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S1 APPENDIX TO SECTION 2

To appreciate why approaches (a) and (b) are effective, consider the as-

sumption

there does not exist a nondegenerate interval J such that fFtX (u) is

nonzero for at least one element u of J , and fFtZ1,Z2
(−s, t) = 0 for all pairs (S1.1)

(s, t) such that s+ t ∈ J .

In view of (2.3), condition (S1.1) is sufficient for fX to be completely determined once

the distributions of (L,R) and (Z1, Z2) are known. Since (S1.1) fails only if fFtZ1,Z2
(−s, t)

vanishes on a particular line in the plane, then (S1.1) would hold for all parametric models

that are likely to be used in practice, and more generally, in a nonparametric setting,

(S1.1) would fail only rarely. Indeed, it can be seen from (2.3) that the distributions of
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(Z1, Z2) and X are both nonparametrically identifiable from data on (L,R) alone if:

the characteristic functions fFtZ1,Z2
and fFtX satisfy (S1.1), and fFtZ1,Z2

cannot

be decomposed in the manner fFtZ1,Z2
(s, t) = ψ(s, t)φ(t− s), where ψ is

the characteristic function of a bivariate distribution and the function φ, (S1.2)

of a single variable, is the Fourier-Stieltjes transform of a function whose

variation does not occur at a single point.

We claim that (S1.2) holds whenever Z1 and Z2 are independent, which condition holds

when the point processes Ti are Poisson. To appreciate why the assumption of indepen-

dent Z1 and Z2 is sufficient for (S1.2), note that if fFtZ1,Z2
(s, t) = ψ(s, t)φ(t − s) then

(Z1, Z2) has distribution function

F (z1, z2) =

∫
F1(z1 − v, z2 + v)dG(v),

where F1 is the distribution function of the distribution with characteristic function ψ,

and φ is the Fourier-Stieltjes transform of G. The function F fails to be the product of its

marginals if G is not concentrated at a single point. (The case where G is a distribution

function is more familiar. There, F is the distribution function of (U1 + V,U2 − V ),

where (U1, U2) has distribution F1, V has distribution function G, (U1, U2) and V are

independent, and Z1 and Z2 fail to be independent if V is not identically constant.)
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S2 APPENDIX TO SECTION 3

The reason for raising the weight function w in (3.7) to the power q is that, when taking

q =∞, this gives the criterion

S∞(θ,B, ω) = sup
−∞<s,t<∞

|f̂FtLR(s, t)− fFtX (s+ t|B, ω)fFtZ1,Z2
(−s, t|θ)|w(s, t). (S2.3)

This is more useful than its analogue where w ≡ 1, which we would obtain if in

(3.7) we were to replace w(s, t)q by w(s, t) and let q →∞.

In some instances it is convenient to modify the criterion in (3.7). For example,

under the model at (3.6) we might change Sq(θ,B, ω) to

Sq(λ,B, ω) =

{∫ ∫ ∣∣∣∣(1 + λ−1is)(1− λ−1it)f̂FtLR(s, t)− fFtX (s+ t|B, ω)

∣∣∣∣q w(s, t)qdsdt

}1/q

,

(S2.4)

which when q =∞ reduces to

S∞(λ,B, ω) = sup
−∞<s,t<∞

∣∣∣(1 + λ−1is)(1− λ−1it)f̂FtLR(s, t)− fFtX (s+ t|B, ω)
∣∣∣w(s, t).

If we are in case (b), and therefore are employing a nonparametric estimator of g(s, t) =

fFtZ1,Z2
(s, t), for example ĝ(s, t) at (3.4), then the criterion function changes to:

Sq(B, ω) =

{∫ ∫ ∣∣∣f̂FtLR(s, t)− fFtX (s+ t|B, ω)ĝ(−s, t)
∣∣∣q w(s, t)dsdt

}1/q

(S2.5)

The q =∞ version of this quantity has a formula analogous to (S2.3):

S∞(B, ω) = sup
−∞<s,t<∞

|f̂FtLR(s, t)− fFtX (s+ t|B, ω)ĝ(−s, t)|w(s, t). (S2.6)

S2.1 Bandwidth selection

An appropriate smoothing parameter, for example a bandwidth in the definition of f̃X

at (3.8), can be chosen using the comparison method; see Deheuvels (1977). Specifically,
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we fit a smooth parametric model F̄X to F̂X (for example, F̄X might be a Normal

distribution with mean and variance estimated from data), and also to the point processes

Ti (here we would generally use a Poisson model), and simulate from both to generate

many “resamples” of intervals, I∗n = {[L∗1, R∗1], . . . , [L∗n, R
∗
n]}. Using I∗n in place of the

original dataset In = {[L1, R1], . . . , [Ln, Rn]} we construct an estimator F̂ ∗X of F̄X ,

using the methodology summarised in section 3.2, and from this distribution estimator

we compute the resampled version f̃∗X of f̃X . Critically, f̃∗X depends on one or more

tuning parameters, for example on the bandwidth h if we are using the kernel method

at (3.8):

f̃∗X(x|h) =
1

h

∫ ∞
−∞

K

(
x− y
h

)
dF̂ ∗X(y).

Since the fitted model F̄X is smooth then it has a well defined density f̄X . We choose the

smoothing parameters in the construction of f̄∗X so as to minimise the average distance,

for example mean integrated squared error conditional on the data, from f̄∗X to f̄X , both

of which are known. Finally, we use these smoothing parameters when constructing f̄X

at (3.8).

S2.2 Renewal point processes.

Assume that the point process T = {. . . , Tj , Tj+1, . . .} is a stationary renewal process,

where the common lifetime distribution has probability density fLife(z|θ) and character-

istic function fFtLife(t|θ), and θ is a finite vector of unknown parameters. Then the joint

distribution of (Z1, Z2), where Z1 and Z2 are as introduced in section 2, is that of the

current life and excess life for the stationary renewal process, and has density

fZ1,Z2(z1, z2) = µ(θ)−1fLife(z1 + z2|θ), 0 < z1, z2 <∞,
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where µ(θ) =
∫
z>0

zfLife(z|θ)dz denotes the mean of the lifetime distribution, assumed

to be finite. See Karlin and Taylor (1975, pp. 192–4).

The characteristic function fFtZ1,Z2
is therefore given by

fFtZ1,Z2
(s, t|θ) = {iµ(θ)(s− t)}−1{fFt

Life(s|θ)− fFt

Life(t|θ)}.

This quantity would be substituted into (3.7) when undertaking inference.

S3 TECHNICAL ARGUMENTS

S3.1 Proof of Theorem 1.

It is convenient to give the proof of part (b) first, and then summarise the minor changes

needed to derive part (a).

Step 1: Preparatory lemma for part (b) of Theorem 1. Define

s(B, ω) = sup
−∞<t1,t2<∞

|fFt
LR(t1, t2)− fFt

X (t1 + t2|B, w)fFt
Z1,Z2

(−t1, t2)|w(t1, t2). (S3.7)

Let (B̂, ω̂) denote the minimiser of S∞(B, ω) under the constraint (4.12)(ii). (Formally,

FX(|B̂, ω̂) is the weak limit of a sequence of distributions with densities fX(|B, ω) that

satisfy
∫
|x|C3fX(x|B, ω)dx ≤ C4 and that, in the limit of the sequence for fixed n, equal

the infimum of S∞(B, ω) over all (B, ω).) Our first step is to prove the following result.

Lemma 1. Under the assumptions in part (b) of Theorem 1, and for each B1 > 0,

P
{
s(B̂, ω̂) ≤ nB1−(1/2)

}
→ 1. (S3.8)

Proof of Lemma 1. It can be proved from Bernstein’s inequality that

sup
−∞<t1<t2<∞

|P
{
|f̂FtLR(t1, t2)− fFtLR(t1, t2)| > nε−(1/2)

}
= O(n−C)
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for all C, ε > 0. Therefore, if the set An contains O(nC
′
) pairs (t1, t2) for some C ′ > 0,

then

P

{
sup

(t1,t2)∈An

|f̂FtLR(t1, t2)− fFtLR(t1, t2)| > nε−(1/2)

}
= O(n−C) (S3.9)

for all C, ε > 0. Assumption (4.12)(i) asserts that E|L|C3 +E|R|C3 <∞, where, without

loss of generality, 0 < C3 ≤ 1. Therefore,

1

n

n∑
j=1

(|Lj |C3 + |Rj |C3) = Op(1), (S3.10)

∣∣∣fFtLR(t1, t2)− fFtLR(t3, t4)
∣∣∣ ≤ (|t1 − t3|C3 + |t2 − t4|C3)E(|L|C3 + E|R|C3), (S3.11)

∣∣∣f̂FtLR(t1, t2)− f̂FtLR(t3, t4)
∣∣∣ ≤ 1

n

n∑
j=1

| exp {i(t1 − t3)Lj + i(t2 − t4)Rj} − 1|

≤ 1

n

n∑
j=1

min(|t1 − t3||Lj |+ |t2 − t4||Rj |, 1)

≤ (|t1 − t3|C3 + |t2 − t4|C3)
1

n

n∑
j=1

(|Lj |C3 + |Rj |C3). (S3.12)

Together, (S3.9)–(S3.12) imply that for any B1 > 0, no matter how small, and any

B2 > 0, no matter how large,

P

{
sup

|t1|,|t2|≤nB2

∣∣∣f̂FtLR(t1, t2)− fFtLR(t1, t2)
∣∣∣ ≤ nB1−(1/2)

}
→ 1. (S3.13)

Similarly it can be proved that, for the same choice of B1 and B2,

P

{
sup

|t1|,|t2|≤nB2

|ĝ(t1, t2)− fFtZ1,Z2
(t1, t2)| ≤ nB1−(1/2)

}
→ 1. (S3.14)
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Assumption (4.12)(vi) implies that we may choose B2 so large that, whenever n 6= 2,

ω(t1, t2) ≤ 1
4n
−1/2 if (t1, t2) is in the set A1n of all pairs for which the absolute value of

at least one component exceeds nB2 . Let A2n denote the complement of A1n in R2, and

put

s1(B, ω) = sup
(t1,t2)∈A1n

∣∣∣fFtLR(t1, t2)− fFtX (t1 + t2|B, w)ĝ(−t1, t2)
∣∣∣w(t1, t2). (S3.15)

s2(B, ω) = sup
(t1,t2)∈A2n

∣∣∣fFtLR(t1, t2)− fFtX (t1 + t2|B, w)fFtZ1,Z2
(−t1, t2)

∣∣∣w(t1, t2). (S3.16)

Since the quantities within absolute value signs in (S3.15) and (S3.16) are bounded above

by 2 then

P{0 ≤ s1(B, ω) ≤ 1

2
n−1/2} = P{0 ≤ s(B, ω)− s2(B, ω) ≤ 1

2
n−1/2} = 1 (S3.17)

for n ≥ 2.

We may assume without loss of generality that supω ≤ 1. In this case, (S3.17)

implies that with probability 1,

|S∞(B, ω)− s(B, ω)|

≤

∣∣∣∣∣ sup
(t1,t2)∈A2n

|f̂FtLR(t1, t2)− fFtX (t1 + t2|B, ω)ĝ(−t1, t2)|w(t1, t2)− s2(B, ω)

∣∣∣∣∣ .
+ {s(B, ω)− s2(B, ω)}+ s1(B, ω)

≤ sup
|t1|,|t2|≤nB2

{|f̂FtLR(t1, t2)− fFtLR(t1, t2)|+ |ĝ(−t1, t2)− fFtZ1,Z2
(t1, t2)|}+ n−1/2.

These inequalities, (S3.13) and (S3.14) imply that

P{|S∞(B, ω)− s(B, ω)| ≤ 2nB1−(1/2) + n−1/2 for all (B, ω)} → 1. (S3.18)

It follows from the definition of (B̂, ω̂) that infB,ω S∞(B, ω) = S∞(B̂, ω̂), where of

course the constraint noted in (4.12)(ii) is imposed. From this property and (S3.18), and
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the fact that B1 in (S3.18) denotes an arbitrary positive constant, we deduce that for all

B1 > 0,

P{|S∞(B̂, ω̂)− inf
B,ω

s(B, ω)| ≤ nB1−(1/2)} → 1, (S3.19)

P{|S∞(B̂, ω̂)− s(B̂, ω̂)| ≤ nB1−(1/2)} → 1, (S3.20)

where in (S3.19) the infimum is taken over pairs (B, ω) that satisfy (4.12)(ii). Since the

distribution of X satisfies that constraint, and

fFtZ1,Z2
(t1, t2)− fFtX (t1 + t2)fFtZ1,Z2

(−t1, t2),

then the quantity infB,ω s(B, ω) in (S3.19) vanishes. Therefore (S3.19) and (S3.20) imply

(S3.8).

Step 2: Completion of proof of part (b) of Theorem 1. The definition of s(B, ω) at (S3.7)

can be written equivalently as

s(B, ω) = sup
−∞<x<∞

|fFtX (t1 + t2)− fFtX (t1 + t2|B, ω)|fFtZ1,Z2
(−t1, t2)|w(t1, t2).

Taking t1 = t and t2 = 0 in the supremum we deduce that

s(B, ω) ≥ |fFtX (t)− fFtX (t,B, ω)||fFtZ1,Z2
(−t, 0)|w(t, 0) for all real t. (S3.21)

Write FX and FX(|B, ω) for the distributions with characteristic functions fFtX and

fFtX (|B, ω), respectively. Since, by assumption (4.12)(iv), B3 = supx fX(x) < ∞, then

for each B4 > π−1 there exists B5 > 0, depending only on B3 and B4, such that for all

T > 0,

sup
−∞<x<∞

|FX(x|B, ω)− FX(x)| ≤ B4

∫ T

0

t−1|fFtX (t|B, ω)− fFtX (t)|dt+
B5

T
. (S3.22)

(This is Esseen’s smoothing lemma; see, for example, Petrov (1975, p. 109).) By as-

sumption (4.12)(i), both
∫
|x|C3fX(x|B, ω)dx ≤ C4 and E|X|C3 < C4 where, without
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loss of generality, 0 < C3 ≤ 1. Hence there exists B6 > 0, depending only on C4, such

that |fFtX (t|B, ω)− 1| ≤ B6|t|C3 and |fFtX (t)− 1| ≤ B6|t|C3 for all real t. Combining this

property with (S3.21) and (S3.22) we deduce that, if 0 ≤ an ≤ T = T (n),

sup
−∞<x<∞

|FX(x|B, ω)− FX(x)| ≤ 2B6

∫ an

0

tC4−1dt+ s(B, ω)en

∫ T

an

t−1dt

= 2B6C
−1
4 aC4

n + s(B, ω)en log(T/an), (S3.23)

where

e−1n = inf
an≤t≤T

|fFtZ1,Z2
(−t, 0)|w(t, 0).

Together (S3.8) and (S3.23) imply that, for all B1 > 0,

P

{
sup

−∞<x<∞
|FX(x|B̂, ω̂)− FX(x)|

≤ 2B6C
−1
4 aC4

n + nB1−(1/2)en log(T/an)
}
→ 1. (S3.24)

Assumptions (4.12)(iii) and (4.12)(vi) imply that en ≤ (C5C7)−1(1 + T )C6+C8 , and so

we can choose an and T−1 to converge to zero at sufficiently slow polynomial rates to

give (4.14) as a consequence of (S3.24).

Finally we derive part (a) of the theorem.

Step 1: Preparatory lemma for part (a) of Theorem 1. Define s(θ,B, ω) as at (4.9),

and write (θ̂, B̂, ω̂) for the minimiser of S∞(θ,B, ω) at (S2.3). The following result is

analogous to Lemma 1.

Lemma 2. Under the assumptions in part (a) of Theorem 1, and for each B1 > 0,

P
{
s(θ̂, B̂, ω̂) ≤ nB1−(1/2)

}
→ 1.

To prove the lemma, note that (S3.13) holds as before and leads directly to Lemma 2,

using the argument in Step 1 of the proof of part (b) of the theorem. On this occasion the
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derivation uses (4.11)(i)–(4.11)(iii); the first and last of these assumptions are identical

to (4.12)(i) and (4.12)(iii), respectively, and (4.11)(ii) is analogous to (4.11)(ii).

Step 2: Completion of proof of part (a) of Theorem 1. It follows directly from

Lemma 2 and (4.10) that for each B1 > 0,

P

{
||θ̂ − θ0||+ sup

−∞<s,t<∞
|fFtX (s+ t)− fFtX (s+ t|B̂, ω̂)|w1(s, t) ≤ nB1−(1/2C4)

}
→ 1.

In particular, P
(
||θ̂ − θ0|| ≤ nB1−(1/2C4)

)
→ 1 for all B1 > 0, which implies the first

part of (4.13), and

P

{
sup

−∞<s,t<∞

∣∣∣fFtX (s+ t)− fFtX (s+ t|B̂, ω̂)
∣∣∣w1(s, t) ≤ nB1−(1/2C4)

}
→ 1.

which, by paralleling Step 2 in the proof of Theorem 1, can be shown to imply the second

part of (4.13).

S3.2 Proof of Theorem 2.

Analogously to the density estimator f̂X at (3.8), define the deterministic quantity

f̄X(x) =
1

h

∫
K

(
x− y
h

)
dFX(x).

Now,

||f̃(x)− f̄(x)||∞ = sup
−∞<x<∞

∣∣∣∣ 1h
∫
K ′(u){FX(x− hu|B̂, ω̂)− FX(x− hu)}du

∣∣∣∣
≤ 1

h

(∫
|K ′|

)
sup

−∞<x<∞
|FX(x|B̂, ω̂)− FX(x)|

= Op(n
−εh−1), (S3.25)
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where the last identity follows from (4.13) and (4.14) in the respective cases (a) and (b).

Observe too that, with C11 and δ as in (4.15),

||f̃(x)− f(x)||∞ ≤ sup
−∞<x<∞

∫
|K(u)||fX(x− hu)− fX(x)|du

≤ C11h
δ

∫
(1 + |u|)δ|K(u)|du = O(hδ). (S3.26)

Result (4.17) follows from (S3.25) and (S3.26).

S4 NUMERICAL IMPLEMENTATION

Several elements must be specified or tuned in order to implement the proposed method:

the histogram bins B, the loss function Sq(θ,B, ω) and the weight function w(s, t). We

suggest to use the L2 loss

S2
2(θ,B, ω) =

∫ ∫ {
f̂FtLR(s, t)− fFtX (s+ t|B, ω)fFtZ1,Z2

(−s, t|θ)
}2

w(s, t)2dsdt (S4.27)

because it can be minimized explicitly in ω for fixed B; minimizing (S4.27) amounts

to solving a linear system of equations in ω. For instance in the case of homogeneous

Poisson with rate 1 monitoring times, where

fFtZ1,Z2
(−s, t) = {(1 + si)(1− ti)}−1 =

(1 + st) + i(t− s)
(1 + st)2 + (t− s)2

, (S4.28)

straightforward manipulations show that ω̂ = M−11 M2 where M1 is a K×K matrix with

element in position (k, j) given by

[M1]j,k =

∫ ∫
w2(s, t)

{(1 + s2)(1 + t2)}2

[
Ψ1(s, t, j)Υ1(s, t, k)(1 + st)−Ψ2(s, t, j)Υ1(s, t, k)(t− s)

−Ψ2(s, t, j)Υ2(s, t, k)(1 + st)−Ψ1(s, t, j)Υ2(s, t, k)(t− s)

]
dsdt
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and M2 is a K-vector with element in position k given by

[M2]k =

∫ ∫
w2(s, t)

(1 + s2)(1 + t2)

1

n

n∑
`=1

{
cos(sL` + tR`)Υ1(s, t, k)

− sin(sL` + tR`)Υ2(s, t, k)

}
dsdt,

where

Ψ1(s, t, k) =
sin{BUk (s+ t)} − sin{BLk (s+ t)}

s+ t

Ψ2(s, t, k) =
cos{BLk (s+ t)} − cos{BUk (s+ t)}

s+ t

Υ1(s, t, k) = Ψ2(s, t, k)(t− s)−Ψ1(s, t, k)(1 + st)

Υ2(s, t, k) = Ψ2(s, t, k)(1 + st) + Ψ1(s, t, k)(t− s)

and BLk and BUk respectively denote the lower and upper bounds of the k-th bin of B.

The choice of the weight function w(s, t) has to respect the regularity conditions

outlined in Section 4. We obtained good results in our trials when using w(s, t) =

{(1 + |s|)(1 + |t|)}−p with p = 5. Such a high power ensures that sufficient weight

is given to observations in the neighborhood of (s, t) = (0, 0) where f̂FtLR(s, t) is more

accurate.

The specification of the histogram bins B can either be done on a trial and error

basis, or by finding B (for a fixed number of bins) that minimizes S2 if one has an efficient

algorithm to do so. The former option is relatively simple to implement: a good choice

of B will yield a histogram that looks reasonable while a poor choice will generate some

of the histogram heights, ω, to be negative. A compromise that worked well in our trials

consists in minimizing S2 over a small number of bin sets. Naive automated ways of

specifying the bin sets include using J bins of identical size or using the quantiles of the



S4. NUMERICAL IMPLEMENTATION

midpoints of the observed or innermost intervals; in our trials the first two of these three

options yielded good results. For each bin set, we estimated the bin heights ω1, . . . , ωJ by

solving the linear equations that yield the values of the ω’s that minimize the discretized

loss function

S2
2(ω,B) =

∑
(s,t)∈G

w2(s, t)

∥∥∥∥∥n−1
n∑
`=1

ei(sL`+tR`)

−

{
J∑
k=1

ωk

∫
Bk(B)

ei(s+t)udu

}
{(1 + is)(1− it)}−1

∥∥∥∥∥
2

, (S4.29)

where Bk(B) are the bins and G is a grid of (s, t) points, for instance G = {(s, t) : −5 ≤

s, t ≤ 5} a grid of size 40, 000 = 200× 200 of values of (s, t).
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