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Abstract: This paper is concerned with inference about the conditional quantile

function in a nonparametric quantile regression model. Any method for construct-

ing a confidence interval or band for this function must deal with the asymptotic

bias of nonparametric estimators of the function. In such estimation methods, as

local polynomial estimation, this is usually done through undersmoothing or ex-

plicit bias correction. The latter usually requires oversmoothing. However, there

are no satisfactory empirical methods for selecting bandwidths that under- or over-

smooth. This paper extends the bootstrap method of Hall and Horowitz (2013)

for conditional mean functions to conditional quantile functions. The paper also

shows how the bootstrap method can be used to obtain uniform confidence bands.

The bootstrap method uses only bandwidths that are selected by standard meth-

ods such as cross validation and plug-in. It does not use under- or oversmoothing.

The results of Monte Carlo experiments illustrate the numerical performance of the

bootstrap method.

Key words and phrases: Bias, bootstrap, confidence band, nonparametric estima-

tion, quantile estimation

1. Introduction

This paper is concerned with inference about the unknown function g in the

nonparametric quantile regression model

Y = g(X) + ε, P (ε ≤ 0) = τ, (1.1)

where X is an observed continuously-distributed explanatory variable and ε is

an unobserved continuously-distributed random variable that is independent of

X and whose τ quantile (0 < τ < 1) is 0. Hall and Horowitz (2013) (hereinafter

HH) describe a bootstrap method for constructing a pointwise confidence band for

the unknown function m(x) = E(Y |X = x) in a nonparametric mean regression.

This paper extends the bootstrap method of HH to g in the quantile regression

model (1.1). The paper also shows how the bootstrap method can be used
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to construct a uniform confidence band for g. The method for constructing a

uniform confidence band for g can be used to construct a uniform confidence

band for m, but this is not done here.

Any method for constructing a pointwise or uniform confidence band for g

based on a nonparametric estimate must deal with the problem of asymptotic

bias. For example, a local polynomial estimate of g with a bandwidth chosen

by cross-validation or plug-in methods is asymptotically biased. Denote this es-

timate by ĝ. The expected value of ĝ is not g, the asymptotic distribution of

the scaled estimate is not centered at g, and the true coverage probability of an

asymptotic confidence interval for g that is constructed from the normal distri-

bution in the usual way is less than the nominal probability. This problem is

usually overcome by undersmoothing or explicit bias reduction. Undersmooth-

ing consists of making the bias asymptotically negligible by using a bandwidth

whose rate of convergence is faster than the asymptotically optimal rate. In ex-

plicit bias reduction, an estimate of the asymptotic bias is used to construct an

asymptotically unbiased estimate of g. Most explicit bias reduction methods in-

volve some form of oversmoothing, using a bandwidth whose rate of convergence

is slower than the asymptotically optimal rate. Undersmoothing and explicit bias

correction methods are also available for the conditional mean function m.

Methods based on undersmoothing or oversmoothing require a bandwidth

whose rate of convergence is faster or slower than the asymptotically optimal

rate. As discussed by HH, there are no attractive, effective empirical ways to

choose these bandwidths. In addition, undersmoothing can produce very wig-

gly confidence bands, even for smooth conditional quantile or conditional mean

functions. Explicit bias correction methods that rely on estimation of derivatives

can also produce wiggly confidence bands.

The method presented in this paper, like the method of HH, uses bandwidths

chosen by standard empirical methods such as cross validation or a plug-in rule.

It does not under- or oversmooth and does not use auxiliary or other non-standard

bandwidths. Instead, the method uses the bootstrap to estimate the bias of ĝ.

The bootstrap estimate of the bias has stochastic noise that is comparable in size

to the bias itself. However, combining a suitable quantile of the distribution of

the bootstrap bias estimate with ĝ enables us to obtain a pointwise confidence

band with an asymptotic coverage probability that equals or exceeds 1 − α for

any given α > 0 at all but a user-specified fraction of the possible values of x.

The exceptional points are in regions where the function g has sharp peaks or

troughs that cause the bias of ĝ to be unusually large. These regions are typically
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visible in a plot of ĝ and can also be found through a theoretical analysis. An

asymptotic uniform confidence band that has no exceptional points is obtained

by replacing the bootstrap bias estimate with an upper bound on the estimated

bias.

This paper differs from HH in two important ways: we obtain confidence

bands for g that are uniform in x, whereas HH obtain only pointwise bands; our

bootstrap method is different from that of HH. To avoid complications caused by

the non-smoothness of the quantile objective function, we apply the bootstrap

to the leading term of the asymptotic bias of the quantile regression estimator.

We do not estimate the conditional quantile function from the bootstrap sample.

In contrast, the objective function of a mean-regression model is smooth. This

enables HH to estimate the conditional mean function and its bias directly from

the bootstrap sample.

Methods that use undersmoothing have been described by Bjerve, Doksum

and Yandell (1985); Hall (1992); Hall and Owen (1993); Neumann (1995); Chen

(1996); Neumann and Polzehl (1998); Picard and Tribouley (2000); Chen, Härdle

and Li (2003); Claeskens and Van Keilegom (2003); Härdle et al. (2004); and Mc-

Murry and Politis (2008). Methods based on oversmoothing have been described

by Härdle and Bowman (1988); Härdle and Marron (1991); Hall (1992); Eubank

and Speckman (1993); Sun and Loader (1994); Härdle, Huet and Jolivet (1995);

Xia (1998); and Schucany and Sommers (1977). Calonico, Cattaneo and Farrell

(2016) describe an explicit bias correction method for conditional mean functions

that does not require oversmoothing or an auxiliary bandwidth. It is not known

whether this method can be extended to conditional quantile functions.

There is also a large literature on bootstrap methods for parametric quan-

tile regression models. See, for example, De Angelis, Hall and Young (1993);

Hahn (1995); Horowitz (1998); Feng, He and Hu (2011); Aguirre and Dominguez

(2013); Galvao and Montes-Rojas (2015); and Hagemann (2017).

Section 2 of this paper presents an informal description of our method. The

method is similar in some respects to that of HH for conditional mean functions,

but the non-smoothness of quantile estimators presents problems that are differ-

ent from those involved in estimating conditional mean functions. These require

a separate treatment and modifications of parts of the method of HH. Section 2

also outlines the extension of our method to a heteroskedastic version of model

(1.1). Section 3 presents theoretical results. Section 4 presents simulation re-

sults that illustrate the numerical performance of the method. Conclusions are

in Section 5. The proofs of theorems are in an online supplementary appendix.
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2. Informal Description of the Method

Let {Yi, Xi : i = 1, . . . , n} denote an independent random sample of obser-

vations from the distribution of (Y,X) in model (1.1). Let ĝ(x) denote a local

polynomial nonparametric estimator of based on bandwidth h. Denote the scaled

asymptotic bias and variance of ĝ(x), respectively, by β(x) = limn→∞ E(nh)1/2

{ĝ(x)−g(x)} and σ2
ĝ(x) = limn→∞ (nh)V ar(ĝ(x)). Assume that [ĝ(x)−E{ĝ(x)}]/

σĝ(x)
d→ N(0, 1) as n → ∞. To minimize the complexity of the discussion in

the remainder of this paper, we assume that X is a scalar random variable and

ĝ is a local linear quantile regression estimator. The main results of the paper

continue to apply if X is a vector or ĝ is a local polynomial estimator of odd

degree different from 1. This paper does not treat series estimators. The local

linear quantile estimation procedure is described in Step 1 in Section 2.1. To

avoid boundary effects we restrict attention to a compact set S that is contained

in an open subset of the support of X. Let h denote the bandwidth used in local

linear estimation of g.

If β(x) were known, an asymptotic 1−α0 confidence interval for g(x) would

be

ĝ(x)−
z1−α/2 σĝ(x)

(nh)1/2
≤ g(x) ≤ ĝ(x) +

z1−α/2 σĝ(x)

(nh)1/2
,

where z1−α/2 is the 1 − α/2 quantile of the standard normal distribution, α =

α(x, α0) satisfies

Φ

(
z1−α/2 −

β(x)

σĝ(x)

)
− Φ

(
−z1−α/2 −

β(x)

σĝ(x)

)
= 1− α0, (2.1)

and Φ is the normal distribution function. In applications, β(x) and σĝ(x) are

unknown. Let σ̂ĝ(x) be the estimate of σĝ(x) described in Section 2.1. Let λ̂(x)

denote the bootstrap estimate of β(x)/σĝ(x) obtained in Step 5 of the procedure

described in Section 2.1, and let α̂(x, α0) denote the solution in α to

Φ(z1−α/2 − λ̂(x))− Φ(−z1−α/2 − λ̂(x)) = 1− α0,

For ξ ∈ [0, 1], let α̂ξ(α0) be the ξ quantile of points in the set {α̂(x, α0) : x ∈ S}.
Take ẑ(α0) = z1−α̂ξ(α0)/2. Construct the pointwise confidence band

Bn(α̂ξ(α0)) =

{
(x, y) : ĝ(x)−

ẑ(α0) σ̂ĝ(x)

(nh)1/2
≤ y ≤ ĝ(x) +

ẑ(α0) σ̂ĝ(x)

(nh)1/2

}
.

It is shown in Section 3.3 that Bn has asymptotic coverage probability equal to

or greater than 1− α0, except for a proportion ξ of points x ∈ S. An argument

like that in Section 2.6 of HH shows that the exceptional points occur in regions
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where |g′′(x)| is large. These points typically occur near peaks and troughs of

g(x) and can be identified from a graph of ĝ(x).

The critical value ẑ(α0) = z1−α̂ξ(α0)/2 is greater than z1−α0/2. Therefore,

the confidence band Bn(α̂ξ(α0)) is wider than a band that uses the critical value

z1−α0/2. This enables Bn(α̂ξ(α0)) to accommodate the asymptotic bias of ĝ(x).

The parameter ξ is selected by the user and controls the fraction of points x ∈ S
at which the asymptotic coverage probability of the confidence band Bn(α̂ξ(α0))

is at least 1 − α0. This control is an important advantage of our method over

undersmoothing and explicit bias correction. As is illustrated in Section 4, the

latter two methods have poor coverage accuracy but provide no information

about the extent of this inaccuracy or the ability to control it. At the cost of a

wider confidence band, the fraction of points at which our method undercovers

can be reduced to zero asymptotically by constructing the uniform band described

in Step 7 of Section 2.1.

To construct a uniform confidence band for g, define

λ̂max = max
x∈S

λ̂(x) and λ̂min = min
x∈S

λ̂(x).

Let W1 be the mean-zero Gaussian process defined in Section 3.1, and let t̂U
satisfy

P

(
− t̂U − λ̂min ≤W1

(
x

h

)
≤ t̂U − λ̂max, ∀x ∈ S

)
= 1− α0,

where h is the bandwidth used for local linear quantile estimation of g. It is

shown in Section 3.3 that

BU (α0) ≡
{

(y, x) : ĝ(x)−
t̂U σ̂ĝ(x)

(nh)1/2
≤ y ≤ ĝ(x) +

t̂U σ̂ĝ(x)

(nh)1/2
;x ∈ S

}
is an asymptotic uniform confidence band for g whose coverage probability equals

or exceeds 1− α0.

2.1. The estimation procedure

This section provides a step-by-step explanation of the method for construct-

ing Bn and BU . Steps 1–6 are broadly similar to those of HH, but their imple-

mentation details differ because of differences between the mean-regression model

of HH and the quantile regression model considered here. Step 7 constructs a

uniform confidence band and is new.

Step 1: Local linear estimation of g and estimation of σ2
ĝ . Let K be a kernel

function and h be a possibly random bandwidth. For any real v, let

Kh(v) = K(v/h). Define the check function
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ρτ (v) = v(τ − I(v ≤ 0)),

where 0 < τ < 1 and I is the indicator function. The local linear

estimator of g(x) is ĝ(x) = b̂0, where

(b̂0, b̂1) = arg min
b0,b1

n∑
i=1

ρτ (Yi − b0 − b1(Xi − x))Kh(Xi − x).

Fan, Hu and Truong (1994) and Yu and Jones (1998) describe properties

of this estimator.

To obtain σ̂ĝ(x), let f̂X(x) be a consistent kernel nonparametric es-

timator of fX(x), the probability density function of X at x. Let

ε̃i = Yi − ĝ(Xi) be the residuals from estimating model (1.1), and let

f̂ε(0) be a consistent kernel nonparametric estimator of fε(0), the prob-

ability density of ε at 0. Specifically,

f̂ε(0) = (nhε)
−1

n∑
i=1

Khε
(ε̃i),

where hε is a bandwidth. With

BK =

∫
K2(v) dv,

it is shown in Section 3.2 that the scaled variance of the asymptotic

distribution of ĝ(x) is

σ2
ĝ(x) = (nh)V ar(ĝ(x)) =

τ(1− τ)BK
fX(x){fε(0)}2

.

The scaled variance can be estimated by replacing fX(x) and fε(0) with

their consistent estimators to obtain

σ̂2
ĝ(x) =

τ(1− τ)BK

f̂X(x){f̂ε(0)}2
.

Step 2: Compute centered residuals. Let qn be the τ quantile of the residuals

{ε̃i},

qn = inf

(
q : n−1

n∑
i=1

I(ε̃i ≤ q) ≥ τ
)
.

The centered residuals are ε̂i = ε̃i − qn, and the τ quantile of centered

residuals {ε̂i} is 0.

Step 3: Construct the bootstrap resample. The bootstrap resample is {Y ∗i , Xi :

i = 1, . . . , n}, where Y ∗i = ĝ(Xi) + ε∗i and the ε∗i s are obtained by sam-

pling the ε̂is randomly with replacement. The Xis are not resampled.
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Step 4: Compute the bootstrap estimate of the asymptotic bias of ĝ(x). Let

there be B bootstrap resamples indexed by b = 1, . . . , B. For resample

b, define

T ∗nb(x) = n−1
n∑
i=1

{1− τ−1I(Y ∗i ≤ b̂0 + b̂1(Xi − x))}Kh(Xi − x).

T ∗nb(x) is a bootstrap analog of the first-order condition in equation

(A.8) of the supplementary appendix. Let E∗(T ∗nb) denote the bootstrap

expectation of T ∗nb conditional on the data. Estimate E∗(T ∗nb) by

T̂n(x) = B−1
B∑
b=1

T ∗nb(x).

T̂n(x) converges almost surely to E∗(T ∗nb) and can be made arbitrarily

close to E∗(T ∗nb) by making B sufficiently large. As n→∞, the bias of

(nh)1/2{ĝ(x)−g(x)} converges to β(x) = limn→∞(nh)1/2E{ĝ(x)−g(x)}.
Equation (3.2) gives an analytic expression for β(x). The bootstrap

estimate of β(x) is

β̂(x) = h−1

{
τ

(1− τ)BK

}1/2 σ̂ĝ(x)

{f̂X(x)}1/2
T̂n(x).

In contrast to HH, we do not form a bootstrap estimate of g(x). Instead,

we form a bootstrap estimate of the asymptotic form of E(nh)1/2{ĝ(x)−
g(x)} from the analytic expression for this form. This expression is given

by equation (3.4).

The variance of β̂(x) converges to zero at the same rate as β(x)2. There-

fore, β̂(x) is not consistent for β(x) in the sense that β̂(x)/β(x) does

not converge in probability to one. The methods for finding pointwise

and uniform confidence bands for g take account of this inconsistency.

See Steps 6 and 7 below.

Step 5: Obtain the normalized estimate of the bias and effective significance

level. The normalized bias of ĝ(x) is defined as λ(x) = β(x)/σĝ(x)

and is estimated by λ̂(x) = β̂(x)/σ̂ĝ(x). The effective significance level

at point x, α̂(x, α0) , is the solution in α to the equation

Φ(z1−α/2 − λ̂(x))− Φ(−z1−α/2 − λ̂(x)) = 1− α0.

Step 6: Construct a pointwise confidence band for g. Let ξ ∈ [0, 1]. Let α̂ξ(α0)

be the ξ quantile of points in the set {α̂(x, α0) : x ∈ S}. Define ẑ(α0) =
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z1−α̂ξ(α0)/2. Construct the pointwise confidence band

Bn(α̂ξ(α0)) =

{
(x, y) : ĝ(x)−

ẑ(α0)σ̂ĝ(x)

(nh)1/2
≤ y ≤ ĝ(x) +

ẑ(α0)σ̂ĝ(x)

(nh)1/2

}
.

It is shown in Section 3.3 that the pointwise band Bn[α̂ξ(α0)] covers

g(x) with probability at least 1−α0 except for a proportion ξ of points

x ∈ S. Specifically, for α(x, α0) as in (2.1), let αξ(α0) denote the ξ

quantile of the points {α(x, α0) : x ∈ S}. Define the set

Rξ(α0) = {x ∈ S : α(x, α0) > αξ(α0)}. (2.2)

Then

lim inf
n→∞

P ((x, g(x)) ∈ Bn(α̂ξ(α0))) ≥ 1− α0

for each x ∈ Rξ(α0). Rξ(α0) is the set of points x ∈ S on which the

pointwise confidence band has an asymptotic coverage probability of at

least 1 − α0. It contains a fraction 1 − ξ of points x ∈ S. Specifically,

let ‖S‖ and ‖R‖, respectively, denote the Lebesgue measures of the sets

S and Rξ(α0). Then ‖R‖/‖S‖ = 1− ξ.

Step 7: Construct a uniform confidence band for g. Define

λ̂max = max
x∈S

λ̂(x), (2.3)

λ̂min = min
x∈S

λ̂(x). (2.4)

Let W1 denote the mean-zero Gaussian process defined in Theorem 3.1

in Section 3.1. Let t̂U be the solution in t to

P (−t− λ̂min ≤W1

(
x

h

)
≤ t− λ̂max, ∀x ∈ S) = 1− α0. (2.5)

The asymptotic uniform confidence band is

BU (α0) ≡
{

(y, x) : ĝ(x)−
t̂U σ̂ĝ(x)

(nh)1/2
≤ y ≤ ĝ(x) +

t̂U σ̂ĝ(x)

(nh)1/2
; x ∈ S

}
.

The quantities λ̂max and λ̂min can be computed by replacing S in (2.3)

and (2.4) with a fine grid of equally spaced points. The critical value

t̂U can be computed by replacing S in (2.5) with the grid.

2.2. Heteroskedasticity

A heteroskedastic version of (1.1) is

Y = g(X) + σ(X)ε, P (ε ≤ 0) = τ, (2.6)

where σ(·) is a scale function and ε is independent of X. Identification of σ
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requires normalizing the scale of ε. This is done by setting the interquartile

range (IQR) of ε equal to 1. Then

σ(x) = IQR(Y |X = x).

Let ĝ(x) be the local linear quantile regression estimate of g(x) and σ̂(x) be a

consistent nonparametric estimate of IQR(Y |X = x). The residuals of model

(2.5) are

ε̆i =
Yi − ĝ(Xi)

σ̂(Xi)
.

The centered residuals of (2.6) are as in Step 2 after replacing ε̃i with ε̆i. The

estimate of the scaled asymptotic variance of the estimate of g(x) in (2.6) is

σ̂2
ĝ(x) =

σ̂2(x)τ(1− τ)BK

f̂X(x){f̂ε(0)}2
,

where f̂ε is now based on the ε̆i’s. Bootstrap sampling is done by setting

Y ∗i = ĝ(Xi) + σ̂(Xi)ε
∗
i ,

where the ε∗i ’s are sampled randomly with replacement from the centered ε̆i’s.

Steps 4–7 for construction of pointwise and uniform confidence bands remain as

in Section 2.1 but with the foregoing modifications of σ̂2
ĝ(x) and the bootstrap

sampling procedure. We conjecture that our method can be extended to the

generalization of model (1.1) in which P (ε ≤ 0) = τ is replaced by P (ε ≤ 0|X) =

τ , but we do not analyze this extension here.

3. Theoretical Results

This section presents theorems giving conditions under which the pointwise

and uniform confidence bands constructed in Steps 6–7 of Section 2.1 have the

claimed coverage properties when ĝ is a local linear quantile regression estima-

tor. Theorem 3.1 shows that (nh)1/2{ĝ(x) − g(x)} is approximated sufficiently

accurately by the sum of its asymptotic bias and a mean-zero Gaussian pro-

cess. Theorem 3.2 shows that a similar approximation applies to the bootstrap

bias estimator. These two approximations are combined in Theorem 3.4 to show

that the bootstrap procedure of Section 2.1 yields pointwise confidence intervals

with the coverage probabilities explained in Step 6 of Section 2.1. Theorem 3.5

shows that the pointwise confidence intervals of Theorem 3.4 can be widened to

construct a uniform confidence band.

We need some assumptions:

Assumption 1: (i) The data {Yi, Xi : i = 1, . . . , n} are an independent
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random sample from model (1.1);

(ii) X in (1.1) has compact support;

(iii) ε in (1.1) is independent of X and P (ε ≤ 0) = τ for

some τ ∈ (0, 1).

Assumption 2: (i) The distribution of X is absolutely continuous with

respect to Lebesgue measure with probability density

function fX ;

(ii) fX is bounded away from 0 on supp(X) and twice con-

tinuously differentiable on the interior of supp(X).

Assumption 3: (i) The distribution of ε is absolutely continuous with re-

spect to Lebesgue measure with probability density func-

tion fε;

(ii) fε is twice continuously differentiable and fε(0) > 0.

Assumption 4: (i) The function g in (1.1) is three times continuously dif-

ferentiable on the interior of supp(X);

(ii) ĝ is a local linear quantile regression estimator of g.

(iii) There is a compact set G ∈ R2 such that (g(x), g′(x)) ∈
G for each x.

Assumption 5: The kernel K is a probability density function with support

[−1, 1], symmetric around 0, and twice continuously differ-

entiable on (−1, 1).

Assumption 6: The bandwidth h used to construct ĝ satisfies

(i) h = d̂n−1/5, where d̂ is a function of the data {Yi, Xi :

i = 1, . . . , n} and d̂
p→ d0 as n → ∞ for some finite

constant d0 > 0.

(ii) There exists a finite constant D1 > 0 such that

P (|d̂− d0| > n−D1)→ 0 as n→∞.

(iii) There are constants D2 and D3 such that 0 < D2 <

D3 < 1 and

P (n−D3 ≤ h ≤ n−D2) = 1−O(n−C)

as n→∞ for all finite C > 0.
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Assumption 1 defines the data generation process. Assumptions 2–4 are smooth-

ness assumptions. Assumption 5 specifies standard properties of K. Assumption

6 is satisfied by standard bandwidth choice methods such as cross-validation and

plug-in methods. Under these assumptions, local linear estimates of g obtained

using the random bandwidth h and the deterministic bandwidth h0 = d0n
−1/5

are asymptotically equivalent. See Lemma A.1 in the supplementary appendix.

3.1. Asymptotic approximations to (nh)1/2{ĝ(x) − g(x)} and the boot-

strap bias estimate

The asymptotic coverage probabilities of the pointwise and uniform confi-

dence bands defined in Steps 6 and 7 of Section 2.1 depend on strong asymptotic

approximations to (nh)1/2{ĝ(x)− g(x)} and the bootstrap estimate of E(nh)1/2

{ĝ(x)− g(x)}, as follows.

Theorem 1. Let Assumptions 1–6 hold. If

ψ0(x) =
{τ(1− τ)BK}1/2

fX(x)1/2fε(0)
,

κ2 =

∫
v2K(v)dv,

and h0 = d0n
−1/5, there exists a Gaussian process W1(x) defined on the same

probability space as the data such that E{W1(x)} = 0 for all x ∈ S, E{W1(x)}2 =

1 for all x ∈ S, and for any η > 0

lim
n→∞

P

(
sup
x∈S

∣∣∣∣(nh)1/2{ĝ(x)−g(x)}−
{
d

5/2
0 κ2

2
g′′(x)+ψ0(x)W1

(
x

h0

)}∣∣∣∣ > η

)
= 0,

x ∈ S.

It follows from Theorem 1 that for each x ∈ S,

(nh)1/2{ĝ(x)− g(x)} d→ N(µg, Vg(x)), (3.1)

where

µg =
d

5/2
0 κ2

2
g′′(x), (3.2)

Vg(x) = ψ2
0(x). (3.3)

Moreover, asymptotically,

Eĝ(x)− g(x) =
h2

0κ2

2
g′′(x), (3.4)

(nh0)V ar(ĝ(x)) = σ2
ĝ(x) =

τ(1− τ)BK
fX(x){fε(0)}2

. (3.5)
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Properties (3.1)–(3.5) were obtained previously by Fan, Hu and Truong (1994)

and Yu and Jones (1998).

The quantity (nh0)V ar(ĝ(x)) can be estimated consistently by replacing

fX(x) and fε(0) on the right-hand sides of (3.3) and (3.5) by the consistent

estimators f̂X(x) and f̂ε(0). Bootstrap estimation of E(nh)1/2{ĝ(x)−g(x)} relies

on the following strong approximation.

Theorem 2. Let Assumptions 1–6 hold. Let E∗ denote the bootstrap expectation

conditional on the data. If

A1(x) = τ−1d
5/2
0 fε(0)fX(x),

A2(x) =

{
1− τ
τ

BKfX(x)

}1/2

,

then

(i) For all x ∈ S, and any η > 0

lim
n→∞

P

(
sup
x∈S

∣∣∣∣(nh
)1/2

E∗{T ∗nb(x)}+A1(x)κ2

2
g′′(x)−A2(x)W1

(
x

h0

)∣∣∣∣ > η

)
= 0.

(ii) There exists a Gaussian process ∆(x) such that E{∆(x)} = 0 for all x ∈ S,

E{∆(x)}2 = 1 for all x ∈ [0, 1], and for any η > 0

lim
n→∞

P

(
sup
x∈S

∣∣∣∣λ̂(x)−
{
β(x)

σĝ(x)
+ ∆(x)

}∣∣∣∣ > η

)
= 0, x ∈ S.

For any α ∈ (0, 1) and x ∈ S take

π̂(x, α) = Φ(z1−α/2 − λ̂(x))− Φ(−z1−α/2 − λ̂(x)).

A corollary to Theorem 3.2 is used to establish the asymptotic coverage proba-

bilities of the confidence bands constructed in Steps 6 and 7 of Section 2.1.

Corollary 1. If Assumptions 1–6 hold, then for any η > 0 and 0 < α < 1,

lim
n→∞

P

(
sup
x∈S

∣∣∣∣π̂(x, α)−
{

Φ

(
z1−α/2 −

β(x)

σĝ(x)
−∆(x)

)
− Φ

(
− z1−α/2 −

β(x)

σĝ(x)
−∆(x)

)}∣∣∣∣ > η

)
= 0, x ∈ S.

3.2. Coverage probabilities of confidence bands

This section shows that the pointwise and uniform confidence bands con-

structed in Steps 6 and 7 of Section 2.1 have asymptotic coverage probabilities of

at least 1−α0. We use the following notation. Let α0 ∈ (0, 1/2). Define α̂(x, α0)

as in Step 5. Take T (x, α0) as the solution in T to
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Φ

(
T − β(x)

σĝ(x)
−∆(x)

)
− Φ

(
− T − β(x)

σĝ(x)
−∆(x)

)
= 1− α0,

and A(x, α0) = 2{1− Φ[T (x, α0)]}. Let α(x, α0) be the solution in a to

Φ

(
z1−a/2 −

β(x)

σĝ(x)

)
− Φ

(
− z1−a/2 −

β(x)

σĝ(x)

)
= 1− α0,

and αξ(α0) denote the ξ-level quantile of points in the set {α(x, α0) : x ∈ S}.
Define Rξ(α0) as in (2.2). The following theorem gives the asymptotic coverage

probability of the pointwise confidence band constructed in Step 6.

Theorem 3. If Assumptions 1–6 hold, for all C > 0 and η > 0,

(i) lim
n→∞

P

(
sup

x∈S, |∆(x)|≤C
|α̂(x, α0)−A(x, α0)| > η

)
= 0.

(ii) lim
n→∞

P (α̂ξ(α0) ≤ αξ(α0)) = 1.

(iii) lim inf
n→∞

P
(
{x, g(x)} ∈ Bn(α̂ξ(α0))

)
≥ 1− α0 for each x ∈ Rξ(α0).

Theorem 3.4(iii) shows that the pointwise band Bn[α̂ξ(α0)] covers g(x) with

probability at least 1− α0 except for a proportion ξ of points x ∈ S.

Now consider the uniform confidence band constructed in Step 7 of Section

2.1. It follows from Theorem 3.1 that, up to asymptotically negligible terms

(nh)1/2{ĝ(x)− g(x)}
σĝ(x)

=
β(x)

σĝ(x)
+W1

(
x

h0

)
uniformly over x ∈ S. If λ(x) = β(x)/σĝ(x) were known, an asymptotic uniform

1− α0 confidence band for g would be

−tU ≤ λ(x) +W1

(
x

h0

)
≤ tU ,

where tU is the solution in t to

P

(
− t− λ(x) ≤W1

(
x

h0

)
≤ t− λ(x), ∀ x ∈ S

)
= 1− α0,

If λmax = max
x∈S

λ(x) and λmin = min
x∈S

λ(x), then

P

(
− tU − λmin ≤W1

(
x

h0

)
≤ tU − λmax, ∀ x ∈ S

)
≤ P

(
− tU − λ(x) ≤W1

(
x

h0

)
≤ tU − λ(x), ∀ x ∈ S

)
.

Therefore, asymptotically,

P

(
− tU ≤

(nh)1/2{ĝ(x)− g(x)}
σĝ(x)

≤ tU , ∀ x ∈ S
)
≥ 1− α0 (3.6)
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Table 1. Simulation results for τ = 0.25.

Method n j Prop. with Cov.
Prob. ≥ 0.95

Av. Abs. Error
of Cov. Prob.

Av. Width

Bootstrap method
of Sec. 2.1

100
1 0.76 0.034 1.76
2 0.73 0.022 1.57
3 0.97 0.024 1.26

500
1 0.89 0.049 1.01
2 1.0 0.033 0.83
3 1.0 0.028 0.59

1,000
1 0.92 0.051 0.80
2 0.95 0.032 0.62
3 0.94 0.026 0.44

Undersmooth

100
1 0 0.097 1.24
2 0 0.07 1.18
3 0.03 0.04 1.16

500
1 0.30 0.065 0.68
2 0.22 0.016 0.71
3 0.35 0.01 0.66

1,000
1 0.32 0.062 0.52
2 0.41 0.014 0.57
3 0.4 0.009 0.56

Bias Corr.

100
1 0 0.18 1.38
2 0 0.19 1.37
3 0 0.15 1.31

500
1 0 0.11 1.07
2 0.08 0.052 0.91
3 0.06 0.036 0.078

1,000
1 0 0.068 0.88
2 0.08 0.14 0.81
3 0.09 0.018 0.059

if tU is chosen so that

P

(
− tU − λmin ≤W1

(
x

h0

)
≤ tU − λmax, ∀ x ∈ S

)
= 1− α0.

The quantities λmax and λmin are unknown in applications. A feasible confidence

band can be obtained by replacing them with the bootstrap estimates λmax =

max
x∈S

λ̂(x) and λmin = min
x∈S

λ̂(x). Similarly, the unknown quantities σĝ(x) and h0

can be replaced with σ̂ĝ(x) and h, respectively. The critical value tU is replaced

by t̂U , which is the solution in t to

P

(
− t− λ̂min ≤W1

(
x

h

)
≤ t− λ̂max, ∀ x ∈ S

)
= 1− α0. (3.7)
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Table 2. Simulation results for τ = 0.50.

Method n j Prop. with Cov.
Prob. ≥ 0.95

Av. Abs. Error
of Cov. Prob.

Av. Width

Bootstrap method
of Sec. 2.1

100
1 0.73 0.034 1.64
2 0.76 0.022 1.48
3 0.97 0.024 1.17

500
1 0.89 0.048 0.95
2 1.0 0.035 0.79
3 0.95 0.027 0.56

1,000
1 0.92 0.056 0.74
2 0.97 0.035 0.58
3 0.94 0.029 0.41

Undersmooth

100
1 0 0.075 1.20
2 0 0.053 1.19
3 0.06 0.026 1.17

500
1 0.27 0.021 0.78
2 0.41 0.016 0.62
3 0.51 0.094 0.57

1,000
1 0.49 0.025 0.56
2 0.51 0.011 0.51
3 0.63 0.099 0.43

Bias Corr.

100
1 0 0.14 1.38
2 0 0.12 1.35
3 0 0.092 1.26

500
1 0 0.069 1.01
2 0.11 0.028 0.86
3 0.17 0.019 0.69

1,000
1 0.05 0.038 0.80
2 0.11 0.025 0.63
3 0.20 0.013 0.51

where λ̂max and λ̂min are treated as non-stochastic constants, not random vari-

ables, when calculating the probability on the left-hand side of (3.7). The result-

ing uniform confidence band is

−t̂U ≤
(nh)1/2{ĝ(x)− g(x)}

σ̂ĝ(x)
≤ t̂U , ∀x ∈ S.

The following theorem establishes the asymptotic coverage probability of this

interval.

Theorem 4. If Assumptions 1–6 hold, then

lim inf
n→∞

P

(
− t̂U ≤

(nh)1/2{ĝ(x)− g(x)}
σ̂ĝ(x)

≤ t̂U , ∀x ∈ S
)
≥ 1− α0.
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Table 3. Simulation results for τ = 0.75.

Method n j Prop. with Cov.
Prob. ≥ 0.95

Av. Abs. Error
of Cov. Prob.

Av. Width

Bootstrap method
of Sec. 2.1

100
1 0.76 0.032 1.74
2 0.89 0.023 1.58
3 0.94 0.020 1.20

500
1 0.86 0.045 0.98
2 1.0 0.033 0.78
3 0.91 0.022 0.57

1,000
1 0.86 0.046 0.76
2 0.97 0.035 0.62
3 0.94 0.026 0.42

Undersmooth

100
1 0 0.092 1.20
2 0 0.071 1.10
3 0 0.045 0.90

500
1 0.27 0.056 0.68
2 0.27 0.025 0.62
3 0 0.033 0.45

1,000
1 0.35 0.055 0.52
2 0.32 0.024 0.46
3 0.11 0.028 0.34

Bias Corr.

100
1 0 0.011 1.07
2 0 0.019 1.37
3 0 0.015 1.31

500
1 0 0.068 0.89
2 0.08 0.05 0.91
3 0.06 0.036 0.78

1,000
1 0 0.068 0.89
2 0.08 0.048 0.81
3 0.09 0.018 0.59

The covariance function of W1 can be estimated consistently. See equation

(A.13) in the supplementary appendix. The probability on the left-hand side of

(3.7) can be computed by simulation with arbitrary accuracy by replacing the

covariance function of W1 with its consistent estimate and the continuum S with

a grid of equally spaced points.

4. Numerical Experiments

This section reports the results of a set of Monte Carlo experiments that

illustrate the finite-sample performance of the method described in Section 2.
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Figure 1. Conditional quantile functions. Solid line is g1(x). Long dashes are g2(x).
Short dashes are g3(x).

4.1. Design

Data {Yi, Xi : i = 1, . . . , n} were generated from the models

Y = gj(X) + ε, j = 1, 2, 3,

where

g1(x) = x+ 5φ(10x),

g2(x) =
sin(1.5πx)

1 + 18x2{sgn(x) + 1}
,

g3(x) =
sin(1.5πx)

1 + 2x2{sgn(x) + 1}
,

φ is the standard normal probability density function, and X ∼ U [−1, 1]. The

distribution of ε is N(µτ , 1) for τ = 0.25, τ = 0.5, and τ = 0.75, where µ0.25 =

0.6745, µ0.50 = 0, and µ0.75 = −0.6745. Thus, P (ε ≤ 0) = τ for each value of τ .

The functions gj were used in numerical experiments by HH and other authors.

Graphs of these functions are shown in Figure 1. The function g1 has a sharp

peak and is the most challenging for our method, g2 is less challenging than g1,

and g3 is the smoothest and least challenging.

The sample sizes in the experiments were n = 100, 500, and 1,000. The

kernel function was

K(v) = 0.75(1− v2)I(|v| ≤ 1).

The bandwidth h for local linear estimation of the gjs was chosen using the
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Figure 2a. Coverage probabilities of nominal 95% pointwise confidence bands with g(x) =
x + 5φ(10x) and n = 1,000. Solid line: proposed bootstrap method. Dashes: explicit
bias correction method. Dash-dots: undersmoothing method. Dots: 95% line.

Figure 2b. Coverage probabilities of nominal 95% pointwise confidence bands with
g(x) = sin(1.5πx)/[1 + 18x2{sgn(x) + 1}] and n = 1,000. Solid line: proposed boot-
strap method. Dashes: explicit bias correction method. Dash-dots: undersmoothing
method. Dots: 95% line.

plug-in method of Yu and Jones (1998). Bandwidths for estimating fX(x) and

fε(0) were chosen by Silverman’s rule of thumb. To avoid boundary effects, the

set S was chosen so that its boundaries were at least one bandwidth from the

boundaries of [−1, 1]. This resulted in S = [−0.9, 0.9] for experiments with g1

and g2 and S = [−0.85, 0.85] for experiments with g3. S is narrower for the
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Figure 2c. Coverage probabilities of nominal 95% pointwise confidence bands with g(x) =
sin(1.5πx)/[1 + 2x2{sgn(x) + 1}] and n = 1,000. Solid line: proposed bootstrap method.
Dashes: explicit bias correction method. Dash-dots: undersmoothing method. Dots:
95% line.

experiments with g3 because that function is smoother than g1 and g2 and has

a larger bandwidth. We set α0 = 0.05 and 1 − ξ = 0.95. Pointwise confidence

bands were computed using an equally spaced grid of points x ∈ S with a spacing

of 0.05. The grid spacing was 0.02 for uniform confidence bands. The proportion

of points x at which the coverage probability is at least 0.95 was estimated by

the proportion of grid points at which the coverage probability equals or exceeds

this value. There were 1,000 Monte Carlo replications in each experiment.

We also computed pointwise confidence bands using undersmoothing and the

explicit bias correction method of Schucany and Sommers (1977). There are no

satisfactory empirical methods for choosing an undersmoothing bandwidth or the

auxiliary bandwidth required for explicit bias correction. For undersmoothing,

we set the bandwidth equal to γ1h, where h is the bandwidth selected by the

method of Yu and Jones (1998) and γ1 ≤ 1 is a constant. For explicit bias

correction, we set the auxiliary bandwidth equal to d̂n−γ2/5, where γ2 ≤ 1 is a

constant and d̂ is as in Assumption 6. The values of γ1 and γ2 were chosen to

achieve coverage probabilities of at least 0.95 for as large a proportion of values of

x in the grid as possible. This approach cannot be used in applications and gives

an advantage to undersmoothing and explicit bias correction. Nonetheless, it will

be seen in Section 4.2 that the performance of these methods is poor compared

to that of the method of Section 2.1.
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Table 4. The bootstrap method’s coverage probabilities for g1 when the interval
[−0.05, 0.05] is removed from S.

n τ Prop. with Cov.
Prob. ≥ 0.95

Av. Abs. Error
of Cov. Prob.

Av. Width

100
0.25 0.76 0.020 1.71
0.50 0.79 0.022 1.62
0.75 0.85 0.021 1.75

500
0.25 0.91 0.033 0.92
0.50 1.0 0.039 0.88
0.75 0.94 0.035 0.94

1,000
0.25 0.94 0.034 0.70
0.50 1.0 0.041 0.67
0.75 0.94 0.035 0.71

4.2. Results of the experiments

Tables 1-3 show properties of pointwise confidence bands for τ = 0.25, 0.50

and 0.75, respectively. At all quantiles and sample sizes, the bootstrap method

described in Section 2.1 has much higher proportions of values of x for which

the probability of covering of g(x) exceeds 0.95 than do the undersmoothing and

explicit bias correction methods. When n = 100, the bootstrap method’s pro-

portions exceed 0.70 for j = 1 and 2, and 0.95 for j = 3. When n = 1,000, the

bootstrap method’s proportions exceed 0.92 for all values of j. By contrast, the

proportion of values of x for which undersmoothing achieves a coverage proba-

bility of at least 0.95 is below 0.65 for all values of n and j. The absolute error

in the coverage probability (column 5 of Tables 1-3) is the absolute value of the

difference between the actual coverage probability and the nominal probability

of 0.95. Thus, the absolute error increases when the actual coverage probability

exceeds 0.95, as well as when the actual coverage probability is less than 0.95.

The proportion of values of x for which explicit bias correction achieves

a coverage probability of at least 0.95 is below 0.20 for all values of n and j.

Undersmoothing and explicit bias correction perform poorly despite choosing

the bandwidth for undersmoothing and the auxiliary bandwidth for explicit bias

correction to achieve optimal performance of these methods.

Although confidence intervals based on undersmoothing and explicit bias

correction rarely achieve the nominal coverage probability of 0.95, intervals based

on these methods often have coverage probabilities of at least 0.93 if n = 1,000

and γ1 and γ2 are chosen to maximize the proportions of x values at which the

coverage probability equals or exceeds this value. For example, with g1(x), τ =
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Table 5. Coverage probabilities of uniform confidence bands obtained by the bootstrap
method.

τ n j Cov. Prob.

0.25

100
1 0.84
2 0.94
3 0.95

500
1 0.92
2 0.99
3 0.97

1,000
1 0.94
2 1
3 0.98

0.50

100
1 0.85
2 0.95
3 0.93

500
1 0.95
2 1
3 0.97

1,000
1 0.95
2 1
3 0.98

0.75

100
1 0.86
2 0.96
3 0.96

500
1 0.94
2 1
3 0.97

1,000
1 0.95
2 1
3 0.97

0.50, and undersmoothing, the proportion of x values with coverage probabilities

of at least 0.93 is 0.97. With explicit bias correction, the proportion of x values

with coverage probabilities of at least 0.93 is 0.65. Figure 2 shows the coverage

probabilities obtained by the three methods as functions of x with n = 1,000.

The relatively low proportions of points at which the coverage probability

of the bootstrap method equals or exceeds 0.95 for g1 are due to the sharp

peak of this function in the vicinity of x = 0, which causes the bias of ĝ1 to

be especially large. HH provide a theoretical explanation for why the bootstrap

method performs poorly in regions of unusually high bias. The phenomenon

is illustrated in Table 4, which shows the proportion of points for which the

bootstrap confidence band covers g1(x) with probability exceeding 0.95 when the
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interval [−0.05, 0.05] containing the peak is excluded from S. The proportion of

points for which the coverage probability equals or exceeds 0.95 is at least 0.94

when n = 500 or n = 1,000 except for n = 500 and τ = 0.25, when the proportion

is 0.91. The function g2 has peaks and troughs at x = 0.15 and x = −0.35, but

these are not as sharp as the peak of g1. Consequently, they have little effect on

the coverage probabilities for g2 when n ≥ 500.

Table 5 shows the coverage probabilities of uniform confidence bands ob-

tained with the bootstrap method. The coverage probabilities for g2 and g3 at

all quantiles equal or exceed 0.95 if n ≥ 500 and 0.93 if n = 100. The coverage

probabilities for g1 with n ≥ 500 equal or exceed 0.94 except for n = 500 and

τ = 0.25, when the coverage probability is 0.92.

5. Conclusions

This paper has described a bootstrap method for constructing pointwise and

uniform confidence bands for a conditional quantile function that is estimated

nonparametrically. The method is based on local polynomial estimation and

uses only a bandwidth that can be selected using standard methods such as cross

validation or plug-in. In contrast to other methods for constructing confidence

bands, the bootstrap method does not require bandwidths that under- or over-

smooth the nonparametric function estimator. This is an important advantage

of the bootstrap method, because there are no satisfactory empirical methods

for selecting bandwidths that under- or oversmooth a nonparametric estima-

tor. The bootstrap method presented here is an extension of the method of

Hall and Horowitz (2013) for conditional mean functions to conditional quantile

functions and uniform confidence bands. The results of Monte Carlo experiments

have illustrated the good finite-sample performance of the bootstrap method and

the poor performance of methods based on under- or oversmoothing.

Supplementary Materials

The online supplementary materials provide the proofs of Theorems 3.1 and

3.2, Corollary 3.3, and Theorem 3.4.
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