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Abstract: Methods for estimating the probability density function are considered

under the circumstance that the underlying measurements are interval-censored.

Density and distribution function estimators are proposed under parametric and

nonparametric assumptions on the censoring mechanism. Conditions for identi-

fiability and consistency of the estimates are established theoretically, and it is

shown that under such conditions, the estimates converge to the truth at a polyno-

mial rate in the inverse sample size. An online supplement contains the technical

arguments as well as practical guidelines for numerical implementation of the pro-

posed methods. The core of the theory in this paper was originally drafted by Peter

Hall in early 2010, following discussions at a workshop on mismeasured data held in

Canada in December, 2009 at which Peter was the keynote speaker. The co-authors

are grateful for the follow-up conversations held with Peter by long distance over

the years prior to his regretful passing.

Key words and phrases: Characteristic functions, density estimation, kernel meth-

ods.

Preamble (by John Braun and Thierry Duchesne)

On December 10, 2009, Peter Hall arrived in Southern Ontario and expressed

delight in seeing snow for the first time in several decades. It was an auspicious

start to a three-day Fields Institute Workshop on indirectly or imprecisely ob-

served data at which Peter was the principal keynote speaker. At the workshop,

Peter shared the latest developments on Fourier deconvolution approaches to

measurement error problems, and in discussions during and after the workshop,

he became quite interested in how these approaches might be adapted to prob-

lems where the data were interval-censored. These discussions were immensely

appreciated by all involved. By the end of the workshop, Peter indicated in his

polite, but clear way, that he had quite seen enough of snow (it had been falling

almost continuously for the entire event), and he happily boarded an airplane

bound for Hong Kong.
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Upon arrival in Hong Kong, Peter sent an email message to one of us (JB)

containing an attachment of a carefully typed 6-page draft manuscript encapsu-

lating some of the ideas discussed at the meeting. Much of that draft appears

verbatim in Sections 2 and 3 of the present paper. Over the next few weeks,

there were several emails back and forth concerning implementation of the pro-

posed Fourier approach, and by January 8, 2010, Peter had completed most of

the theory outlined in Sections 4 and 5.

Numerical issues continued to cause trouble over the ensuing months, seem-

ingly contradicting the theoretical results concerning the consistency of the new

estimator. The method seemed to require enormous sample sizes in order to work,

so it did not appear to be a practical contribution to the literature on interval-

censored density estimation. The work was abandoned, until TD was approached

with questions about the consistency of a competing estimator (Braun, Duchesne

and Stafford (2005)). Peter’s theoretical ideas were brought into these discus-

sions, and interest in implementing the Fourier method was rekindled. We had a

few brief email conversations with Peter and discussed plans for the three of us

to publish this paper, but Peter’s illness brought those conversations to a close,

and it was with sadness that we learned of his passing.

In October, 2016, we made one more attempt at numerically implement-

ing the method, scanning Peter’s carefully constructed theoretical arguments for

clues that might assist us in practically implementing the method. Gradually,

we began to see that our earlier numerical efforts had been based on unnecessary

simplifications, leading to horribly suboptimal solutions; full implementation of

the technique was, in fact, not only possible, but it also gave very good results.

This paper sets out, then, to show that a Fourier method for kernel density

and distribution function estimation for interval-censored data can work, both

theoretically and practically.

Peter’s original outline included a plan for numerical implementation; we

have chosen instead to relegate that material as well as various extensions and

the technical arguments to the supplementary material, so that Peter’s voice can

be heard in an almost continuous stream from Sections 2 through 4. We are

honoured to have been able to interact with Peter on this problem, and we join

the large chorus of other scientists who will miss him tremendously.

1. Introduction

Methods to obtain smooth estimates of the probability density function of
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a random variable when the latter is observed subject to interval censoring have

received considerable attention for many years. These methods are useful be-

cause in many applications the realized values of the variable of interest are not

known exactly but only up to an interval. A review of methodologies for smooth

estimation of the density, survival or hazard function given an interval censored

sample can be found in Sun (2007, Chap. 3). To give a rough summary, we men-

tion the logspline method of Kooperberg and Stone (1992), the local EM method

of Betensky et al. (1999) and the kernel smoothing approach of Braun, Duchesne

and Stafford (2005). Most of the aforementioned methods are connected with

nonparametric maximum likelihood estimation and do not explicitly model the

censoring time process. But as we shall demonstrate such modeling allows one to

recast the problem of density estimation with interval-censored data as a decon-

volution problem, which paves the way to approach these estimation problems

with a new set of tools.

Density estimation based on deconvolution has been thoroughly studied in

the literature, including seminal work by Peter Hall. We cannot reasonably list

all of Peter’s contributions to this field here, but his important contributions

include his paper with R. J. Carroll (Carroll and Hall (1988)) on the optimal

convergence rate for deconvolution density estimators and his proposals of new

approaches based on truncated Fourier inversion in Diggle and Hall (1993) or on

discrete Fourier transforms in 2005 (Hall and Qiu (2005)).

Peter has also investigated the use of deconvolution methods in measurement

error problems (see for instance Delaigle, Hall and Meister (2008)). Though

somewhat related, interval-censoring and measurement error are generally not

equivalent. One case where they do coincide is when the variable of interest is

measured with random uniform error. In this case, Groeneboom and Jongbloed

(2003) proposed a deconvolution method for density estimation. But uniform

measurement error is only a special case of interval censoring, and deconvolution

methods for the general case do not seem to have been considered. Deconvolution

methods are not the only option to obtain estimators from a Fourier transform.

As Feuerverger and McDunnough (1981a); Feuerveger and McDunnough (1981b)

have shown, estimating equations based on Fourier transforms can form a basis

for inference in many problems. In this paper, we propose such a Fourier-based in-

ference method for smooth nonparametric estimation of a density function when

a parametric model for the process that generates the potential interval-censoring

times is available. The interval-censoring model considered is presented in Sec-

tion 2. A new density estimator is proposed in Section 3, and its convergence



2814 HALL, BRAUN AND DUCHESNE

properties are discussed in Section 4. The supplementary material for the pa-

per contains additional discussion, including the technical arguments justifying

the methodology, and it provides guidelines for practical implementation of the

method. References to equations and sections in the supplementary material are

prefixed with the letter ‘S’.

2. Model and Identifiability

We wish to make inference about the common distribution of random vari-

ables X1, X2, . . ., which are interval censored. Specifically, we have access only to

a sample of random intervals, I = {[L1, R1], [L2, R2], . . .}, often assumed to be

generated as follows. For each i, a potentially infinite, stationary point process

Ti = {. . . , Tij , Ti,j+1, . . .} produces the interval endpoints Li ≤ Ri defined by

Li = sup{Tij : Tij ≤ Xi}, Ri = inf{Tij : Tij ≥ Xi}. (2.1)

The pairs (X1, T1), (X2, T2), . . . are identically distributed, the quantities X1, X2,

. . . and T1, T2, . . . are independent of one another, and the sequences Ti may or

may not be observed. This amounts to the independent inspection process model

of Lawless and Babineau (2006, Sec. 2) and to the case K interval censoring model

(Sun (2007, Sec. 1.3)). Given the first n intervals in the set I we wish to estimate

the distribution, and more particularly the probability density, of a generic value

X of Xi.

Define Z1 = Xi − Li and Z2 = Ri − Xi, where we have suppressed the

dependence of Z1 and Z2 on i. By definition, P (Z1 ≥ 0) = P (Z2 ≥ 0) = 1.

Since the processes Ti are stationary, the distribution of (Z1, Z2), conditional on

Xi = x, does not depend on x, and, since the pairs (X1, T1), (X2, T2), . . . are

identically distributed, the distribution also does not depend on i. Bearing this

in mind, we define the joint distribution of Z1 and Z2 to be the distribution

conditional on Xi. In this notation, if (L,R,X) has the distribution of a generic

triple (Li, Ri, Xi) then (L,R,X) is distributed as (X−Z1, X+Z2, X), where we

take X to be independent of (Z1, Z2). Without loss of generality,

(L,R,X) = (X − Z1, X + Z2, X) where X ⊥ (Z1, Z2), (2.2)

with ⊥ denoting “is independent of.”

The characteristic functions fFtLR, fFtX , and fFtZ1,Z2
of the distributions of

(L,R), X and (Z1, Z2), respectively, satisfy

fFtLR(s, t) = E{exp(isL+ itR)} = E{exp(is(X − Z1) + it(X + Z2))}
= E{exp(i(s+ t)X − isZ1 + itZ2)} = fFtX (s+ t)fFtZ1,Z2

(−s, t)
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where, on this occasion i =
√
−1 rather than denoting an index, and more

generally, i has this interpretation in the expressions is and it. (The notation

fFtLR represents the Fourier transform, hence the superscript Ft, of the probability

density fLR of (L,R).) In summary,

fFtLR(s, t) = fFtX (s+ t)fFtZ1,Z2
(−s, t). (2.3)

If (Z1, Z2) denotes a pair of nonnegative random variables for which (2.2) holds

then, in general, neither the distribution of X nor that of (Z1, Z2) is identifiable

from data on (L,R) alone. To appreciate why, let U, V,W,X be independent

random variables for which U, V,W ≥ 0, and put (Z1, Z2) = (U − V,W + V ).

(Nonnegativity of (Z1, Z2) can be ensured under a side condition, for example by

asking that, for a constant c > 0, P (U ≥ c) = P (W ≥ 0) = P (0 ≤ V ≤ c) = 1.)

Then,

(L,R) = (X − Z1, X + Z2) = (X ′ − Z ′1, X ′ + Z ′2),

where X ′ = X +V,Z ′1 = U and Z ′2 = W . Moreover, the pair (Z ′1, Z
′
2) is indepen-

dent of X ′, and Z ′1 and Z ′2 are nonnegative. However, unless V is identically zero,

the distributions of X and X ′ differ, as do those of (Z1, Z2) and (Z ′1, Z
′
2). There-

fore, in the model at (2.2), even with the additional constraint that Z1 and Z2

are nonnegative, the distributions of X and (Z1, Z2) are not nonparametrically

identifiable from data on (L,R) alone.

This lack of identifiability implies that, in a general interval-censoring prob-

lem, it is not possible to estimate either fX or fZ1,Z2
nonparametrically using

only data on (L,R). As is well documented in the interval-censoring literature

(see Sun (2007, Chap. 3)) and references therein), data on (L,R) contain no

information about fX over so-called innermost intervals and the nonparamet-

ric maximum likelihood estimator of the corresponding cumulative distribution

function is undefined over these intervals. In cases where L and R are defined

more narrowly in terms of stationary point processes, as at (2.2), the ambiguity

is less, since the class of possible distributions of (Z1, Z2) is restricted by that

definition. If it is considered that the assumption of stationarity of the point

processes Ti can be invalid (for example, because the point processes have not

been run long enough before measurements are made), or that other assump-

tions are compromised, then inference is still vulnerable to problems caused by

non-indentifiability.

Therefore, although the methods that we give in Section 3.1 can be modi-

fied so that, under the specific assumption of identifiability, they give consistent

estimators of the density of X without using a model for the distribution of
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(Z1, Z2), and employing only interval data, we instead discuss inference in cases

where either:

(a) we have a parametric model for (Z1, Z2), for example derived when the

point processes Ti are Poisson or, more generally, renewal processes; or

(b) the distribution of (Z1, Z2) is estimated nonparametrically from observa-

tions of the Tis.

These approaches alleviate the identifiability problem by, in case (a), greatly

reducing the variety of options that are available for the distribution of (Z1, Z2)

when using a parametric model, or, in case (b), specifying the distribution of

(Z1, Z2) in terms of a consistent, nonparametric estimator of the true distribution.

See also Lawless and Babineau (2006, Sec. 5) who discuss the estimation of

the parameters of the inspection time process and propose a simulation-based

inference method.

3. Estimators

3.1. General methodology

We either assume a parametric model for the distribution of (Z1, Z2), where

the characteristic function is fFtZ1,Z2
(s, t|θ), say, and θ is a finite vector of unknown

parameters; or we estimate the distribution of (Z1, Z2) from point process data.

These are the respectively cases (a) and (b) discussed in Section 3. In case (b),

and conditional on Xi = x, the values of Li and Ri are

Li(x) = sup{Tij : Tij ≤ x}, Ri(x) = inf{Tij : Tij ≥ x}

compare (2.1). Therefore a nonparametric estimator of g(s, t) = fFtZ1,Z2
(s, t) has

the form

ĝ(s, t) =
1

n(b− a)
=

n∑
i=1

∫ b

a
exp (is{x− Li(x)}+ it{Ri(x)− x}) dx, (3.1)

where (a, b) denotes an interval (a little) shorter than the domain of the point

processes Ti.
In each of cases (a) and (b) our methodology for estimating the distribution

FX of X is based on approximating the density fX = F ′X by a histogram,

fX(x|B, ω) =

m∑
j=1

ωjI(x ∈ Bj), (3.2)

where B = {B1, . . . ,Bm} denotes a sequence of adjacent a histogram bins Bj
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of width h > 0, the nonnegative weights ωj satisfy h
∑

j ωj = 1, and ω =

(ω1, . . . , ωm) is the vector of unknown parameters that we wish to estimate.

The class of all distributions with densities of this type is dense in the class

of all distributions, and so constructing a histogram density as at (3.2) should

be seen as a method for general distribution estimation, not density estimation.

See Section 3.2 for details. In Section 3.3 we suggest smoothing the resulting

distribution estimator to obtain a density estimator, and discuss choice of the

smoothing parameter.

In case (a), a common parametric model for (Z1, Z2) is that in which the

point processes Ti are Poisson with intensity λ−1. Here Z1 and Z2 are independent

and identically distributed with density λ exp(−λz), for z > 0. Thus, θ = λ is a

scalar, and

fFtZ1,Z2
(s, t|λ) = (1− λ−1is)−1(1− λ−1it)−1 (3.3)

Section S2.2 in the online supplementary material discusses generalisations

of this model when the processes Ti are renewal processes. More generally in case

(a), the parameter vectors θ and ω can be estimated by least squares, minimising

Sq(θ,B, ω) =

{∫ ∫ ∣∣fFtLR(s, t)− fFtX (s+ t|B, ω)fFtZ1,Z2
(−s, t|θ)

∣∣q w(s, t)qdsdt

}1/q

,

(3.4)

where q ≥ 1,

f̂FtLR(s, t) =
1

n

n∑
j=1

exp(isLj + itRj)

is a conventional nonparametric, unbiased estimator of the characteristic function

of (L,R), fFtX (·|B, ω) denotes the characteristic function of the distribution with

histogram density fFtX (·|B, ω), defined at (3.2), and w in (3.4) is an integrable,

nonnegative weight function. The criterion function Sq(θ,B, ω) is motivated by

(2.3). One may be tempted to compute f̂FtX (s, t) = f̂FtLR(s, t)/f̂FtZ1,Z2
(−s, t) and

then invert f̂FtX (s, t) to obtain an estimate of fX , but f̂FtX (s, t) does not depend

on (s, t) only through s + t for finite samples, except in very specific cases; this

issue is avoided when minimizing (3.4).

3.2. Distribution estimation

In numerical practice we suggest choosing the histogram to minimise the

distance from the empirical characteristic function f̂FtLR to our model for this

characteristic function, differing somewhat in cases (a) and (b).
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In case (a) we take (θ̂, B̂, ω̂) to minimise Sq(θ,B, ω) at (3.4) (or to minimise

a similar quantity such as that at (S2.4)— these approaches are both part of case

(a)), and in case (b) we take (B̂, ω̂) to minimise Sq(B, ω) at (S2.5). Importantly,

in both settings the minimum is taken over h,m and choices of ω1, . . . , ωm, not

just over the latter. We could also take it over choices of the bin centres, although

this is generally not necessary. The result is a histogram,

f̂X(x) ≡ fX(x|B̂, ω̂) =

m∑
j=1

ω̂jI(x ∈ B̂j),

that is generally too rough to be a useful estimator of fX , but its integral is

appropriate as an estimator F̂X = F (·|B, ω̂) of the distribution FX with density

fX .

In theoretical terms, F̂X can be taken to be any weak limit of any sequence

of histogram distributions with densities fX(·|B, ω) along which the minimum

of (3.4) in case (a), or of (S2.5) in case (b), is obtained. (Any sequence of

distributions, here a sequence of histogram distributions, has a convergent sub-

sequence.) In numerical terms, F̂X is constructed to be the member of a sequence

of histogram distributions, defined iteratively, that results when the algorithm

for minimising either (3.4) or (S2.5) terminates.

3.3. Density estimation

We can smooth F̂X to an estimator f̃X of fX in many ways. For example, if

we favour kernel methods we can take

f̃X(x) =

∫ ∞
−∞

K

(
x− y
h

)
dF̂X(y) =

∫ ∞
−∞

K(y)dF̂X(x− hy)

=
1

h

m∑
j=1

ω̂j

∫
Bj

K

(
x− y
h

)
dy, (3.5)

where h is a bandwidth and K a kernel function.

4. Convergence Properties

In Theorem 1 we state conditions that are sufficient for the estimator FX(·|B̂,
ω̂) of the distribution function FX of X to converge to FX at a polynomial rate in

n−1. Theorem 2 observes that those assumptions, together with a minor smooth-

ness constraint on the density fX = F ′X , are also sufficient for the kernel density

estimator based on FX(·|B̂, ω̂) to converge uniformly to fX . It is convenient here

to work with criterion functions Sq where q = ∞, although convergence rates
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can also be derived in the case of finite q.

We separately treat the cases (a) and (b), introduced in Section 3, represent-

ing parametric and nonparametric settings, respectively. In case (a) we have a

model fZ1,Z2
(·|θ) for the joint density of (Z1, Z2), and it is helpful to define

s(θ,B, ω) = sup
−∞<s,t<∞

|fFtX (s+ t)fFtZ1,Z2
(−s, t|θ0)

− fFtX (s+ t|B, ω)fFtZ1,Z2
(−s, t|θ)|w(s, t), (4.1)

where θ0 denotes the true value of θ. We quantify the identifiability of both fX
and the finite parameter vector θ by assuming that for constants C1, C2 > 0,

for all values of θ in some neighbourhood of θ0, and for all values of (B, ω) for

which the supremum on the right-hand side of (4.2) does not exceed some given

positive number,

s(θ,B, ω) ≥ C1

{
||θ − θ0||+ sup

−∞<s,t<∞
|fFtX (s+ t)− fFtX (s+ t|B, ω)|w1(s, t)

}C2

,

(4.2)

where w1 is a nonnegative weight function and || · || is the usual Euclidean norm.

The inequality (4.2) is readily shown to be satisfied with C2 = 1 in many cases

of practical interest, for example where fFtZ1,Z2
(·|θ) is a differentiable function of

θ.

In addition we ask that:

(i) for a constant C3 > 0, E|L|C3 + E|R|C3 + E|X|C3 + EZC3

1 + EZC3

2 <∞;

(ii) the infimum in the definition (θ̂, B̂, ω̂) = arginf(θ,B,ω)S∞(θ,B, ω) is,

for each fixed θ, taken over all distributions having density fX(·|B, ω)

and satisfying

∫
|x|C3fX(x|B, ω)dx ≤ C4, where C4 > 0 also has the

property E|X|C3 < C4; (iii) for constants C5, C6 > 0, inf
|s|,|t|≤u

|fFtZ1,Z2
(s, t)| (4.3)

≥ C5(1 + |u|)−C6 for all u > 0; (iv) the true density fX of X is uniformly

bounded; (v) for all real s and t, w(s, t) = w(t, s) = w(−s, t); and (vi) for

constants C7, . . . , C10 > 0 and all real s and t, C7(1 + |s|)−C8(1 + |t|)−C8

≤ min{w1(s, t), w(s, t)} ≤ max{w1(s, t), w(s, t)} ≤ C9(1 + |s|)−C10

× (1 + |t|)−C10 .

Assumption (4.3)(i) asks only that the random variables under consideration

have a moment of some positive order and, since C3 can be arbitrarily small,

it is particularly weak; (4.3)(ii) asserts that the approximating distribution is
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constructed so that it also satisfies (4.3)(i), which in practice is readily imposed

by constraining the locations and the number, m, of histogram blocks. Condition

(4.3)(iii) ensures that the tails of the characteristic function of the bivariate error

distribution do not decay at a faster rate than the inverse of a polynomial in s

and t, and is commonly imposed in deconvolution problems, for example using an

exponential model; such a model is suggested in the present setting by (3.3). (The

converse case, where the rate of decrease of the tails of the characteristic function

is exponentially fast, is termed “supersmooth” in the context of deconvolution

problems, and results in convergence rates that are slower than any polynomial

in n−1.) Assumption (4.3)(iv) requires only that fX be bounded; and (4.3)(v)

and (4.4)(vi) are weak conditions on the weight function w1.

In case (b) there there is no model for the joint distribution of (Z1, Z2), and

we estimate g = fFtZ1,Z2
using g, defined at (3.1). We define S∞(B, ω) as at (S2.6),

and impose an analogue of (4.3):

Assumptions (i) and (iii)–(v) are as in (4.3); (vi) is as in (4.3) but with the

function w1 dropped; (ii) is replaced by the property: (ii), the infimum

in the definition (B̂, ω̂) = arginf(B,ω)S∞(B,ω) is taken over all distributions

(4.4)

having density fX(·|B, ω) and satisfying

∫
|x|C3fX(x|B, ω)dx ≤ C4,where

C4 > 0 has the property E|X|C3 < C4.

Throughout we use the objective function S∞, defined at (S2.3) in case (a)

and at (S2.6) in case (b), to define estimators.

Theorem 1. (a) In the parametric case, if (4.2) and (4.3) hold then there exists

ε > 0 such that

||θ̂ − θ0|| = Op(n
−ε), sup

−∞<x<∞
|FX(x|B̂, ω̂)− FX(x)| = Op(n

−ε). (4.5)

(b) In the nonparametric case, if (4.4) holds then there exists ε > 0 such

that

sup
−∞<x<∞

|FX(x|B̂, ω̂)− FX(x)| = Op(n
−ε). (4.6)

A kernel density estimator, f̃X , of fX , derived from the distribution estimator

FX(x|B̂, ω̂) and based on a kernel K and bandwidth h, is given by (3.5). We

permit h to decrease to zero as n increases; the performance of f̃X depends on

choice of h, discussed in Section 3.3. To apply Theorem 1 to the problem of
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convergence of f̃X we impose a conventional Hölder smoothness condition on fX :

for constants C11, δ > 0, sup
−∞<u,x<∞

|u|−δ |fX(x+ u)− fX(x)| ≤ C11. (4.7)

We ask that K satisfy∫
(1 + |u|)δ|K(u)|du <∞,

∫
K = 1,

∫
|K ′| <∞, (4.8)

where δ > 0 is as in (4.7).

Theorem 2. Assume (4.7) and (4.8), and that either (4.2) and (4.3) in the

parametric case (a), or (4.4) in the nonparametric case (b), hold. Let ε > 0 be

as at (4.5) or (4.6) in those two respective cases. Then

sup
−∞<x<∞

|f̃X(x)− fX(x)| = Op(n
−εh−1 + hδ). (4.9)

An immediate corollary of (4.9) is that if h = h(n)→ 0 sufficiently slowly to

ensure that nεh→∞, then the density estimator f̃X is uniformly consistent for

fX .

Supplementary Materials

Additional information is provided in the Supplementary Materials section.

In particular, there is a consideration of identifiability for the models given in

Section 2, and further insight into the choice of weight function in Section 3.

Bandwidth selection is briefly considered. Generalization to renewal processes

for the monitoring process is also discussed. The technical arguments behind the

proofs of Theorems 1 and 2 are provided. This section concludes with advice on

numerically implementing the technique.
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