistics, in particular in Bayesian statistics where such

models are the objects of study.

The second meaning is that of a single probability measure. In this sense of

the word the N(0, 1) probability measure is one model, the N(0, 2) probability

measure is another model. This is the sense in which the word will be used in

this paper. Models in this sense are the atoms so to speak of probability theory

and hence the basic objects of stochastic modelling. The meaning of the word

‘model’ in the first sense is a parametric family of models in the second sense.

The two different meanings of the word ‘model’ are not just a question of

notation or definition. They reflect different approaches to statistics. This may

be seen in Birnbaum (1962) where a parametric family of probability measures

has to be adequate without specifying the adequacy of any individual measure.

This is necessary as the Likelihood Principle requires the proportionality of two

different densities for all values of the parameter and not just for the adequate

ones. A similar problem occurs when testing hypotheses. The parametric model

is declared adequate without specifying the adequate values of the parameter. A

hypothesis H0 : µ = µ0 is then tested to see whether µ = µ0 is consistent with

the data. It only makes sense to do this if the adequate parameter values have

not been specified when declaring the whole family to be adequate as otherwise

the test would be superfluous.
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A model P is an adequate approximation to data xn if typical data sets

generated under P look like xn (Davies (2014)). To make this susceptible to

mathematical analysis the term ‘look like’ must be expressible in numerical quan-

tities. This may not always be possible or easy; see Neyman, Scott and Shane

(1953, 1954); Buja et al. (2009), Chapter 5.8 of Huber (2011) and Davies and

Krämer (2016). In the following it will be assumed that ‘look like’ has a precise

mathematical expression.

Given a probability measure P a sample of size n generated under P will be

denoted by Xn(P ) = (X1(P ), . . . , Xn(P )). Given further a number α, 0 < α ≤ 1,

denote by En(P, α) a subset of Rn such that

P(Xn(P ) ∈ En(P, α)) = α . (3.1)

The interpretation is that typical samples Xn(P ) generated under P lie in En(P, α).

A sample xn, not necessarily generated under P , will look like a typical sample

Xn(P ) if xn ∈ En(P, α). The choice of En(P, α) depends on those statistics of

the data regarded as important for the analysis to be conducted.

Given a family P of probability measures an α-approximation region for the

data xn is defined by

A(xn, α,P) = {P ∈ P : xn ∈ En(P, α)}. (3.2)

It follows that for each P ∈ P

P(P ∈ A(Xn(P ), α,P)) = P(Xn(P ) ∈ En(P, α)) = α (3.3)

for all P ∈ P so that A(xn, α,P) has the property of a confidence region.

The definition (3.2) makes no assumption that the data xn were generated

under some model P ∈ P. The interpretation is that A(xn, α,P) specifies those

models P for which xn ‘looks like’ a ‘typical sample’ Xn(P ) generated under P .

It is possible for an approximation region to be empty which is not the case for

confidence regions.

As an example consider the family of normal distributions N = {(µ, σ) :

N(µ, σ2)}. An approximation region can be based on the mean, the variance,

outliers and the distance of the empirical measure to the model N(µ, σ2) as

measured by the Kuiper metric dku (Kuiper (1962)). More precisely put yn =

(xn − µ)/σ and{
S1(yn) =

√
n |mean(yn)|, S2(yn) =

∑n
i=1 y

2
i ,

S3(yn) = maxi |yi|, S4(yn) = dku(P(yn), N(0, 1)),
(3.4)

where P(yn) is the empirical measure based on yn. For each of the four statistics
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one can determine the P -values given by
p1(µ, σ) = P(S1(Yn) ≥ S1(yn)) = 2(1− pnorm(S1(yn))),

p2(µ, σ) = 2 min(p, 1− p), p = P(S2(Yn) ≤ S2(yn)) = pchisq(S2(yn), n),

p3(µ, σ) = P(S3(Yn) ≥ S3(yn)) = 1− (2pnorm(S3(yn))− 1)n,

p4(µ, σ) = P(S4(Yn) ≥ S4(yn)) = 1− pkuip(S4(yn)),

(3.5)

where Yn are i.i.d. N(0, 1). The P -values pkuip(q) for the Kuiper metric are the

asymptotic P -values, see for example Proposition 12.3.6 of Dudley (1989). The

approximation region is then defined by

A(xn, α,N ) = {(µ, σ) : p1(µ, σ) ≥ p1, p2(µ, σ) ≥ p2,
p3(µ, σ) ≥ p3, p4(µ, σ) ≥ p4}, (3.6)

where the p1, . . . , p4 are chosen to give an α-approximation region. Choosing the

pi to satisfy p1 + · · ·+ p4 = 1−α gives an α∗-approximation region with α∗ > α.

The value of α∗ can be determined by simulations. A better approximation to

an α-approximation region can now be obtained by choosing the pi to satisfy

p1 + · · ·+p4 = 1+α∗−2α. For a normal sample of size n = 27, α = 0.9 and with

the pi equal gives α∗ = 0.925. A more accurate 0.9-approximation region can be

obtained by putting pi = (1 + 0.925− 2 ∗ 0.9)/4 = 0.125/4 = 0.03125 instead of

pi = 0.025.

The following data give the quantity of copper in milligrams per litre in a

sample of drinking water (Davies (2014)):

2.16, 2.21, 2.15, 2.05, 2.06, 2.04, 1.90, 2.03, 2.06,

2.02, 2.06, 1.92, 2.08, 2.05, 1.88, 1.99, 2.01, 1.86,

1.70, 1.88, 1.99, 1.93, 2.20, 2.02, 1.92, 2.13, 2.13.

 (3.7)

The covering probability for (µ, σ) with p1 = · · · = p4 = 0.025 is α∗ = 0.9293.

The correction described above gives p1 = · · · = p4 = 0.0323. The 0.9 approxi-

mation region A(xn, 0.9,N ) for the data (3.7) based on these pi data set is shown

in the upper panel of Figure 1. The lower panel shows a surface plot of the min-

imum of the four P -values of (3.5). An approximation region for µ alone can be

obtained by projecting A(xn, α,N ) onto the µ-axis:

A(xn, α,Nµ) = {µ : there exists some σ s.t. (µ, σ) ∈ A(xn, α,N )} (3.8)

The result is the interval [1.938, 2.094]. The standard 0.9 confidence interval for

µ based on the t-statistic is the smaller interval [1.978, 2.054]. This is not always

the case. It is possible for an approximation region to be much smaller than a

corresponding confidence region, indeed, it may be empty.
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Figure 1. Upper panel: the approximation region A(xn, 0.9,N ) for the data (3.7). Lower
panel: a surface plot of the minimum P -values of (3.5).

The approximation region (3.6) is based on the P -values of the four statistics

of (3.4) for each parameter pair (µ, σ). These values give a measure of how well

the data can be approximated by an i.i.d. N(µ, σ2) model. For example, the

four P -values associated with the mean 2.016 and standard deviation 0.116 of

the copper data are 1.000, 0.991, 0.157 and 0.935. The smallest value is 0.157

which is the outlier measure S3 and is due to the observation 1.70.

For the copper data the values of µ and σ which give the best approximation

in the sense of the largest minimum P -value are (µ, σ) = (1.999, 0.130) with

minimum value 0.447 and P -values 0.489, 0.447, 0.448, 0.774.

Because of (3.3) an approximation region is sometimes interpreted as a con-

fidence region. Such an interpretation however causes difficulties. Consider the

family N of normal models as above. A standard confidence region for the ‘true’
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Figure 2. The approximation regionA(xn, 0.9,N ) for the data (3.7) but with 1.7 replaced
by 1.4.

value µ0 of µ is based on the assumption that there is indeed a ‘true’ value µ0 of

µ. That is, the data were generated under N(µ0, σ
2) for some σ. This assump-

tion is not checked in the formal inference phase and consequently a confidence

region for µ0 is never empty. The interpretation is that it is a measure of the

precision with which µ0 can be determined. Thus a small confidence region is ‘a

good thing’.

The approximation region (3.8) on the other hand is not based on the as-

sumption that the data were indeed generated as i.i.d. N(µ, σ2) for some (µ, σ).

It specifies those µ-values, if any, for which N(µ, σ2) is an adequate approxima-

tion to the data for some σ. Thus if the adequacy region (3.8) is small this simply

means that there are few values of µ for which N(µ, σ2) is an adequate approxi-

mation to the data for some σ. It is not a measure of precision. If one imagines

the data gradually becoming less and less normal then the region (3.6) will be-

come smaller and eventually will be the empty set. One way of doing this is to

gradually increase one value of the sample until this value becomes incompatible

with a Gaussian distribution. As an example Figure 2 gives the 0.9 approxima-

tion region for the copper data of (3.7) but with the smallest observation of 1.7

being replaced by 1.4. If the 1.7 is replaced by 1.2989 the approximation region

as calculated has exactly one point (1.9692, 0.2086) with P -values 0.428, 0.198,

0.0348 and 0.0324.

Interpreting (3.8) as a confidence region leads to complications. As the

data become less and less like Gaussian data the region becomes smaller and

smaller which is interpreted as an increase in precision. Thus on this interpre-

tation replacing 1.7 by 1.2989 in (3.7) leads to exact values for (µ, σ) namely

(1.9692, 0.2086). When the region becomes empty this is as if one goes from

infinite precision to no information at all. A discussion can be found in http:

//andrewgelman.com/2011/08/25/ From the point of view of approximation

http://andrewgelman.com/2011/08/25/
http://andrewgelman.com/2011/08/25/
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there is no problem of interpretation. The set of adequate parameter values be-

comes smaller and smaller and eventually becomes the empty set, that is, there

are no adequate parameter values at all.

The approximation region (3.6) will pick up an outlier if it is sufficiently large

in the sense that the approximation region is empty because of the outlier. Thus

for the copper data if the 1.7 is replaced by 1.29 the 0.9-approximation interval is

empty. The largest minimum P -value is 0.030 attained for (µ, σ) = (1.972, 0.211)

with P -values 0.484, 0.167, 0.032 and 0.030. It is noteworthy that the smallest

P -value, 0.030, is that of S4 which checks the Kuiper distance and not that of S3
which was explicitly included to check outliers. This can be traced back to the

use of the statistics S1 and S2 which are based on the mean and variance which

are notoriously poor for identifying outliers (see Davies (2014, p. 94)).

The obvious remedy is to replace the mean and standard deviation by M -

functionals of location and scale (see Huber and Ronchetti (2009, Chaps 4-5)).

Apart from a larger domain, functionals have the further advantage that they can

be constructed to have certain properties such as boundedness, continuity and

even differentiability (see Davies (2014, pp. 107-108)). This will be illustrated

using M -functionals defined as follows. Given ψ- and χ-functions ψ and χ,

respectively, and a probability measure P over R, the M -functional TM is defined

by TM (P ) = (TL(P ), TS(P )) where TL(P ) and TS(P ) solve
∫
ψ

(
x− TL(P )

TS(P )

)
dP (x) = 0,∫

χ

(
x− TL(P )

TS(P )

)
dP (x) = 0.

(3.9)

The functions ψ and χ can be so chosen so that (i) (3.9) has a unique solution

for all P with a largest atom of less than 0.5 and (ii) the functional TM (P ) is

locally uniformly Fréchet differentiable in a Kolmogorov neighbourhood of P see

Davies (1998) and Hampel et al. (1986, p. 54). This gives stability of analysis

with respect to P .

The ψ and χ functions used here are taken from Davies (2014, Chap. 5) and

are

ψ(u) = ψ(u, c) =
exp(uc)− 1

exp(uc) + 1
, χ(u) =

u4 − 1

u4 + 1
, (3.10)

where c is a tuning constant set here to 5.

Let Xn(P ) denote a sample of size n of i.i.d. random variable with distribu-

tion P . Then
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ψ

(
Xi(P )− TL(P )

TS(P )

)
has mean zero and variance

E

{
ψ2

(
Xi(P )− TL(P )

TS(P )

)}
=

∫
ψ2

(
u− TL(P )

TS(P )

)
dP (u)

which implies that ∑n
i=1 ψ(Xi(P )− TL(P ))/TS(P )√∑n
i=1 ψ

2(Xi(P )− TL(P ))/TS(P )

is asymptotically N(0, 1). The same result holds for χ.

Based on this the P -values p1(µ, σ) and p2(µ, σ) are replaced by

p1(µ, σ) = 2{1−prgau(|Sψ(µ, σ)|)}, p2(µ, σ) = 2{1−prgau(|Sχ(µ, σ)|)} (3.11)

where

Sψ(µ, σ) =

∑n
i=1 ψ(xi − µ)/σ√∑n
i=1 ψ

2(xi − µ)/σ
and Sχ(µ, σ) =

∑n
i=1 χ(xi − µ)/σ√∑n
i=1 χ

2(xi − µ)/σ
. (3.12)

The P -values (3.11) are asymptotic ones but as both ψ and χ are bounded they

are quite accurate even for small values of n.

The outlier statistic S3 and the Kuiper distance statistic S4 can be incor-

porated into the definition of the approximation but this requires taking into

account that for the scale functional TS(N(0, 1)) = 0.647161. To make it asymp-

totically Fisher consistent (see Huber and Ronchetti (2009, p. 9)) it must be

multiplied by 1/0.647161 = 1.54521. In fact we use a finite sample size correc-

tion fn. The outlier and Kuiper statistics become

S3(yn) = max
i
|yi| and S4(yn) = pkuip(Pn(yn, N(0, 1))) (3.13)

respectively where yi = (xi − µ)/(fnσ). The resulting P -values are{
p3(µ, σ) = P(S3(Yn) ≥ S3(yn)) = 1− (2pnorm(S3(yn))− 1)n,

p4(µ, σ) = P(S4(Yn) ≥ S4(yn)) = 1− pkuip(S4(yn)).
(3.14)

The resulting approximation region is

Ã(xn, α,N ) = {(µ, σ) : p1(µ, σ) ≥ p1, p2(µ, σ) ≥ p2,
p3(µ, σ) ≥ p3, p4(µ, σ) ≥ p4} (3.15)

with p1(µ, σ and p2(µ, σ) given by (3.11) and p3(µ, σ) and p4(µ, σ) given by (3.14).

The p1, . . . , p4 must be chosen to give an α-approximation region. This can

be done in the same manner as described above and results in pi = 0.0323. The

approximation region is shown in Figure 3. It can be compared with Figure 1.

The 0.9-approximation interval for µ is [1.963, 2.069] compared to [1.938, 2.094]
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Figure 3. The 0.9-approximation region (3.15) for the copper data with pi = 0.03225
(α = 0.9) for the copper data using the psi- and chi- functions of (3.10) with c = 5.

for the 0.9-approximation region (3.6) and [1.978, 2.054] for the standard 0.9-

confidence interval based on the t-statistic. The largest minimum P -value is

0.442 attained for (µ, σ) = (2.014, 0.138) with P -values 0.467, 0.442, 0.468 and

0.711.

If the 1.7 of the copper data is replaced by 1.376 the 0.9-approximation

region (3.15) is empty. This is larger than the corresponding value 1.2947 for

the region (3.6). The largest minimum P -value is 0.0320 < 0.03225 attained for

(µ, σ) = (1.966, 0.182) with P -values 0.0323, 0.058, 0.0320 and 0.106. It is seen

that the P -value of the outlier statistic is the smallest one.

The approximation region Ã(xn, α,N ) of (3.15) is for the family of Gaussian

models and may well be empty. Indeed for many data sets on water quality the

approximation region would be empty for this reason. See also the data sets of

Stigler (1977). Nevertheless a point estimate and an interval of plausible values

for the quantity of interest are still required. This can be done by simply dropping

the two statistics S3 and S4 of (3.13) in the definition of the approximation region.

The Gaussian family N is replaced by the family P of all probability measure on

R and the quantity of interest, the copper content of the water sample, is now

identified with the location functional TL(P ) rather than with µ of the N(µ, σ2)

model. More precisely the approximation region becomes

AM (xn, α,P) = {(TL(P ), TS(P )) : p1(TL(P ), TS(P )) ≥ p1(P ), (3.16)

p2(TL(P ), TS(P )) ≥ p2(P ), pkuip(P(xn), P ) ≤ 1− p3},

where

p1(TL(P ), TS(P )) = P(|SM,ψ(Xn(P ), TL(P ), TS(P ))| (3.17)

≥ |SM,ψ(xn, TL(P ), TS(P ))|),
p2(TL(P ), TS(P )) = P(|SM,χ(Xn(P ), TL(P ), TS(P ))| (3.18)

≥ |SM,χ(xn, TL(P ), TS(P ))|)
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with 
SM,ψ(xn, TL(P ), TS(P )) =

∑n
i=1 ψ(xi − TL(P ))/TS(P )√∑n
i=1 ψ

2(xi − TL(P ))/TS(P )
,

SM,χ(xn, TL(P ), TS(P )) =

∑n
i=1 χ(xi − TL(P ))/TS(P )√∑n
i=1 χ

2(xi − TL(P ))/TS(P )
.

(3.19)

The statistics SM,ψ(Xn(P ), TL(P ), TS(P )) and SM,χ(Xn(P ), TL(P ), TS(P ))

are asymptotically N(0, 1) distributed. The requirement pkuip (P(xn), P ) ≤
1 − p3 forces P into a O(1/

√
n) Kolmogorov neighbourhood of Pn. This to-

gether with the locally uniform Fréchet differentiability of TM = (TL, TS) (see

pages 107-108 of Davies (2014)) implies that the convergence to the N(0, 1) dis-

tribution is uniform over the Kolmogorov neighbourhood. Thus asymptotically

and uniformly in P ,{
p1(TL(P ), TS(P ))→ 2{1− pnorm(SM,ψ(xn, TL(P ), TS(P )))}
p2(TL(P ), TS(P ))→ 2{1− pnorm(SM,χ(xn, TL(P ), TS(P )))}.

(3.20)

With this asymptotic approximation the approximation region AM (xn, α,P) be-

comes

ÃM (xn, α,P) = {(TL(P ), TS(P )) : (3.21)

2{1− pnorm(SM,ψ(xn, TL(P ), TS(P )))} ≥ p1,
2{1− pnorm(SM,χ(xn, TL(P ), TS(P )))} ≥ p2,
pkuip(P(xn), P ) ≤ 1− p3}.

It is shown in the top panel of Figure 4 for the copper data with pi = 0.0333

corresponding to α = 0.9 in a first approximation. It may be compared with the

approximation region based on the Gaussian distribution as shown in Figure 1.

The lower panel of Figure 4 shows a surface plot of the minimum of the two

asymptotic P -values of (3.20).

The approximation region for TL(P ) is obtained by projecting the approxi-

mation region onto the x-axis. For the copper data with α = 0.9 it is [1.966, 2.069]

compared with the standard 0.9-confidence interval [1.978, 2.054] based on the

t-statistic.

The approximation region (3.21) remains unchanged if the smallest obser-

vation 1.7 is replaced by zero. This is in sharp contrast to the approximation

region based on the Gaussian family of models which is empty in this case. The

0.9-confidence interval based on the t-statistic is [1.821, 2.085]. This stability is a

strong argument for the use of the M -functional rather than basing the analysis
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Figure 4. Upper panel: the 0.9 approximation region of the location and scale functionals
(TL, TS) for the copper data using the psi- and chi- functions of (3.10) with c = 5. Lower
panel: a surface plot of the min(p1(Tl, TS), p2(TL, TS)) of (3.20).

on the Gaussian model.

The use of (3.11) and (3.12) to calculate an approximation region seems to

be new. Confidence regions receive scant attention in the robustness literature

and are typically calculated, if at all, by appealing to the asymptotic normality

of the functionals (TL, TS) themselves. Such asymptotic confidence regions are

perforce elliptical whereas those based on (3.11) and (3.12) are not as can be

seen in Figure 4.

Following the recommendation above, the following will be based on the

M -functional of (3.9) with ψ- and χ-functions given by (3.10).

As an example consider again the copper data (3.7) Suppose the legal limit

is 2.1 milligrams of copper per litre of water and we wish to test the hypothesis

that this is exceeded. The standard analysis based on the Gaussian family is to

identify the quantity of copper in the drinking water with µ leading to the null
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Figure 5. The min(p1(2.1, TS), p2(2.1, TS)) of (3.20) for H0 : TL ≥ 2.1 plotted against a
0.9-approximation interval for TS derived from (3.21). The maximum minimum value is
0.0016.

hypothesis

H0 : µ ≥ µ0 = 2.1. (3.22)

The P -value based on the t-statistic is 0.00044.

If the analysis is based on the M -functional the quantity of copper in the

drinking water is identified with TL. The null hypothesis becomes

H0 : TL ≥ 2.1. (3.23)

Neither the hypothesis (3.22) nor the hypothesis (3.23) mentions scale. In

the case of the t-statistic the scale σ used is the standard deviation of the data.

Even if this is consistent with the underlying Gaussian assumption, which it

may not be, it is not the only such value of σ. It would be possible to do the

same for the hypothesis (3.23) and base the calculation of the P -value on the

corresponding value of TS . However in accordance with the philosophy of this

paper we calculate a P -value for each value of TS consistent with the data.

Given α the set of TS values consistent with the data is the projection of

the α-approximation region Ãn of (3.21) onto the y-axis. For the copper data

and α = 0.9 it is [0.054, 0.164]. The pi(TL, TS), i = 1, 2,-values of (3.20) are now

calculated with µ = µ0 and for each σ ∈ [0.054, 0.164] with appropriate changes

made to p1(TL, TS) depending on the form of H0 (one-sided or two-sided) .

Figure 5 shows the min(p1(TL, TS), p2(TL, TS)) for α = 0.9 and H0 : TL ≥ 2.1

implying TL = 2.1 . The largest minimum P -value is 0.0016.

4. Jeffreys, P -values and Prediction

The following taken from page 385 of Jeffreys (1961) is often cited as an

argument against the use of P -values:

.... gives the probability of departures, measured in a particular

way, equal to or greater than the observed set, and the contribution
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from the actual value is nearly always negligible. What the use of

P implies, therefore, is that a hypothesis that may be true may be

rejected because it has not predicted observable results that have not

occurred. This seems to be a remarkable procedure. On the face of

it, the evidence might more reasonably be taken as evidence for the

hypothesis, not against it.

What Jeffreys means by ‘a hypothesis predicting’ is not at all clear. He writes

that a hypothesis has not predicted observable results that have not occurred

but it also has not predicted observable results which have occurred. It seems

necessary to clarify what is meant by a hypothesis predicting.

A non-vacuous prediction consists of specifying a probability α and a set

S(α) such that the prediction is correct if X ∈ S(α) and the probability that

it is correct is α. It is worthy of note that the larger α the more vacuous the

prediction so to speak. The expression ‘not predicted to occur’ will be understood

as ‘predicted not to occur’ rather than as ‘forgetting to predict’. As a simple

example put α = 0.95 and S(α) = (−1.96, 1.96). Then the prediction is −1.96 ≤
X ≤ 1.96. Suppose however thatX = 3.121 is observed. This value was predicted

not to occur. The P -value is P(|X| > 3.121) = 0.0018 and for this to be a

successful prediction would require α = 0.9982 rather than the chosen α = 0.95.

If it were agreed beforehand that a false prediction would lead to the null

hypothesis being rejected, then this is done because a value predicted not to

occur, namely 3.121, did in fact occur. This seems an unremarkable procedure.

The concept of adequate approximation can be looked at in terms of predic-

tion. Given a number α and based on a model P a prediction has to be made

about a sample xn. In making the prediction it has to be decided which aspects

of the data are regarded as important. In the definition of the approximation

region (3.6) the important aspects are given by the statistics Si, i = 1, . . . , 4 of

(3.4) with P = N(µ, σ2). The corresponding prediction is that all the inequalities

of (3.5) will hold with yn = (xn−µ)/σ replacing Yn. If the prediction is correct

then the model N(µ, σ2) is accepted as an adequate approximation to the data.

5. P -values and Choice of Covariates in Stepwise Regression

The following is based on Davies (2017). Given a data set of size n consisting

of a dependent variable y(n) and p(n) covariates x(n), the problem is to decide

which if any of the covariates to include. The discussion below will be restricted

to the case where p(n) is chosen by stepwise regression but the idea can be
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extended to considering all subsets of the covariates as long as p(n) is not too

large, say p(n) ≤ 20 (see Davies (2016)).

It would seem that all procedures for choosing the covariates are based on

the standard linear model

Y(n) = X(n)β(n) + ε(n). (5.1)

The procedure to be described below is not based on this model. The basic

idea is to compare the covariates x(n) with covariates which are simply standard

Gaussian white noise. A covariate xj is included only if it is significantly better

than white noise.

Suppose that p0 ≤ n− 2 with indices S0 have already been been included in

the regression and that the sum of squared residuals is ss0. Denote by ssj the

sum of squared residuals if the covariate xj with j /∈ S0 is included. The next

candidate for inclusion is that covariate for which ssj is smallest. Including this

covariate leads to a sum of squared residuals

ss01 = min
j /∈S0

ssj .

Replace all the covariates not in S0 in their entirety by standard Gaussian white

noise. Let SSj denote the sum of squared residuals if the random covariate cor-

responding to xj is included. The inclusion of the best of the random covariates

leads to a sum of squared residuals

SS01 = min
j /∈S0

SSj .

The probability that the best random covariate is better than the best of the

actual covariates is

P(SS01 < ss01) = 1−P(SS01 ≥ ss01) = 1−P

(
min
j /∈S0

SSj ≥ ss01
)

= 1−
∏
j /∈S0

P(SSj ≥ ss01).

It has been shown by Lutz Dümbgen that

SSj
D
= ss0(1−B1/2,(n−p0−1)/2), (5.2)

where Ba,b denotes a beta random variable with parameters a and b and distri-

bution function pbeta(·, a, b). From this it follows that

P(SSj ≥ ss01) = pbeta

(
1− ss01

ss0
,
1

2
,
(n− p0 − 1)

2

)
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so that finally,

P(SS01 ≤ ss01) = 1− pbeta

(
1− ss01

ss0
,
1

2
,
(n− p0 − 1)

2

)p(n)−p0
. (5.3)

This is the P -value for the inclusion of the next covariate. The simplest procedure

is to specify α < 1 and to continue the stepwise selection until the first P -value

exceeds α. Those covariates up to but excluding this last one are the selected

ones. The stopping rule is

ss01 > ss0

(
1− qbeta

(
(1− α)1/(p(n)−p0),

1

2
,
(n− p0 − 1)

2

))
(5.4)

where qbeta(·, a, b) is the quantile function of the beta distribution with param-

eters a and b.

The procedure is conceptually and algorithmically simple. It requires no

regularization parameter or cross-validation or an estimate of the error term in

(5.1). It is invariant with respect to affine changes of unit of the covariates and

equivariant with respect to a permutation of the covariates. It can be extended

to non-linear parametric regression, robust regression and the Kullback-Leibler

discrepancy where appropriate.

As an example we take the leukemia data (Golub et al. (1999) http://

www-genome.wi.mit.edu/cancer/ which was analysed in Dettling and Bühlmann

(2003). These consist of data on n = 72 samples of tissue with p(n) = 3,571 co-

variates. The dependent variable y(n) is either 0 or 1 depending on whether the

patient suffers from acute lymphoblastic leukemia or acute myeloid leukemia.

The first five genes in order of inclusion with their associated P -values as defined

by (5.3) are as follows:

gene number 1,182 1,219 2,888 1,946 2,102

P -value 0.0000 8.57e-4 3.56e-3 2.54e-1 1.48e-1
(5.5)

According to this relevant genes are 1,182, 1,219 and 2,888 and given these the

remaining 3,568 are no better than random noise. This applies to the gene 1,946

but if a simple linear regression is performed using this gene alone its P -value

in the linear regression is 7.75e-9. This is much smaller than the 0.254 in (5.5).

The P -value (5.3) takes into account the stepwise nature of the procedure, in

particular that gene 1,946 is the best of the remaining genes once the genes

1,182, 1,219 and 2,888 have been included. A simple linear regression does not

take this into account.

The data were gathered in the hope of using the gene expression data to

classify the patients. If the classification is based on genes 1,182, 1,219 and

http://www-genome.wi.mit.edu/cancer/
http://www-genome.wi.mit.edu/cancer/
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Figure 6. Upper panel: the first 98 values of the regression function of the birthdays
data. Lower panel: the residuals for each day of the year averaged over the twenty years.

2,888, a simple linear regression results in one misclassification. In Dettling

and Bühlmann (2003) the authors considered 42 different classification schemes.

Only two of them resulted in a single misclassification. They used a 1-nearest-

neighbour method based on 25 and 3,571 genes. For this particular data set the

procedure described above attains the same result and moreover specifies the

relevant genes.

A second example is the daily number of births in the United States from

1st January 1969 to the 31st December 1988. They are available as ‘Birthdays’

from the R-package ‘mosaicData’. The data were analysed by removing a trend

and then performing a linear regression using the covariates

xsj(i) = sin

(
πji

n

)
and xcj(i) = cos

(
πji

n

)
, i = 1, . . . , n, j = 0, . . . , n

with n = 7,305 giving 14,611 covariates in all. The constant term xc0 was

included by default. The remaining 14,610 were treated pairwise, that is, the

sin and cos terms together on the basis that only the frequency was important.

Setting the cut-off P -value to 0.01 and using the robustified version based on the

Huber ψ-function resulted in 106 of the 7,305 pairs being included.
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The top panel of Figure 6 shows the regression function for the first 98 days.

The five strongest periods are in order 7 days, 3.5 days, 365 days (one year),

182.6 days (six months), and 2.33 days (third of a week) . The lower panel shows

the residuals for each day of the year averaged over the twenty years. From

left to right the “o” symbols show New Year, 14th February (Valentine), the

29th February (leap year), the 1st April, Memorial Day, 4th July (Independence

Day), 8th August (no explanation), Labor Week, 10th October (no explanation),

Halloween, Thanksgiving and Christmas. The hash marks “#” show the 13th of

each month. A Bayesian analysis of the same data is to be found in Gelman et

al. (2013).
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