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Abstract: The penalized estimation principle is fundamental to high-dimensional

problems. In the literature, it has been extensively and successfully applied to

various models with only structural parameters. In this paper, we apply this pe-

nalization principle to a linear regression model with not only structural parameters

but also sparse incidental parameters. For the estimators of the structural parame-

ters, we derive their consistency and asymptotic normality, which reveals an oracle

property. However, the penalized estimators for the incidental parameters possess

only partial selection consistency, not consistency. This is an interesting partial con-

sistency phenomenon: the structural parameters are consistently estimated while

the incidental ones are not. For the structural parameters, also considered is an

alternative two-step penalized estimator, which has fewer possible asymptotic distri-

butions and thus is more suitable for statistical inferences. A data-driven approach

for selecting a penalty regularization parameter is provided. The finite-sample per-

formance of the penalized estimators for the structural parameters is evaluated by

simulations and a data set is analyzed. We also extend the methods and results

to the case where the number of the structural parameters diverge but slower than

the sample size.

Key words and phrases: Oracle property, partial consistency, penalized estimation,

sparse incidental parameter, structural parameter, two-step estimation.

1. Introduction

Since the pioneering papers by Tibshirani (1996) and Fan and Li (2001),

the penalized estimation methodology exploiting sparsity has been studied ex-

tensively. For example, Zhao and Yu (2006) provides an almost necessary and

sufficient condition, the Irrepresentable Condition, for the LASSO estimator to

be strong sign consistent. Fan, Liao and Mincheva (2011) shows that an or-

acle property holds for the folded concave penalized estimator with ultrahigh

dimensionality. For an overview on this topic, see Fan and Lv (2010).

These papers consider models only with structural parameters that are re-

lated to every data point. Here we consider another type of model where there
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are not only the structural parameters but also incidental parameters, each of

which is related to only one data point. Specifically, suppose data {Xi, Yi}ni=1

are from the linear model

Yi = µ?i +XT
i β

? + εi, (1.1)

where the vector of incidental parameters µ? = (µ?1, . . . , µ
?
n)T is sparse, the vector

of structural parameters β? = (β?1 , . . . , β
?
d)T is of main interest, and Xi’s are εi’s

are covariate vectors random errors, respectively. Let ν = (µ?T ,β?T )T . Then, a

different data point (Xi, Yi) depends on a different subset of ν, µ?i and β?.

Model (1.1) arises as a working model for estimation from Fan, Feng and

Tong (2012), which considers a large-scale hypothesis testing problem under

arbitrary dependence of test statistics. By principal factor approximation, a

method proposed by Fan, Feng and Tong (2012), the dependent test statistics

Z = (Z1, . . . , Zp)
T ∼ N(µ,Σ) can be decomposed as Zi = µi + bTi W + Ki,

where µ = (µ1, . . . , µp)
T , bi is the ith row of the first k unstandardized princi-

pal components, denoted by B, of Σ, and K = (K1, . . . ,Kp)
T ∼ N(0,A) with

A = Σ −BBT . The common factor W drives the dependence among the test

statistics. This realized but unobserved factor is critical for false discovery pro-

portion (FDP) estimation and power improvements by removing the common

factor {bTi W } from the test statistics. Hence, an important goal is to estimate

W with given {bi}ni=1. In many applications on large-scale hypothesis testing,

{µi}pi=1 are sparse. For example, genome-wide association studies show that

the expression level of gene CCT8 is highly related to the phenotype of Down

Syndrome. It is of interest to test the association between each of millions of

SNP’s and the CCT8 gene expression level. In the framework of Fan, Feng and

Tong (2012), each µi stands for such an association: if µi = 0, the ith SNP has

no association with the CCT8 gene expression level; otherwise, it is associated.

Since most of the SNP’s are not associated the CCT8 gene expression level, it is

reasonable to assume the sparsity of {µi}pi=1. Replacing Zi, µi, bi, W , k, p, and

Ki with Yi, µ
?
i , Xi, β

?, d, n, and εi, respectively, we obtain model (1.1).

Although model (1.1) emerges from a critical component of estimating FDP

in Fan, Feng and Tong (2012), it has its own interest. For example, in some

applications, those few nonzero µ?i ’s might be some signals or measurement or

recording errors of the responses {Yi} and what is interesting is to learn about

β?. Then, (1.1) is suitable for modeling data with “contaminated” responses and

a method producing a reliable estimator for β? is a robust replacement for the

ordinary least squares estimation that is known to be sensitive to outliers.
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Several models with structural and incidental parameters were studied in a

seminal paper by Neyman and Scott (1948), which points out the inconsistency of

the maximum likelihood estimators (MLE) of structural parameters in the pres-

ence of a large number of incidental parameters and provides a modified MLE.

Their method does not work for model (1.1) due to not exploiting the sparsity of

incidental parameters. Kiefer and Wolfowitz (1956) shows the consistency of the

MLE of the structural parameters when the incidental parameters are assumed to

be from a common distribution; they basically eliminate the high-dimensionality

issue of the incidental parameters by randomization. Our paper considers de-

terministic incidental parameters and handles the high-dimensionality issue by

penalization with a sparsity assumption. Basu (1977) considers the elimination

of nuisance parameters via marginalizing and conditioning methods, and Moreira

(2009) solves the incidental parameter problem with an invariance principle. For

a review of the incidental parameter problems in statistics and economics, see

Lancaster (2000).

Without loss of generality, suppose the first s incidental parameters {µ?i }si=1

are nonvanishing and the remainder are zero. Then, model (1.1) can be written

in a matrix form as Y = Xν + ε, where

X =

(
Is XT

1,s 0

0 XT
s+1,n In−s

)
,

XT
i,j = (Xi,Xi+1, . . . ,Xj)

T , Ik is a k × k identity matrix, 0 is a generic block

of zeros and ν = (µ?1, . . . , µ
?
s,β

T , µ?s+1, . . . , µ
?
n)T . Although this is a sparse high-

dimensional problem, the matrix X does not satisfy the sufficient conditions for

the results in Zhao and Yu (2006) and Fan, Liao and Mincheva (2011) due to

the estimation inconsistency of the incidental parameters in ν. For details, see

Supplement A.

In this paper, we propose a penalized estimator of (µ?,β?),

(µ̂, β̂) = argmin
(µ,β)∈Rn+d

n∑
i=1

(Yi − µi −XT
i β)2 +

n∑
i=1

pλ(|µi|), (1.2)

where pλ is a penalty function with a regularization parameter λ. The penalty

is imposed only on the sparse incidental parameters. An iterative algorithm is

proposed to compute the estimators. The estimator β̂ possesses consistency,

asymptotic normality, and an oracle property. On the other hand, the nonvan-

ishing elements of µ? cannot be consistently estimated even if β? were known.

So, there is a partial consistency phenomenon.

Penalized estimation (1.2) is a one-step method. For the estimation of β?,
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we also propose a two-step method whose first step is designed to eliminate the

influence of the data with large incidental parameters. The two-step estimator β̃

from the two-step method has fewer possible asymptotic distributions than β̂ and

thus is more suitable for constructing confidence regions for β?. The two-step

estimator is asymptotically equivalent to the one-step estimator when the sizes

of the nonzero incidental parameters are small enough. The two-step method im-

proves the convergence rate and efficiency over the one-step method for challeng-

ing situations where large nonzero incidental parameters increase the asymptotic

covariance or even reduce the convergence rate for the one-step method.

The rest of the paper is organized as follows. In Section 2, the model and

penalized estimation method are rigorously introduced and the corresponding

penalized estimators are characterized. In Section 3, asymptotic properties of the

penalized estimators are derived, a penalized two-step estimator is proposed and

its theoretical properties are obtained, and we provide a data-driven approach for

selecting the regularization parameter. In Section 4, we present simulation results

and analyze a data set. Section 5 concludes with a discussion. All the proofs and

some additional theoretical results are relegated to an online supplementary file,

where we also provide a study on the case where the number of covariates grows

with, but slower than, the sample size.

2. Model and Method

The matrix form of model (1.1) is

Y = µ? +Xβ? + ε, (2.1)

where Y = (Y1, . . . , Yn)T , X = (X1, . . . ,Xn)T , and ε = (ε1, . . . , εn)T . The

covariates {Xi}ni=1 are independent and identically distributed (i.i.d.) copies of

X0 ∈ Rd, a random vector with mean zero and a covariance matrix ΣX > 0.

They are independent of the random errors {εi} that are i.i.d. copies of ε0,

a random variable with mean zero and variance σ2 > 0. Write an � bn and

an � bn if an = o(bn) and bn = o(an), respectively. There is an assumption on

the covariates and random errors.

Assumption (A): There exist positive sequences κn �
√
n and γn �

√
n such

that

P

(
max
1≤i≤n

‖Xi‖2 > κn

)
→ 0 and P

(
max
1≤i≤n

|εi| > γn

)
→ 0, as n→∞, (2.2)

where ‖ · ‖2 stands for the l2 norm of Rd.
Suppose there are three types of incidental parameters: let {µ?i }

s1
i=1 be large
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in the sense that |µ?i | � max{κn, γn} for 1 ≤ i ≤ s1; {µ?i }si=s1+1 are nonzero

and bounded by γn with s = s1 + s2; {µ?i }ni=s+1 are zero. It is unknown to us

which µ?i ’s are large, bounded, or zero. The sparsity of µ? means s1 + s2 � n.

Denote the vectors of the three types of incidental parameters as µ?1, µ
?
2, and µ?3,

respectively.

The penalized estimation (1.2) can be written as

(µ̂, β̂) = argmin
(µ,β)

L(µ,β), (2.3)

where L(µ,β) = ‖Y − µ−Xβ‖22 +
∑n

i=1 pλ(|µi|) and the penalty function pλ
can be the soft (i.e. L1 or LASSO), hard, SCAD, or a general folded concave

penalty function of Fan and Li (2001). For simplicity, here we consider only

the soft penalty function pλ(|µi|) = 2λ|µi|. The cases with the hard and SCAD

penalties can be considered in a similar way.

By Lemma B.1 in Supplement B, a necessary and sufficient condition for

(µ̂, β̂) to be a minimizer of L(µ,β) is that β̂ = (XTX)−1XT (Y − µ̂), and

Yi − µ̂i −XT
i β̂ = λSign(µ̂i) for i ∈ Îc0 and |Yi −XT

i β̂| ≤ λ for i ∈ Î0, where

Sign(·) is the sign function and Î0 = {1 ≤ i ≤ n : µ̂i = 0}.
The special structure of L(µ,β) suggests for the minimization problem

in (2.3) a marginal decent algorithm that iteratively computes µ(k) =

argminµ∈RnL(µ,β(k−1)) and β(k) = argminβ∈RdL(µ(k),β) until convergence.

The advantage of this algorithm is that there exist analytic solutions to the

two minimization steps. They are the soft-threshold estimators with residu-

als {Yi − XT
i β

(k−1)} and the ordinary least-squares estimator with responses

Y −µ(k), respectively. A case with a diverging number of covariates d is consid-

ered in Supplement D. In this paper, d is assumed to be a fixed integer and we

make an assumption on λ.

Assumption (B): The regularization parameter λ satisfies

κn � λ, αγn ≤ λ, and λ� min{µ?,
√
n}, (2.4)

where κn and γn are defined in (2.2), α is a constant greater than 2, and µ? =

min1≤i≤s1 |µ?i |.
Write “with probability going to one” as “wpg1”. A stopping rule for the

above algorithm is based on the successive difference ‖β(k+1)−β(k)‖2. By Propo-

sition B.1 in Supplement B, wpg1, the iterative algorithm stops at the the second

iteration, given the initial estimator is bounded wpg1.

Suppose {β(k)} has a theoretical limit β(∞), corresponding to which there is

a limit estimator µ(∞). Then, (µ(∞),β(∞)) is a solution of the equations
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β = (XTX)−1XT (Y − µ), (2.5)

µ = (|Y −XTβ| − λ)+Sign(Y −XTβ), (2.6)

where (·)+ returns the maximum value of the input and zero. By Lemma B.2 in

Supplement B, a necessary and sufficient condition for (µ̂, β̂) to be a minimizer of

L(µ,β) is that it is a solution to equations (2.5) and (2.6). Hence, (µ(∞),β(∞))

is a minimizer of L(µ,β) and can also be denoted as (µ̂, β̂).

The estimator β̂ is also the minimizer of the profiled loss function L̃(β) =

L(µ(β),β), where µ(β) as a function of β is given by (2.6). Interestingly, this

profiled loss function is a criterion function equipped with the famous Huber

loss function (see Huber (1964, 1973)). Specifically, L̃(β) can be expressed as∑n
i=1 ρ(Yi −XT

i β), where ρ(x) = x2I(|x| ≤ λ) + (2λx− λ2)I(|x| > λ) is exactly

the Huber’s loss function, which is optimal in a minimax sense. This equivalence

between the penalized estimation and Huber’s robust estimation indicates that

the penalization principle is versatile and can naturally produce an important loss

function in robust statistics. It also provides a formal endorsement of the least

absolute deviation robust regression (LAD) in Fan, Feng and Tong (2012) and

indicates that it is better to use all data with LAD regression rather than 90% of

them. The penalized estimation is only formally equal to the Huber’s. Our model

(2.1) considers deterministic sparse incidental parameters µ?i ’s, while the model

in Huber’s works assumes random contamination as in Kiefer and Wolfowitz

(1956). Recently, there are a few papers on robust regression in high-dimensional

settings, see, for example, Chen, Wang and McKeown (2010), Lambert-Lacroix

and Zwald (2011), Fan, Fan and Barut (2014), and Bean et al. (2012). Portnoy

and He (2000) provides a review of literature on robust statistics.

From (2.5) and (2.6), β̂ is a solution to

ϕn(β) = 0, with ϕn(β) = β − (XTX)−1XT {Y − µ(β)}. (2.7)

In general, this is a Z-estimation problem. The following analysis is based on

this characterization of β̂.

At the end of this section, we provide some notations and an expansion

of ϕn(β). Let S =
∑n

i=1XiX
T
i , SS =

∑
i∈SXiX

T
i , SµS =

∑
i∈SXiµ

?
i , SεS =∑

i∈SXiεi, S =
∑n

i=1Xi, and SS =
∑

i∈SXi, where S is a subset of {1, . . . , n}.
It is straightforward to show

ϕn(β) = (SS10
+ SS11

+ SS12
)(β − β?)− (SµS11

+ SµS12
)− (SεS10

+ SεS11
+ SεS12

)

− λ(SS20
+ SS21

+ SS22
− SS30

− SS31
− SS32

), (2.8)

with the index sets S10 = {s + 1 ≤ i ≤ n : |XT
i (β? − β) + εi| ≤ λ}, S11 =
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{1 ≤ i ≤ s1 : |µ?i + XT
i (β? − β) + εi| ≤ λ} and S12 = {s1 + 1 ≤ i ≤ s :

|µ?i +XT
i (β? − β) + εi| ≤ λ}; S20, S21 and S22 are defined similarly except that

the absolute operation is omitted and “≤” is replaced by “>”; S30, S31 and S32,

are defined similarly with S20, S21 and S22 except that “> λ” is replaced by

“< −λ”. All these index sets depend on β.

3. Asymptotic Properties

In this section, we consider the asymptotic properties of the penalized esti-

mators β̂ and µ̂. Assumptions (A) and (B) enable our method to distinguish the

large incidental parameters from others, and thus simplify the asymptotic prop-

erties of the index sets Sij ’s in (2.8) by making them independent of β wpg1.

Denote a hypercube of β? by BC(β?) = {β ∈ Rd : |βj−β?j | ≤ C, 1 ≤ j ≤ d} with

a constant C > 0.

Lemma 1 (On Index Sets Sij ’s). Under assumptions (A) and (B), for every

C > 0 and every β ∈ BC(β?), wpg1, S10 = S?10, S11 = ∅, S12 = S?12, S20 = ∅,
S21 = S?21, S22 = ∅, S30 = ∅, S31 = S?31 and S32 = ∅, where the limit index sets

S?10 = {s+1, s+2, . . . , n}, S?12 = {s1+1, s+2, . . . , s}, S?21 = {1 ≤ i ≤ s1 : µ?i > 0}
and S?31 = {1 ≤ i ≤ s1 : µ?i < 0}.

By Lemma 1, wpg1, the solution β̂ to (2.7) has an expression

β̂ = β? + (SS?
10

+ SS?
12

)−1{SµS?
12

+ (SεS?
10

+ SεS?
12

) + λ(SS?
21
− SS?

31
)}, (3.1)

from which we derive asymptotic properties of β̂. We need an assumption.

Assumption (C): There exists a constant δ > 0 such that E ‖X0‖2+δ2 <∞ and

‖µ?2‖2 /‖µ?2‖2+δ →∞, where ‖µ?2‖2+δ =
(∑s

i=s1+1 |µ?i |2+δ
)1/(2+δ)

.

Theorem 1 (Existence and Consistency of β̂). Under assumptions (A) and (B),

if either s2 = o(n/(κnγn)) or assumption (C) holds, then, for every fixed C > 0,

wpg1, there exists a unique estimator β̂n ∈ BC(β?) such that ψn(β̂n) = 0 and

β̂n
P−→ β?.

In Theorem 1, there are two kinds of sufficient conditions: one is on s2, the

size of bounded incidental parameters µ?2, and the other is assumption (C), which

is about the norms of µ?2. They come from different analysis approaches to the

term SµS?
12

in (3.1). One does not imply the other. For details, see Supplement

C. Specially, if s2 = O(nα2) for some α2 ∈ (0, 1) and κnγn � n(1−α2), then β̂ is

consistent by Theorem 1.

Next, we consider the asymptotic distributions of the consistent estimator
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β̂n obtained in Theorem 1. Without loss of generality, we assume the sizes of

index sets S?21 = {1 ≤ i ≤ s1 : µ?i > 0} and S?31 = {1 ≤ i ≤ s1 : µ?i < 0} are

asymptotically equivalent to as1 and (1− a)s1, respectively, with a constant a ∈
(0, 1). Similar to Theorem 1, there are two sets of conditions on µ?2 corresponding

to two different analysis approaches. Denote ∼ as asymptotic equivalence and

Dn = ‖µ?2‖2.

Theorem 2 (Asymptotic Distributions on β̂n). Under assumptions (A) and (B),

suppose either s2 �
√
n/(κnγn) holds or assumption (C) and D2

n/n = o(1) hold.

(1) If s1 � n/λ2, then
√
n(β̂n − β?)

d−→ N(0, σ2Σ−1X ); [main case]

(2) If s1 ∼ bn/λ2, then
√
n(β̂n−β?)

d−→ N(0, (b+σ2)Σ−1X ), for every constant

b ∈ R+;

(3) If s1 � n/λ2, then rn(β̂n − β?)
d−→ N(0,Σ−1X ), where rn ∼ n/(λ

√
s1).

When the incidental parameters are sparse, the size s1 of large incidental

parameters is small. If the size s2 or the magnitude Dn of bounded incidental

parameters is also small, then the conclusion of case (1) tends to hold. This case

is of most interest and we denote it as the main case. The other cases are pre-

sented to provide a relatively complete picture of the asymptotic distributions

of β̂. In fact, Theorem C.1 in Supplement C shows more possible asymptotic

distributions. The constant a does not appear in the limit distributions of The-

orem 2 due to cancellation. The sub-
√
n convergence rate emerges in case (3),

because for this case the impact of the large incidental parameters is too big to be

efficiently handled by the penalized estimation. For case (2), in one direction, as

b→ 0, its condition and limit distribution become those of case (1); in the other

direction, as b increases, it approaches case (3). This boundary phenomenon

is in spirit similar to that in Tang, Banerjee and Kosorok (2012). Specially, if

λ � nα1 , κnγn � nα2 , s1 � n1−α1 , and s2 � n1/2−α2 for some α1 ∈ (0, 1) and

α2 ∈ (0, 1/2), then
√
n(β̂n−β?)

d−→ N(0, σ2Σ−1X ) by the main case of Theorem 2.

Remark 1 (An Oracle Property). Suppose an oracle knows the true value

of µ?. Then, with the adjusted responses Y − µ?, the oracle estimator of β?

is β̂(O) = (XXT )−1XT (Y − µ?). The limiting distribution of
√
n(β̂

(O)
n − β?)

is N(0, σ2Σ−1X ). Comparing this with the main case of Theorem 2, we see the

penalized estimator β̂n enjoys an oracle property.

Although mainly interested in the estimation of β?, we also obtain the soft-
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threshold estimator µ̂ of µ?: for each i,

µ̂i = µi(β̂) = (|Yi −XT
i β̂| − λ)+sgn(Yi −XT

i β̂).

Let E = {µ̂i 6= 0, for i = 1, . . . , s1, and µ̂i = 0, for i = s1 + 1, . . . , n}.

Theorem 3 (Partial Selection Consistency on µ̂). Under assumptions (A) and

(B), if β̂
P−→ β?, then P (E)→ 1.

Theorem 3 shows that, wpg1, the indexes of µ?1 and µ?3 are estimated cor-

rectly, but those of µ?2 wrongly. We call this a partial selection consistency

phenomenon.

3.1. Two-step estimation

Theorem 2 tells us that the penalized estimator β̂n has multiple limit dis-

tributions, which complicate its application in practice. In addition, the conver-

gence rate of β̂n is less than the optimal rate
√
n in the case where the impact

of large incidental parameters is substantial. To address these issues, we pro-

pose a two-step estimation method: first apply the penalized estimation (2.3)

and let Î0 = {1 ≤ i ≤ n : µ̂i = 0}; then define the two-step estimator as

β̃ = (XT
Î0
XÎ0

)−1XT
Î0
YÎ0 , where XÎ0

consists of Xi’s whose indexes are in Î0 and

YÎ0 consists of the corresponding Yi’s.

Theorem 4 (Consistency and Asymptotic Normality of β̃). Suppose assump-

tions (A) and (B) hold. If either s2 = o(n/(κnγn)) or assumption (C) holds, then

β̃
P−→ β?. If either s2 = o(

√
n/(κnγn)) holds or assumption (C) and D2

n/n = o(1)

hold, then
√
n(β̃ − β?) d−→ N(0, σ2Σ−1X ).

Comparing Theorem 4 with Theorem 2, we see that β̂ has three possible

asymptotic distributions but β̃ has only one since for β̃ the conditions on s1
disappear; this happens because the two-step method identifies and removes large

incidental parameters by exploiting the partial selection consistency property of µ̂

shown by Theorem 3. Further, the two-step estimator improves the convergence

rate to the optimal one over the one-step estimator for the case with s1 � n/λ2.

Due to these advantages, we suggest using the two-step method when making

statistical inferences.

When the incidental parameters are sparse in the sense that s2 = o(
√
n/

(κnγn)) or D2
n/n = o(1), it follows by Theorem 4 that

√
n(β̃ − β?) d−→ N(0,

σ2Σ−1X ), from which a confidence region with asymptotic confidence level 1−α is

given by {β ∈ Rd : σ−1
√
n‖Σ1/2

X (β̃ − β)‖2 ≤ qα(χd)}, where qα(χd) is the upper
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α-quantile of χd, the square root of the chi-squared distribution with degrees of

freedom d. For each component β?j of β?, an asymptotic 1−α confidence interval

is

[β̃j ± n−1/2σΣ
−1/2
X (j, j)zα/2], (3.2)

where Σ
−1/2
X (j, j) is the square root of the (j, j) entry of Σ−1X and zα/2 is the upper

α/2-quantile of N(0, 1). The confidence region and interval involve unknown

parameters ΣX and σ. They can be estimated by Σ̂X = (1/n)XTX and σ̂ =

#(Î0)
−1/2‖YÎ0 − X

T
Î0
β̃‖2, where #(Î0) is the size of Î0. By the law of large

numbers, Σ̂X is consistent. By Lemma C.1 in Supplement C, σ̂ is also consistent.

Hence, after replacing ΣX and σ in the confidence region and interval with Σ̂X

and σ̂, the resulting confidence region and interval have the asymptotic confidence

level 1− α.

3.2. Theoretical and data-driven regularization parameters

Assumption (B) shows the theoretical regularization parameter λ depends on

κn and γn, which are also crucial to the conditions of the asymptotic properties of

the penalized estimators β̂ and β̃. Assumption (A) says κn and γn are determined

by the distributions of X0 and ε0, respectively. It is of interest to explicitly

derive κn and γn for some typical cases of the covariates and errors. When the

covariates are bounded with CX > 0 and the random errors are N(0, σ2), let

κn =
√
dCX and γn =

√
2σ2 log(n). They satisfy (2.2) in assumption (A), and

the specification of λ (2.4) in assumption (B) becomes α
√

2σ2 log(n) ≤ λ �
min{µ?,

√
n}. When X0 and ε0 are N(0,ΣX) and N(0, σ2), respectively. Denote

by σ2X the maximum of the diagonal elements of ΣX . Let κn =
√

2dσ2X log(n) and

γn =
√

2σ2 log(n). They satisfy (2.2) in assumption (A), and (2.4) in assumption

(C) becomes
√

log(n) � λ � min{µ?,
√
n}. A case of exponentially tailed

random variables is considered in Supplement C.

Although the theoretical specification of λ guaranties desired asymptotic

properties, a data-driven specification is of interest. A popular way to specify

λ is to use multi-fold cross-validation. The validation set, however, needs to

be made as uncontaminated as possible. We propose a procedure to identify a

data-driven λ:

Step 1: On the training and testing data sets.

1. Apply ordinary least squares (OLS) to all the data and obtain residuals

ε̂
(OLS)
i = Yi −XT

i β̂
(OLS) for each i.
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2. Identify the set of “pure” data corresponding to the npure smallest

values in {|ε̂(OLS)i |}.

3. Compute the updated OLS estimator β̂(OLS,2) with the “pure” data

and obtain updated residuals {ε̂(OLS,2)i } for each i.

4. Identify the updated “pure” data set corresponding to the npure small-

est {|ε̂(OLS,2)i |} and label the remaining as the “contaminated” data

set.

5. Randomly select a subset from the updated “pure” data set as a testing

set and merge the remaining “pure” data set and the “contaminated”

one into a training set.

Step 2: On the range [λL, λU ] of the regularization parameter.

1. Compute the standard deviation σ̂pure of the residuals of the “pure”

data set.

2. Set λL = αlσ̂pure and λU = αuσ̂pure, where αl < αu are positive con-

stants.

Step 3: On the data-driven regularization parameter.

1. For each grid point of λ in the interval [λL, λU ], apply a penalized

method to the training set and obtain the estimator β̂λ,train and the

corresponding test error σ̂2λ,test =
∑

testing set(Yi −XT
i β̂λ,train)2.

2. Identify the data-driven regularization parameter λopt that minimizes

σ̂2λ,test, among the grid points.

This simple data-driven procedure can certainly be further improved. For ex-

ample, In Step 1, the sub-steps 3 and 4 can be repeated more times to obtain a

better “pure” data set. In Step two, the range for λ can also be obtained from

quantiles of {|ε̂(OLS,2)i |}. We can also combine quantities based on σ̂pure and

quantiles of {|ε̂(OLS,2)i |} to determine [λL, λU ].

The good performance of this data-driven regularization parameter are demon-

strated in Subsection 4.2.

4. Numerical Evaluations and Data Analysis

We evaluated the finite-sample performance of the penalized estimation by

simulations and applied it to a data set. The model for simulations was Yi =
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µ?i +Xi,1β
?
1 + · · ·+Xi,50β

?
50+εi for i = 1, . . . , n. The deterministic sparse inciden-

tal parameters {µ?i } were generated as i.i.d. copies of µ: µ was 0, U [−c, c], and

W (c+ Exp(τ)) with probabilities p0, p1, and p2, respectively, and W took values

1 and −1 with probabilities pw and 1− pw, respectively, while Exp(τ) was expo-

nential with mean 1/τ > 0. Here c can be viewed as a contamination parameter:

the larger c is, the more contaminated the data are. On the other hand, pw de-

termines the asymmetry of the incidental parameters. The regression coefficients

were β?1 = · · · = β?50 = 1; {(Xi,1, . . . , Xi,50)}
i.i.d.∼ N(0,ΣX), where ΣX(i, j) =

2 exp(− |i− j|), which is a Toeplitz matrix and the constant 2 was used to inflate

the covariance; the covariates were independent of {εi}
i.i.d.∼ N(0, 1); n = 500;

p0 = 0.8, p1 = 0.1, p2 = 0.1, c was 0.5, 1, 3 or 5, pw was 0.5 or 0.75, and τ = 1.

4.1. Performance of penalized methods

The following methods for estimating β? were evaluated. (i) Oracle method

(O): an oracle knows the index set S of zero µ?i ’s; its performance is a bench-

mark. (ii) Ordinary least squares method (OLS): all µ?i ’s were thought as zero.

(iii) Four penalized least squares methods (PLS): PLS with soft penalty (PLS.Soft

or S), PLS with hard penalty (PLS.Hard or H), two-step PLS with soft penalty

(PLS.Soft.TwoStep or S.TS), and two-step PLS with hard penalty (PLS.Hard.

TwoStep or H.TS). More specifically, the oracle estimator of β? is β̂(O) =

(
∑

i∈SXiX
T
i )−1

∑
i∈SXiYi; the hard penalty function is pλ(|t|) = λ2 − (|t| −

λ)2{|t| < λ} (see Fan and Li (2001)). Each method was evaluated by the square

root of the empirical mean squared error (RMSE). Every penalized method was

implemented with some values of the regularization parameter λ, ranging from

0.5 to 5 by 0.25.

The sequence plot of Figure 1 shows 500 realized incidental parameters µ?i ’s

with c = 3 and pw = 0.75, of which 94 are nonzero. They were used in the

data generation of simulations. With fifty covariates, it is usually difficult to

graphically identify the contaminated data points, as shown in the scatter plot

of Figure 1.

Using the same incidental parameters, the six methods were evaluated by

simulations with the iteration number 1,000. Since ΣX is a Toeplitz matrix with

equal diagonal elements, the asymptotic variances of the estimators of β?1 and β?2
are different, and representative for other β?i ’s. So, we only report results on the

estimation of β?1 and β?2 .

Figure 2 shows RMSE’s of six estimators for β?1 . RMSE’s for β?2 are sim-

ilar. As expected, the oracle method has the smallest RMSE and OLS the
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Figure 1. The sequence plot on the left shows 500 incidental parameters µ?
i ’s with c = 3

and pw = 0.75. The (red) triangles are non-zero µ?
i ’s. The scatter plot on the right

shows the responses Yi’s against the first covariate Xi1’s of a data set generated with
those 500 incidental parameters. The (red) asterisks stand for the contaminated sample
points, the ones with nonzero µ?

i ’s.

'

Figure 2. The RMSE’s of the O (Oracle), OLS, S (PLS.Soft), H (PLS.Hard), S.TH
(PLS.Soft.TwoStep) and H.TH (PLS.Hard.TwoStep) estimators of β?

1 with the incidental
parameters shown in Figure 1. The top and bottom solid horizontal lines show the
RMSE’s for OLS and O, respectively. Other four horizontal lines indicate the minimal
RMSE’s for those four PLS methods and the corresponding four best λ’s are shown by
the vertical dotted lines.
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largest. The RMSE of each PLS method as a function of λ forms a convex

curve, which achieves a minimal RMSE significantly below the line of OLS and

close to the line of O. More specifically, the RMSE of PLS.Hard achieves the

minimal RMSE when λ is around 2.75. The RMSE of PLS.Soft decreases a little

until λ is around 0.75, then increases and stays above the RMSE of PLS.Hard.

This reflects the fact that a large λ in a soft-threshold method usually causes

a bias. PLS.Hard.TwoStep has a similar performance as PLS.Hard for all λ.

PLS.Soft.TwoStep has a similar performance as PLS.Soft when λ is small. As λ

becomes large, PLS.Soft.TwoStep moves closer to PLS.Hard than to PLS.Soft,

because PLS.Soft.TwoStep and PLS.Hard.TwoStep have similar estimation when

λ is large. The minimal RMSE of PLS.Soft is slightly larger than those of other

PLS Methods.

Table 1 depicts the minimal RMSE’s of the estimators for β?1 and β?2 with the

corresponding optimal λ’s and biases. The biases are ignorable compared with

the RMSE’s. The optimal λ’s for PLS.Soft and other PLS methods are around

0.75 and 2.5, respectively. This indicates the simple soft threshold method tends

to work best with a small λ due to the bias issue. Denote the empirical rela-

tive efficiency (ERE) of an estimator A with respect to another estimator B as

RMSE(B)/RMSE(A). Then, for the estimation of β?1 , the ERE’s of PLS.Soft,

PLS.Hard, PLS.Soft.TwoStep and PLS.Hard.TwoStep with respect to O are

around 78%, 87%, 87%, and 87%, respectively; the ERE’s of the PLS meth-

ods with respect to OLS are around 176%, 196%, 196%, and 196%, respectively.

The ERE’s for β?2 are similar. Thus, in terms of ERE (and RMSE), the PLS

methods perform roughly as O and significantly better than OLS.

From Table 1, we also see that the RMSE’s of the estimators of β?1 are

smaller than those of β?2 , because the first covariate is less correlated with other

covariates than the second one.

To examine the performance of the methods with general incidental param-

eters, not just those in Figure 1, we generated µ? randomly for each iteration.

The iteration number for each simulation was also 1,000.

Figure 3 shows the RMSE’s of six estimators of β?1 with pw = 0.5 and c = 1

or 5. Each plot in Figure 3 presents a similar pattern as in Figure 2. When pw is

fixed at 0.5, the RMSE’s of each non-oracle estimator of β?1 increases as the con-

tamination parameter c increases from 1 to 5. This indicates that each non-oracle

estimator performs worse as the data becomes more contaminated. However, the

PLS estimators are more robust than OLS, which is very sensitive to the change

of c. We have also done simulations with pw = 0.75 and the RMSE’s of the
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Table 1. RMSE’s of the Oracle, OLS and LAD estimators and The minimal RMSE’s
of the penalized estimators of β?

1 and β?
2 with the corresponding optimal or data-driven

λ’s and biases when the incidental parameters shown in Figure 1 are used. For a data-
driven method, the data-driven λ is different in each iteration so that the reported λ’s are
averages. The lines over the numbers emphasize the numbers are averages. The standard
deviations for the data-driven λ’s of S.P and H.P are 0.37 and 0.34, respectively.

O OLS S H S.TS H.TS S.P H.P LAD

Bias(β̂1)×104 0.8 17.8 1.3 0.6 5.9 20.4 9.5 11.5 10.4

RMSE(β̂1)×102 4.0 8.4 5.1 4.6 4.6 4.6 5.4 5.0 5.4
λ 0.75 2.75 2.25 2.5 2.45 2.47

Bias(β̂2)×104 −2.3 −46.7 24.6 43.5 −21.8 10.0 32.3 13.9 −7.3

RMSE(β̂2)×102 4.4 9.0 5.3 4.9 5.0 4.9 5.8 5.5 5.9
λ 0.75 2.75 2.75 2.5 2.45 2.47

estimators of β?1 are similar to those with pw = 0.75, so that the corresponding

plots are similar to those in Figure 3. The RMSE’s of all estimators are stable

with respect to pw, so the magnitudes of the nonzero incidental parameters mat-

ter most, not their signs. Some penalized methods perform closely to or even

outperform the oracle one when c is small as shown in the plot with c = 1,

because O ignores all the contaminated data points, even those with very light

contamination, while the penalized methods exploit information in such points.

Table 2 contains the RMSE’s of the estimators of β?1 with pw = 0.5 or 0.75

and c = 0.5, 1, 3 or 5. For each pw, as c increases from 0.5 to 5, the RMSE’s

of O times 102 is constantly around 4, those of OLS increase from about 4 to

8.5, and those of PLS grow from about 4 to 5; this affirms the robustness of the

PLS estimators. When c ≤ 1 is small with respect to the variance of random

error σ = 1, the data points are only slightly contaminated, and OLS and PLS

methods perform similarly to O. However, when c ≥ 3 is large, the data are more

contaminated, and the RMSE’s of OLS are significantly larger, but PLS methods

perform closely to O.

4.2. Performance of data-driven penalized methods

Previous simulations have shown that the PLS methods with optimal λ’s

have good RMSE’s compared with those of the Oracle and OLS. In practice,

optimal λ’s are unknown. An approach to obtaining a data-driven λ has been

introduced in Subsection 3.2. Since, as shown in previous simulation results, the

two-step PLS methods perform similarly as the one-step PLS methods, PLS.Soft

and PLS.Hard, only the latter were studied by simulations with data-driven
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Figure 3. Similar to Figure 2, these plots show the RMSE’s of the O (Oracle), OLS, S
(PLS.Soft), H (PLS.Hard), S.TH (PLS.Soft.TwoStep) and H.TH (PLS.Hard.TwoStep)
estimators of β?

1 with randomly generated µ? under two settings with pw = 0.5 and c = 1
or 5.

Table 2. Similar to Table 1, this one shows the RMSE’s and minimal RMSE’s of nine
estimators of β?

1 under eight settings on randomly generated µ? with pw = 0.5, 0.75
and c = 0.5, 1, 3, 5. The standard deviations of the data-driven λ’s of S.P and H.P for
different settings are between 0.2 and 0.45.

RMSE(β̂1)×102 O OLS S H S.TS H.TS S.P H.P LAD
(pw, c) = (0.5, 0.5) 4.06 4.06 3.92 3.95 3.90 3.96 4.01 4.38 4.85

λ 1.25 3.5 2.75 2.5 2.08 2.15
(pw, c) = (0.5, 1) 4.06 4.58 4.11 4.27 4.21 4.27 4.01 4.59 4.75

λ 2 3.75 4.25 3.5 2.20 2.24
(pw, c) = (0.5, 3) 4.12 6.47 4.81 4.99 4.81 4.80 5.64 5.19 5.49

λ 1 2.5 2 2.25 2.42 2.45
(pw, c) = (0.5, 5) 4.07 8.50 4.96 4.63 4.66 4.64 6.36 4.87 5.52

λ 1 2.25 2.75 3 2.52 2.58
(pw, c) = (0.75, 0.5) 4.13 4.02 3.91 3.88 3.98 3.91 4.08 4.41 4.79

λ 1.5 5 3.25 4.5 2.08 2.14
(pw, c) = (0.75, 1) 4.17 4.41 4.19 4.15 4.15 4.20 4.16 4.59 4.98

λ 3.25 3 4 3.5 2.15 2.23
(pw, c) = (0.75, 3) 4.15 5.99 4.91 4.93 4.80 5.02 5.35 5.06 5.52

λ 1 2.25 2 2.5 2.44 2.47
(pw, c) = (0.75, 5) 3.97 8.41 5.01 4.66 4.75 4.66 6.22 4.90 5.76

λ 1.5 2.25 2.5 3 2.55 2.60

λ’s, and they are denoted by PLS.Soft.Prac (S.P) and PLS.Hard.Prac (H.P),

respectively. For estimating data-driven λ’s, let αl = 2 and αu = 7. The size of
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the pure data set npure was n/2 and that of the testing data set was npure/2.

Simulations were first run with the deterministic sparse incidental param-

eters as shown in Figure 1. In Table 1, the RMSE’s of estimators of β?1 from

PLS.Soft.Prac and PLS.Hard.Prac are around 5.4 and 5.0, slightly larger than

the optimal values 5.1 and 4.6, respectively. However, they are still significantly

smaller than the RMSE of OLS 8.4. The observations of the estimators of β?2
are similar. We also evaluated the performance of the data-driven PLS methods

with random sparse incidental parameters. Table 2 shows that, for a given pw,

when c is 0.5 and 1 (small), the RMSE’s of PLS.Soft.Prac and PLS.Hard.Prac are

close to those of PLS.Soft and PLS.Hard with the optimal λ’s. In these cases,

PLS.Soft.Prac performs slightly better than PLS.Hard.Prac, and even better

than PLS.Soft with the optimal λ and the Oracle method. On the other hand,

for a given pw, when c is 3 and 5 (large), the RMSE’s of PLS.Soft.Prac and

PLS.Hard.Prac are greater than those of PLS.Soft and PLS.Hard, respectively,

but still less than those of OLS. In these cases, the RMSE’s of PLS.Soft.Prac

are larger than those of PLS.Hard.Prac, which indicates the bias issue with the

soft threshold method. Thus, the data-driven regularization parameter works

well with penalized estimation. When the data is slightly contaminated, the soft

penalty is preferred; otherwise, the hard penalty is recommended.

Tables 1 and 2 also contain the RMSE of the least absolute deviation re-

gression method (LAD) used in Fan, Feng and Tong (2012) with all but not

part of the sample points with small residuals. Generally speaking, in both de-

terministic and random incidental parameter cases, LAD performs similarly to

the PLS methods with data-driven λ’s. More specifically, when c ≤ 1 is small,

PLS.Soft.Prac outperforms LAD; otherwise, LAD performs better. For all cases,

LAD is dominated by PLS.Hard.Prac. These observations affirm that LAD is an

effective robustness method and the penalized methods make improvement.

4.3. Data-driven confidence intervals

We next turn to the finite-sample performance of the asymptotic confidence

interval (CI) (3.2) for β?j with j = 1 and 2, based on PLS two-step methods.

Since (3.2) is based on the properties of the penalized two-step estimator with

the soft penalty, we focused on PLS.TS.Soft with a data-driven regularization

parameter λ. The choice of λ in Subsection 3.2 for minimizing RMSE is usually

no longer suitable for constructing confidence intervals, since it is designed to

achieve minimal RMSE. We first obtained σ̂pure as in the data-driven procedure

in Subsection 3.2 and then simply set the data-driven λ to be five times σ̂pure.
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Table 3. Coverage rates (CR) and average length (AL) of 95% confidence intervals
for β?

1 and β?
2 from O, OLS, PLS.TwoStage.Soft.Prac methods under three settings on

deterministic sparse incidental parameters.

(p1, p2) β?
1 O OLS S.TS.P β?

2 O OLS S.TS.P
(0.01, 0.01) 0.950 0.944 0.948 0.945
(0.03, 0.03) CR 0.955 0.951 0.948 CR 0.948 0.946 0.947
(0.05, 0.05) 0.946 0.945 0.949 0.946
(0.01, 0.01) 0.200 0.135 0.213 0.144
(0.03, 0.03) AL 0.133 0.279 0.137 AL 0.142 0.297 0.146
(0.05, 0.05) 0.382 0.139 0.407 0.149

Since σ̂pure tends to underestimate σ, this data-driven λ is usually not large with

respect to σ. Denote this method as PLS.TwoStage.Soft.Prac or S.TS.P. After

plugging in σ̂ and σ̂−1j , the square root of the (j, j) element of Σ̂−1X , and replacing

n by m = #(Î0) at (3.2), we obtained the data-driven CI [β̃j ±m−1/2σ̂σ̂−1j zα/2],

where β̃j is the PLS.TwoStage.Soft.Prac estimator of β?j for each j.

This data-driven CI was compared with CI’s based on Oracle and OLS

methods. More specifically, write the Oracle and OLS estimators of β?j as β̂
(O)
j

and β̂
(OLS)
j , respectively. Then, the corresponding CI’s are given by [β̂

(O)
j ±

m
−1/2
o σ̂(O)σ̂−1j zα/2] and [β̂

(OLS)
j ± n−1/2σ̂(OLS)σ̂−1j zα/2], where mo is the number

of zero incidental parameters and σ̂(O) and σ̂(OLS) are the estimators of σ from

O and OLS methods, respectively.

The simulation settings were the same as the previous ones with determin-

istic sparse incidental parameters, except the following changes. (a) The num-

ber of covariates d was reduced to 5 from 50, because with d = 50 and level

95%, even the empirical coverage rate (CR) of the oracle confidence interval for

β?1 is 93.5%, not very close to 95%. (b) The iteration number was increased

from 1,000 to 10,000 to improve the accuracy of CR’s. (c) The probabilities

of nonzero incidental parameters (p1, p2) were set to be (0.01, 0.01), (0.03, 0.03)

and (0.05, 0.05); the contamination parameter c was increased to 10. In order to

achieve good second-order asymptotic approximation, one could either increase

the sample size or enlarge the signal noise ratio. We adopted the latter.

Table 3 reports the empirical coverage rates (CR) and average lengths (AL)

of the CI’s of β?1 and β?2 from O, OLS and PLS.TS.Soft.Prac methods under

three different settings on the incidental parameters. For the oracle method,

these three settings are the same, and thus only one set of simulation results

is presented. Table 3 shows that the CR’s of all methods under all settings
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are close to the nominal level 0.95. The OLS treats the deterministic inciden-

tal parameters as random and achieves excellent CR’s. However, the AL’s of

OLS are significantly larger than those of O and PLS.TS.Soft.Prac, especially

when there are more non-zero incidental parameters. On the other hand, the

AL’s of PLS.TS.Soft.Prac are only slightly larger than those of O. This means

PLS.TS.Soft.Prac has excellent efficiency in terms of AL’s given excellent CR’s.

The AL’s for β?1 are less than those for β?2 , because the asymptotic variance of β̂1
is less than that of β̂2 when the covariance matrix ΣX is a Toeplitz matrix. Sim-

ulations with random incidental parameters under the same settings have also

been done and the results are similar to those in Table 3, with slightly inflated

AL’s for OLS and PLS.TS.Soft.Prac due to the randomness of the incidental

parameters.

4.4. Data analysis

We implemented penalized estimation with the soft penalty in the method of

estimating the false discovery proportion of a multiple testing procedure of Fan,

Feng and Tong (2012) for investigating the association between the expression

level of gene CCT8, closely related to Down Syndrome phenotypes, and thou-

sands of SNPs. The data set consists of three populations: 60 Utah residents

(CEU), 45 Japanese and 45 Chinese (JPTCHB), and 60 Yoruba (YRI). More

details on the data set can be found in Fan, Feng and Tong (2012).

In their method, a filtered least absolute deviation regression (LAD) is used

to estimate the loading factors with 90% of the cases (SNPs) whose test statistics

are small and thus the resulting estimator is statistically biased. We upgraded

this step with S.P as described in Subsections 3.2 and 4.2, and re-estimated

the number of false discoveries V (t), and the false discovery proportion FDP(t)

as functions of − log10(t), where t is a thresholding value. Figure 4 shows the

number of total discoveries R(t), V̂ (t) and F̂DP(t) from procedures using filtered

LAD and S.P. It is clear that V̂ (t) and F̂DP(t) with S.P are uniformly larger

than but reasonably close to those with filtered LAD. Table 4 contains R(t) and

F̂DP(t) with filtered LAD and S.P for several specific thresholds. The estimated

FDPs with S.P for CEU and YRI are slightly larger than those with LAD and

F̂DP for JPTCHB with S.P is more than twice that with filtered LAD. This

suggests that the estimation of FDP with filtered LAD tends to be optimistic.

5. Conclusion and Discussion

This paper considers the estimation of structural parameters with the pres-
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Figure 4. Discovery number R(t), estimated false discovery number V (t) and estimated
false discovery proportion FDP(t) as functions of a threshold on t for populations CEU,
JTPCHB and YRI. The x-axis is − log10(t).

Table 4. Discovery numbers R(t) and estimated false discover proportions F̂DP(t)s from
methods with LAD and S.P for specific values of threshold t.

Population t R(t) F̂DP(t) with LAD F̂DP(t) with S.P
CEU 6.12× 10−4 4 0.810 0.845

JPTCHB 1.51× 10−9 5 0.153 0.373
YRI 2.54× 10−9 2 0.227 0.308

ence of sparse incidental parameters in a linear regression model. By exploiting

the sparsity, we propose an estimation method penalizing the incidental param-

eters. The penalized estimator of the structural parameters is consistent and

asymptotically Gaussian and achieves an oracle property. On the contrary, the

penalized estimator of the incidental parameters possesses only partial selection

consistency but not consistency. Thus, the structural parameters are consistently

estimated while the incidental parameters are not, which presents a partial con-
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sistency phenomenon. To construct better confidence regions for the structural

parameters, we propose a two-step estimator that has fewer possible asymptotic

distributions and can be asymptotically even more efficient than the one-step pe-

nalized estimator when the size and magnitude of nonzero incidental parameters

are substantially large.

Simulations show that the penalized methods with best regularization pa-

rameters achieve significantly smaller mean square errors than the ordinary least

squares method that ignores the incidental parameters. We provide a data-

driven regularization parameter, with which the penalized estimators continue

to significantly outperform ordinary least squares when the nonzero incidental

parameters are too large to be neglected. In terms of average length and coverage

rate, the advantage of the confidence intervals based on the two-step estimator

with a data-driven regularization parameter is verified by simulations. A data set

on genome-wide association study is analyzed with a multiple testing procedure

and false discovery proportions are estimated with the help of the data-driven

penalized method.

In econometrics, a fixed effect panel data model is given by, for 1 ≤ i ≤ n

and 1 ≤ t ≤ T ,

Yit = µ?i +XT
itβ

? + εit, (5.1)

where µ?i ’s are unknown fixed effects. When T diverges, the fixed effects can be

consistently estimated. When T is finite and greater than or equal to 2, although

the fixed effects can no longer be consistently estimated, they can be removed by

a within-group transformation: for each i, Yit − Ȳi = (Xit − X̄i)
Tβ? + εit − ε̄i,

where Ȳi, X̄i and ε̄i are the averages of Yit’s, Xit’s and εit’s, respectively. When

T is 1, however, the within-group transformation fails. For this case, model

(5.1) becomes model (1.1) so that the proposed penalized estimations provide a

solution under the sparsity assumption on the fixed effects.

Although this paper only illustrates the partial consistency phenomenon

of a penalized estimation method for a linear regression model, such a phe-

nomenon shall universally exist for a general parametric model that contains

both structural parameters and high-dimensional sparse incidental parameters.

For example, consider a panel data logistic regression model: P (Yit = 1|Xit) =

{1 + exp(−(µ?i +XT
itβ

?))}−1 with 1 ≤ t ≤ T . When T is finite, the fixed effects

µ?i ’s cannot be removed by the within-group transformation as in the panel data

linear model (5.1). However, the proposed penalized estimations can still provide

a solution.
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Finally, if the number of the structural parameters diverging faster than the

sample size and they are also sparse, it is expected that the partial consistency

phenomenon will continue to appear when the sparsity penalty is imposed on

both the structural parameters and the incidental ones.

Supplementary Materials

The proofs of the theoretical results and additional materials for Sections 1

to 3 are available in a online supplementary file, which also contains an extension

case with the number of covariates growing with, but slower than, the sample

size.
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