Supplement to "Asymptotic Behavior of Cox's Partial Likelihood and its Application to Variable Selection"

Runze Li¹, Jian-Jian Ren², Guangren Yang³ and Ye Yu⁴

¹Pennsylvania State University, ²University of Maryland, ³Jinan University and ⁴Wells Farqo Bank

This supplement consists of the proof of Theorem 2 in the main text.

Proof of Theorem 2. To prove Theorem 2, we show the following two lemmas. Theorem 2(A) and 2(B) follow Lemma 1 and 2 respectively.

Lemma 1. Suppose that the partial likelihood function of the Cox model satisfies Conditions (A)-(D) in Fan and Li (2002). Assume that there exits a positive constant M such that $\kappa_n < M$. Then under Condition (E4), we have

$$P\{\inf_{\lambda\in\Omega_{-}}GIC_{\kappa_{n}}(\widehat{\boldsymbol{\beta}}_{\lambda}) > GIC_{\kappa_{n}}(\widehat{\boldsymbol{\beta}}_{\bar{\alpha}}^{\star})\} \to 1 \quad as \ n \to \infty,$$
(S.1)

$$\liminf_{n \to \infty} P\{\inf_{\lambda \in \Omega_0} GIC_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\lambda}) > GIC_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\bar{\alpha}}^{\star})\} \ge \pi.$$
(S.2)

Proof. Recall that for any given λ , we can obtain a selected model α_{λ} by penalized variable selection. And based on this selected model α_{λ} , we are able to obtain its corresponding non-penalized estimates $\hat{\boldsymbol{\beta}}_{\alpha_{\lambda}}^{\star}$ by maximizing the corresponding partial likelihood. Then

$$\ell_c(\widehat{\boldsymbol{\beta}}_{\alpha_{\lambda}}^{\star}) \ge \ell_c(\widehat{\boldsymbol{\beta}}_{\lambda}), \tag{S.3}$$

and $-2\ell_c(\widehat{\boldsymbol{\beta}}_{\lambda}) + \kappa_n \mathrm{df}_{\lambda} > -2\ell_c(\widehat{\boldsymbol{\beta}}_{\alpha_{\lambda}}^{\star})$ Thus,

$$\operatorname{GIC}_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\lambda}) > -2\ell_c(\widehat{\boldsymbol{\beta}}_{\alpha_{\lambda}}^{\star}).$$
 (S.4)

Subtract $\operatorname{GIC}_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\bar{\alpha}}^{\star})$ from both size of (S.4), we can obtain that

$$\operatorname{GIC}_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\lambda}) - \operatorname{GIC}_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\bar{\alpha}}^{\star}) > -2\ell_c(\widehat{\boldsymbol{\beta}}_{\alpha_{\lambda}}^{\star}) - \{-2\ell_c(\widehat{\boldsymbol{\beta}}_{\bar{\alpha}}^{\star}) + \kappa_n \mathrm{df}_{\bar{\alpha}}\}.$$

For any $\lambda \in \Omega_{-} = \{\lambda : \alpha \not\supseteq \alpha_0\}$, we can take $\inf_{\lambda \in \Omega_{-}}$ over $\operatorname{GIC}_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\lambda})$. Under Condition (E4) and $\kappa_n < M$, for any $\lambda \in \Omega_{-}$, we have

$$P\{\inf_{\lambda\in\Omega_{-}}\operatorname{GIC}_{\kappa_{n}}(\widehat{\boldsymbol{\beta}}_{\lambda}) - \operatorname{GIC}_{\kappa_{n}}(\widehat{\boldsymbol{\beta}}_{\bar{\alpha}}^{\star}) > 0\}$$

$$\geq P\{\inf_{\lambda\in\Omega_{-}}\frac{-2\ell_{c}(\widehat{\boldsymbol{\beta}}_{\alpha_{\lambda}}^{\star})}{n} - \frac{-2\ell_{c}(\widehat{\boldsymbol{\beta}}_{\bar{\alpha}}^{\star})}{n} - \frac{\kappa_{n}\mathrm{df}_{\bar{\alpha}}}{n} > 0\}$$

$$= P\{\min_{\alpha\neq\alpha_{0}}[\frac{-2\ell_{c}(\widehat{\boldsymbol{\beta}}_{\alpha}^{\star})}{n} - \log(n)\rho_{1}] - [\frac{-2\ell_{c}(\widehat{\boldsymbol{\beta}}_{\bar{\alpha}}^{\star})}{n} - \log(n)\rho_{1}] - \frac{\kappa_{n}\mathrm{df}_{\bar{\alpha}}}{n} > 0\} \qquad (S.5)$$

$$= P\{\min_{\alpha\neq\alpha_{0}}c_{\alpha} - c_{\bar{\alpha}} + o_{P}(1) > 0\} \rightarrow 1, \qquad (S.6)$$

as $n \to \infty$. (S.5) is due to the finiteness of \mathcal{A} , and (S.6) uses both (E4) and the fact that deviance tends to be smaller as covariate dimension increases. (S.1) follows from the above equations.

For any $\lambda \in \Omega_0, \alpha_{\lambda} = \alpha_0$, it follows by (2.5)

$$P\{\inf_{\lambda\in\Omega_{0}}\operatorname{GIC}_{\kappa_{n}}(\widehat{\boldsymbol{\beta}}_{\lambda}) - \operatorname{GIC}_{\kappa_{n}}(\widehat{\boldsymbol{\beta}}_{\bar{\alpha}}^{\star}) > 0\}$$

$$\geq P\{\inf_{\lambda\in\Omega_{0}} - 2\ell_{c}(\widehat{\boldsymbol{\beta}}_{\alpha_{\lambda}}^{\star}) - [-2\ell_{c}(\widehat{\boldsymbol{\beta}}_{\bar{\alpha}}^{\star})] - \kappa_{n}\operatorname{df}_{\bar{\alpha}} > 0\}$$

$$= P\{-2[\ell_{c}(\widehat{\boldsymbol{\beta}}_{\alpha_{0}}^{\star}) - \ell_{c}(\widehat{\boldsymbol{\beta}}_{\bar{\alpha}}^{\star})] - \kappa_{n}\operatorname{df}_{\bar{\alpha}} > 0\}$$

$$\geq P\{-2[\ell_{c}(\widehat{\boldsymbol{\beta}}_{\alpha_{0}}^{\star}) - \ell_{c}(\widehat{\boldsymbol{\beta}}_{\bar{\alpha}}^{\star})] > M\operatorname{df}_{\bar{\alpha}}\}$$
(S.7)

$$\to P\{\chi^2_{\mathrm{df}_{\bar{\alpha}}-\mathrm{df}_{\alpha_0}} \ge M\mathrm{df}_{\bar{\alpha}}\} > 0. \tag{S.8}$$

(S.7) is due to $\kappa_n < M$, and (S.8) uses the fact that $\widehat{\boldsymbol{\beta}}_{\alpha_0}^{\star}$ and $\widehat{\boldsymbol{\beta}}_{\bar{\alpha}}^{\star}$ are asymptotically normal under regular condition (A)-(D) in Fan and Li (2002). Hence, the likelihood ratio test statistics $-2[\ell_c(\widehat{\boldsymbol{\beta}}_{\alpha_0}^{\star}) - \ell_c(\widehat{\boldsymbol{\beta}}_{\bar{\alpha}}^{\star})] \xrightarrow{\mathcal{L}} \chi^2_{\mathrm{df}_{\bar{\alpha}} - \mathrm{df}_{\alpha_0}}$. (S.2) follows by taking $\pi = P\{\chi^2_{\mathrm{df}_{\bar{\alpha}} - \mathrm{df}_{\alpha_0}} \geq$ $Mdf_{\bar{\alpha}}$. This completes the proof of Lemma 1.

Lemma 2. Suppose that the partial likelihood function of the Cox model satisfies Conditions (A)-(D) in Fan and Li (2002). Then under Condition (E1)-(E4), and let $\lambda_n = \kappa_n / \sqrt{n}$. If κ_n satisfies $\kappa_n \to \infty$ and $\lambda_n \to 0$ as $n \to \infty$, we have

$$P\{GIC_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\lambda_n}) = GIC_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\alpha_0}^{\star})\} \to 1,$$
(S.9)

$$P\left\{\inf_{\lambda\in(\Omega_{-}\cup\Omega_{+})}GIC_{\kappa_{n}}(\widehat{\boldsymbol{\beta}}_{\lambda}) > GIC_{\kappa_{n}}(\widehat{\boldsymbol{\beta}}_{\lambda_{n}})\right\} \to 1.$$
(S.10)

Proof. With loss of generality, assume that the first d_{α_0} component of β_0 are nonzero for the true model while the rest are zeros. By Conditions (A)-(D) in Fan and Li (2002) together with Condition (E3), Fan and Li (2002) showed that

$$\widehat{\beta}_{\lambda_n j} \xrightarrow{p} 0 \text{ for } j = d_{\alpha_0} + 1, \cdots, d,$$
$$\frac{\partial}{\partial \beta_j} \ell_c(\widehat{\beta}_{\lambda_n j}) - p'_{\lambda_n}(|\widehat{\beta}_{\lambda_n j}|) \operatorname{sgn}(\widehat{\beta}_{\lambda_n j}) \xrightarrow{p} 0 \text{ for } j = 1, \cdots, d_{\alpha_0},$$
(S.11)

where $\widehat{\beta}_{\lambda_n j}$ is the *j*th component of $\widehat{\beta}_{\lambda_n}$. Under Condition (E1) and (E2), for $j = 1, \dots, d_{\alpha_0}$, there exits an *m* such that

$$p'_{\lambda_n}(|\widehat{\beta}_{\lambda_n j}|) = 0 \text{ for } |\widehat{\beta}_{\lambda_n j}| \ge \min\{|\beta_{\lambda_n j}|\} \ge m\lambda_n.$$

By (S.11), with probability tending to 1, we have,

$$\frac{\partial}{\partial \beta_j} \ell_c(\widehat{\boldsymbol{\beta}}_{\lambda_n j}) = 0, \text{ for } j = 1, \cdots, d_{\alpha_0},$$

This is the score equation for the unpenalized partial likelihood under the true model α_0 .

Therefore, with probability tending to 1, we have

$$\widehat{oldsymbol{eta}}_{\lambda_n} = \widehat{oldsymbol{eta}}^{\star}_{lpha_0}, \ \ell_c(\widehat{oldsymbol{eta}}_{\lambda_n}) = \ell_c(\widehat{oldsymbol{eta}}^{\star}_{lpha_0}).$$

Thus $df_{\alpha_{\lambda_n}} = df_{\alpha_0}$ with probability tending to 1. Hence it follows that,

$$P\{\operatorname{GIC}_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\lambda_n}) = \operatorname{GIC}_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\alpha_0}^{\star})\}$$
$$= P\{-2\ell_c(\widehat{\boldsymbol{\beta}}_{\lambda_n}) + \kappa_n \operatorname{df}_{\alpha_{\lambda_n}} + 2\ell_c(\widehat{\boldsymbol{\beta}}_{\alpha_0}^{\star}) - \kappa_n \operatorname{df}_{\alpha_0} = 0\}$$
$$= P\{-2[\ell_c(\widehat{\boldsymbol{\beta}}_{\lambda_n}) - \ell_c(\widehat{\boldsymbol{\beta}}_{\alpha_0}^{\star})] + \kappa_n(\operatorname{df}_{\alpha_{\lambda_n}} - \operatorname{df}_{\alpha_0}) = 0\}$$
$$\to 1.$$

This validates (S.9).

Next, we want to show that $\operatorname{GIC}_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\lambda}) > \operatorname{GIC}_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\lambda_n})$ for any λ that cannot result in the true model. First, we consider λ that could result in underfitting models, namely, $\lambda \in \Omega_- = \{\lambda : \alpha_\lambda \not\supseteq \alpha_0\}$. By (S.4) and (S.9), with probability tending to 1, it follows that

$$\operatorname{GIC}_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\lambda}) - \operatorname{GIC}_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\lambda_n}) > -2\ell_c(\widehat{\boldsymbol{\beta}}_{\alpha_{\lambda}}^{\star}) - [-2\ell_c(\widehat{\boldsymbol{\beta}}_{\alpha_0}^{\star})] - \kappa_n \mathrm{df}_{\alpha_0}.$$

For any $\lambda \in \Omega_{-} = \{\lambda : \alpha \not\supseteq \alpha_0\}$, we can take $\inf_{\lambda \in \Omega_{-}}$ over $\operatorname{GIC}_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\lambda})$. Under Condition (E4)

and $\kappa_n/\sqrt{n} \to 0$, for any $\lambda \in \Omega_-$, we have

$$P\{\inf_{\lambda\in\Omega_{-}}\operatorname{GIC}_{\kappa_{n}}(\widehat{\boldsymbol{\beta}}_{\lambda}) - \operatorname{GIC}_{\kappa_{n}}(\widehat{\boldsymbol{\beta}}_{\lambda_{n}}) > 0\}$$

$$\geq P\{\inf_{\lambda\in\Omega_{-}}\frac{-2\ell_{c}(\widehat{\boldsymbol{\beta}}_{\alpha_{\lambda}}^{*})}{n} - \frac{-2\ell_{c}(\widehat{\boldsymbol{\beta}}_{\alpha_{0}}^{*})}{n} - \frac{\kappa_{n}\mathrm{df}_{\alpha_{0}}}{n} > 0\}$$

$$= P\{\min_{\alpha\not\supseteq\alpha_{0}}[\frac{-2\ell_{c}(\widehat{\boldsymbol{\beta}}_{\alpha}^{*})}{n} - \log(n)\rho_{1}] - [\frac{-2\ell_{c}(\widehat{\boldsymbol{\beta}}_{\alpha_{0}}^{*})}{n} - \log(n)\rho_{1}] - \frac{\kappa_{n}\mathrm{df}_{\alpha_{0}}}{n} > 0\}$$

$$= P\{\min_{\alpha\not\supseteq\alpha_{0}}c_{\alpha} - c_{\alpha_{0}} + o_{P}(1) > 0\} \rightarrow 1, \qquad (S.12)$$

as $n \to \infty$. (S.12) is due to Condition (E4). This implies that

$$P\left\{\inf_{\lambda\in\Omega_{-}}\operatorname{GIC}_{\kappa_{n}}(\widehat{\boldsymbol{\beta}}_{\lambda}) > \operatorname{GIC}_{\kappa_{n}}(\widehat{\boldsymbol{\beta}}_{\lambda_{n}})\right\} \to 1.$$
(S.13)

For any $\lambda \in \Omega_+ = \{\lambda : \alpha_\lambda \supset \alpha_0\}$, we have

$$\begin{aligned} \operatorname{GIC}_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\lambda}) &- \operatorname{GIC}_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\lambda_n}) \\ &= -2\ell_c(\widehat{\boldsymbol{\beta}}_{\lambda}) - \left[-2\ell_c(\widehat{\boldsymbol{\beta}}_{\lambda_n})\right] + \kappa_n (\operatorname{df}_{\alpha_{\lambda}} - \operatorname{df}_{\alpha_{\lambda_n}}) \\ &\geq -2\ell_c(\widehat{\boldsymbol{\beta}}_{\alpha_{\lambda}}^{\star}) - \left[-2\ell_c(\widehat{\boldsymbol{\beta}}_{\alpha_0}^{\star})\right] + \kappa_n \tau_n, \end{aligned}$$
(S.14)

where $\tau_n > 0$ due to the fact that $df_{\alpha_{\lambda}} - df_{\alpha_{\lambda_n}} = \tau_n > 0$ when *n* is large. And (S.14) follows (S.3). We then take $\inf_{\lambda \in \Omega_+}$ over $\operatorname{GIC}_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\lambda})$. Under Condition (E4) and $\kappa_n/\sqrt{n} \to 0$, for any $\lambda \in \Omega_+$, we have

$$\inf_{\lambda \in \Omega_{+}} \operatorname{GIC}_{\kappa_{n}}(\widehat{\boldsymbol{\beta}}_{\lambda}) - \operatorname{GIC}_{\kappa_{n}}(\widehat{\boldsymbol{\beta}}_{\lambda_{n}}) \\
\geq \min_{\alpha \not\supseteq \alpha_{0}} - 2[\ell_{c}(\widehat{\boldsymbol{\beta}}_{\alpha}^{\star}) - \ell_{c}(\widehat{\boldsymbol{\beta}}_{\alpha_{0}}^{\star})] + \kappa_{n}\tau_{n} \tag{S.15}$$

$$= \kappa_n \tau_n \{ 1 + o_p(1) \}.$$
 (S.16)

(S.16) uses the fact that $2[\ell_c(\widehat{\boldsymbol{\beta}}^{\star}_{\alpha}) - \ell_c(\widehat{\boldsymbol{\beta}}^{\star}_{\alpha_0})] \rightarrow \chi^2_{\mathrm{df}_{\alpha} - \mathrm{df}_{\alpha_0}}$ for $\alpha \supset \alpha_0$ together with that $\kappa_n \to \infty$. Therefore, (S.15) is positive as $n \to \infty$. Hence, we have,

$$P\left\{\inf_{\lambda\in\Omega_{+}}\operatorname{GIC}_{\kappa_{n}}(\widehat{\boldsymbol{\beta}}_{\lambda}) > \operatorname{GIC}_{\kappa_{n}}(\widehat{\boldsymbol{\beta}}_{\lambda_{n}})\right\} \to 1.$$
(S.17)

Based on (S.13) and (S.17) together, we prove (S.10). Consequently, this completes the proof of Lemma 2.

Proofs of Theorem 2. Lemma 1 implies that for any λ producing the underfitted model, its associated $\operatorname{GIC}_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\lambda})$ is consistently larger than $\operatorname{GIC}_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\bar{\alpha}}^*)$. Thus, the optimal model selected by minimizing the $\operatorname{GIC}_{\kappa_n}(\boldsymbol{\beta})$ must be either the true model or overfitted models with probability tending to one. In addition, Lemma 1 indicates that there is a nonzero probability that the smallest value of $\operatorname{GIC}_{\kappa_n}(\widehat{\boldsymbol{\beta}}_{\lambda})$ associated with the true model is larger than that of the full model. As a result, there is a positive probability that any λ associated with the true model cannot be selected by $\operatorname{GIC}_{\kappa_n}(\boldsymbol{\beta})$ as the regularization parameter. Theorem 2(A) follows.

Lemma 2 indicates that the model identified by λ_n converges to the true model as the sample size gets large. In addition, it shows that those λ 's, which fail to identify the true model, cannot be selected by $\text{GIC}_{\kappa_n}(\boldsymbol{\beta})$ asymptotically. Theorem 2(B) follows.

We next show Theorem 2(C). Note that $(1 - df_{\lambda}/n)^2 = 1 + 2df_{\lambda}/n + O(\{df_{\lambda}/n\}^2)$. By the definition of the GCV, it follows that

$$2n\operatorname{GCV}(\lambda) = -2\ell_c(\widehat{\boldsymbol{\beta}}_{\lambda}) + 4(-\ell_c(\widehat{\boldsymbol{\beta}}_{\lambda})/n)\operatorname{df}_{\lambda} + O_p(\{\operatorname{df}_{\lambda}/n\}^2\ell_c(\widehat{\boldsymbol{\beta}}_{\lambda}))$$

Theorem 1 implies $-\ell_c(\widehat{\boldsymbol{\beta}}_{\lambda})/(n\log(n)) \to \rho_1 > 0$ as $n \to \infty$, then

$$2n \text{GCV}(\lambda) = -2\ell_c(\widehat{\boldsymbol{\beta}}_{\lambda}) + 4\rho_1 \log(n) \text{df}_{\lambda} \{1 + o_p(1)\} + o_p(1)$$
$$= -2\ell_c(\widehat{\boldsymbol{\beta}}_{\lambda}) + \kappa_{gcv} \text{df}_{\alpha_{\lambda}} \{1 + o_p(1)\},$$

where $\kappa_{gcv} = 4\rho_1 \log(n)$. Theorem 2(C) follows by using the following the proof of Lemma 2.