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Abstract: In various functional regression settings one observes i.i.d. samples of

paired stochastic processes (X,Y ) and aims at predicting the trajectory of Y, given

the trajectory X. For example, one may wish to predict the future segment of a

process from observing an initial segment of its trajectory. Commonly used func-

tional regression models are based on representations that are obtained separately

for X and Y. In contrast to these established methods, often implemented with

functional principal components, we base our approach on a singular expansion of

the paired processes X,Y with singular functions that are derived from the cross-

covariance surface between X and Y. The motivation for this approach is that the

resulting singular components may better reflect the association between X and

Y. The regression relationship is then based on the assumption that each singular

component of Y follows an additive regression model with the singular components

of X as predictors. To handle the inherent dependency of these predictors, we

develop singular additive models with smooth backfitting. We discuss asymptotic

properties of the estimates as well as their practical behavior in simulations and

data analysis.

Key words and phrases: Additive model, cross-covariance operator, functional data

analysis, singular decomposition, smooth backfitting.

1. Introduction

In various regression settings one observes i.i.d. samples of paired stochastic

processes (X,Y ), and is interested in predicting the trajectory of Y , given the

trajectory X. An example of such a function to function regression problem from

nephrology, which will be explored further as an illustration of our methods, fea-

tures longitudinal profiles of various blood proteins, where one wishes to predict

the profile of one protein given the profile of another.

We assume here that both predictors X and responses Y are square inte-

grable random functions on domains S, resp. T , with E(‖X‖2) <∞, E(‖Y ‖2) <
∞, and our goal is to regress Y on X. Predictors X(·) are defined on a compact

domain S and response functions Y (·) on a compact domain T . Key quantities
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are the mean functions

µX(s) = EX(s), µY (t) = EY (t), (1.1)

as well as the auto-covariance and cross-covariance functions

GXX(s1, s2) = cov(X(s1), X(s2)), (1.2)

GY Y (t1, t2) = cov(Y (t1), Y (t2)),

GXY (s, t) = cov(X(s), Y (t)), s, s1, s2 ∈ S, t, t1, t2 ∈ T .

We denote centered processes byXc(s) = X(s)−µX(s), Y c(t) = Y (t)−µY (t), s ∈
S, t ∈ T . The commonly used linear functional regression model for regressing

Y on X is

E{Y (t)|X} = µY (t) +

∫
S
β(s, t)Xc(s) ds, t ∈ T , (1.3)

with a smooth and square integrable regression parameter function β (Ramsay

and Silverman (2005); Morris (2015); Wang, Chiou and Müller (2016)). A popu-

lar implementation of this model, as well as the simpler functional linear model

with scalar response E(Y |X) = µY +
∫
S β(s)Xc(s) ds, is through functional prin-

cipal component (FPC) expansions of both X and Y (Cardot et al. (2003); Yao,

Müller and Wang (2005); Hall and Horowitz (2007)) that are given by

Xc(s) =

∞∑
k=1

ηXkϕXk(s), Y c(t) =

∞∑
m=1

ηY mφY m(t), (1.4)

where ϕXk, φY k, k ≥ 1, are the orthonormal eigenfunctions of the auto-covariance

operators ofX and Y , respectively, and ηXk =
∫
S X

c(s)ϕXk(s)ds, ηY k =
∫
T Y

c(t)

φY k(t)dt are the functional principal components of X and Y . Under certain reg-

ularity conditions, it can be shown that β(s, t) in (1.3) can be represented as a

limit,

β(s, t) =

∞∑
k=1

∞∑
m=1

E(ηXkηY m)

E(η2Xk)
ϕXk(s)φY m(t). (1.5)

An inherent drawback of functional principal component (FPC) based regression

approaches is that they do not take into account the relationship between corre-

lated processes X and Y . While for any regression model with functional predic-

tors some form of dimension reduction is needed, for which the FPC approach

provides a convenient approach, the dimension reduction afforded by FPCs is

likely suboptimal for regression. More specifically, the eigenbasis of X that is

used in (1.5) for the dimension reduction step may not provide an efficient rep-

resentation of the regression parameter function β, as it ignores the dependency
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between X and Y . Other functional regression models such as functional additive

models (FAM) (Müller and Yao (2008)) that utilize the FPCs of the predictor

processes share the same weakness.

This motivates us to investigate an additive flexible model that uses singular

components instead of principal components as arguments for the additive func-

tions. Functional singular components are based on a functional singular value

decomposition (Yang, Müller and Stadtmüller (2011)) and thus are derived from

the cross-covariance GXY rather than the auto-covariance GXX as is the case

for FPCs. Using singular components of predictor processes X as arguments for

additive modeling is expected to yield more informative representations (Zhang

and Wang (2016)). The price to be paid is that the singular components for

predictor processes must be considered to be dependent. This is in contrast to

FPCs, which are always uncorrelated and are independent in the Gaussian case.

If the predictor FPCs are independent, this makes it possible to implement FAM

in a series of simple smoothing steps (Müller and Yao (2008)).

A consequence of the dependence of the singular components is that fitting

a model that is additive in the singular components cannot be implemented in

the same fashion as FAM and requires extra scrutiny to take the dependence

of the predictors into account. In recent work of Zhang and Wang (2016), the

overall goal is essentially the same as in the present paper, namely to develop an

additive regression model for functional data that is additive in the singular com-

ponents of predictor processes. However, while the case of dependent predictors

is briefly mentioned, a crucial assumption for both theory and implementation

in Zhang and Wang (2016) is that the predictor components are independent.

Under this assumption, the FAM approach is applicable and no backfitting or

other consideration of dependence of predictor scores is needed. Contrary to the

independence of the FPCs in the Gaussian case, the independence assumption

generally does not hold for singular components as predictors, irrespective of the

type of predictor process. Even uncorrelatedness of the singular components can-

not be assumed to hold in general; it requires special conditions that we discuss in

more detail in Section A.1 of the Supplementary Materials and that are unlikely

to be satisfied in general. Therefore, if one aims to develop a model that is addi-

tive in the singular components, one needs to confront the dependency issue for

the predictors, as we do here. Similar considerations apply when one considers

additive models for the situation where one has more than one predictor process

(Han, Müller and Park (2018)).

To take the dependence of the singular predictors properly into account,
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we develop a smooth backfitting approach for fitting singular additive models

(SAM). The idea of smooth backfitting was introduced by Mammen, Linton

and Nielsen (1999) and studied further by Mammen and Park (2005, 2006); Yu,

Park and Mammen (2008); Lee, Mammen and Park (2010, 2012), who consid-

ered structural models for cross-sectional data. More recently, Zhang, Park and

Wang (2013) applied smooth backfitting to an additive model for longitudinal

data. As we do not directly observe the covariates in our model, which are the

singular components, an additional technical challenge is to assess the effect of

estimating the singular components within the framework of smooth backfitting,

for which we adapt arguments of Han, Müller and Park (2018). Ordinary back-

fitting and additive fitting by regression splines have several disadvantages. For

example, splines require one to fit a very high-dimensional model, which makes

this approach less accessible to theoretical analysis, while ordinary backfitting

requires a strong set of conditions for convergence (including near independence

of predictors, the singular components in our case) and the estimators are not

well defined since they are given as the limit of the ordinary backfitting iteration.

The marginal integration method suffers from the curse of dimensionality. Our

smooth backfitting estimators are defined under much weaker conditions without

near independence and, importantly, smooth backfitting is amenable to theoreti-

cal analysis for the complex situation that we face since predictors are not known

but must be estimated.

We review Peter Hall’s contributions to functional regression and the con-

nection of his work to our approach in Section 2, followed by a brief review of

functional singular components and introduction to the singular additive model

(SAM) in Section 3. Estimation of the functional singular components and ad-

ditive functions in SAM with smooth backfitting is the topic of Section 4, with

consistency results in Section 5. In Section 6 we report the results of a simulation

study that shows the advantages of using SAM in comparison to a FPCA based

linear model implementation, and in Section 7 we present a data illustration for a

data set from nephrology, followed by a brief discussion in Section 8. Theoretical

derivations and proofs are provided in an online Supplement.

2. Peter Hall and Functional Regression

We dedicate this article to the memory of Peter Hall. The work we re-

port here is closely related to his research in functional linear models and func-

tional principal component analysis (FPCA). Peter was a leader in nonparamet-



SINGULAR ADDITIVE MODELS 2501

ric statistics, and he contributed to many areas, notably the bootstrap, the area

where he made his name in the earlier stages of his career. In his later years, he

wrote a substantial body of influential papers in Functional Data Analysis (FDA)

and was a major force in the rapid development of this area since 2006 (Müller

(2016)). His first paper in FDA appeared in 1998, with a focus on the estimation

of modes of the distribution of functional data (Gasser, Hall and Presnell (1998)).

FDA is among the last research areas in which Peter made seminal contri-

butions before his premature death in early 2016. It was a good fit for him, as

it presents complex theoretical issues at the interface of smoothing, multivariate

analysis, functional analysis and stochastic processes in Hilbert spaces (Hsing

and Eubank (2015)), all fields in which Peter had accumulated substantial expe-

rience and a large and sophisticated toolbox. FDA presented (and still presents)

challenging problems that enabled Peter and his various collaborators to solve

some tough problems. Peter was a dedicated problem solver and his productivity

was phenomenal. He usually wrote a paper in record time, sometimes substitut-

ing the original problem for one that was solvable, and often deriving results and

writing the paper in one step.

Peter’s major contributions to FDA were in the subareas of FPCA, functional

linear regression and single index models, as well as densities and modes for func-

tional data and functional classification. In the area of functional linear models,

Peter and his collaborators focused on the case of a continuous scalar response

variable coupled with a functional predictor, distinguishing between the predic-

tion problem where the goal is to estimate linear predictors θ =
∫
β(s)X(s) ds

that correspond to projections on regression slope functions β for the scalar re-

sponse case and the regression problem. In the latter, the goal is to estimate

the function β. In this work, Peter and his collaborators adopted a traditional

approach and used FPC expansions of the predictors to expand the function β

in the eigenbasis (Cai and Hall (2006); Hall and Horowitz (2007); Delaigle, Hall

and Apanasovich (2009)).

This led to precise convergence rates and shed light on the differences between

prediction and estimation tasks in well defined scenarios, where prediction was

revealed to be an easier task, associated with faster rates of convergence, relative

to the estimation of the regression parameter function β, a consequence of the

smoothing effect of the integral in the predictors θ.

Peter and co-authors contributed also to other aspects of functional

regression models with linear predictors, specifically single index models

(Chen, Hall and Müller (2011)), predictor component selection (Hall and Yang
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(2010)) and domain selection for functional predictors (Hall and Hooker (2016)).

Peter’s paper with Yang (Hall and Yang (2010)) is especially relevant for our

approach. In addition to developing theory for the cross-validation choice of

the number of principal components to be included in a functional regression,

this paper contains a nice discussion of the pros and cons of the FPCA-based

implementation of functional linear models, as the FPCs are only derived from

predictor processes and are not influenced in any way by the responses, which

can be a downside.

The method we discuss here is based on singular components that are derived

from the covariance of X and Y and therefore reflect the dependence between

predictor and response processes. Also related to our approach is the partial least

squares method that has been developed for the case of functional predictors in

Delaigle and Hall (2012). Partial least squares is notoriously difficult to ana-

lyze, due to its iterative nature, which makes the analysis of the functional case

particularly complex. A point of connection with the singular additive model

that we study here is that partial least squares also aims to maximize covariance

between predictor and response, rather than maximizing correlation, as basic

linear regression does. This approach has the major benefit that it avoids the

inverse problem associated with functional linear regression (Yang, Müller and

Stadtmüller (2011)).

3. Singular Components and Singular Additive Model

To define the singular components for pairs of random functions (X,Y ), we

discuss special linear operators in Hilbert spaces L2(S) and L2(T ). Specifically,

singular decompositions are based on auto-covariance operators CXX and CY Y
and cross-covariance operators CXY and CY X as follows (Gualtierotti (1979);

Preda and Saporta (2005); Yang, Müller and Stadtmüller (2011)):

CXX :L2(S)→L2(S), f 7→g, g(s)=

∫
S
CXX(s, t)f(t)dt, CXX(s, t)=E{Xc(s)Xc(t)},

CY Y :L2(T )→L2(T ), f 7→g, g(s)=

∫
T
CY Y (s, t)f(t)dt, CY Y (s, t)=E{Y c(s)Y c(t)},

CXY :L2(T )→L2(S), f 7→g, g(s)=

∫
T
CXY (s, t)f(t)dt, CXY (s, t)=E{Xc(s)Y c(t)},

CY X :L2(S)→L2(T ), f 7→g, g(s)=

∫
S
CY X(s, t)f(t)dt, CY X(s, t)=E{Y c(s)Xc(t)}.

Here CY X is the adjoint operator of CXY , while the compound operators

AXYX = CXY ◦ CY X and AY XY = CY X ◦ CXY are self-adjoint Hilbert-Schmidt
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operators with L2-kernels

AXYX(s, t) =

∫
T
CXY (s, u)CY X(u, t) du =

∫
T
CXY (s, u)CXY (t, u) du, (3.1)

AY XY (s, t) =

∫
S
CY X(s, u)CXY (u, t) du =

∫
S
CXY (u, s)CXY (u, t) du . (3.2)

The operators AXYX and AY XY have a discrete spectrum with shared eigen-

values σ21 ≥ σ22 ≥ · · · ≥ 0 and orthonormal eigenfunctions φ1, φ2, . . . for AXYX
and ψ1, ψ2, . . . for AY XY , respectively, which satisfy φk = (1/σk)CXY (ψk) , k =

1, 2, . . . . The φj and ψj are the singular functions and the σj are the singular

values, for j ≥ 1.

The singular functions usually will form genuine subspaces of L2, that might

be finite-dimensional, depending on the nature of the relation between X and

Y , with the unexplained parts of the infinite-dimensional processes X and Y

contained in remainder processes νX and νY as in (3.5) below; these remainder

processes are unrelated to the regression relation to the extent it is determined

by CXY . The decomposition of both predictor and response processes into a part

that is spanned by M singular functions and a second part that corresponds to

the remainder process motivates to model regression relations between X and Y

by using only the first M singular components, where we make the assumption

that M is finite but unknown. So while the functions X and Y are infinite-

dimensional as is commonly assumed in FDA, the regression relation is assumed

to only involve finitely many singular components.

If the cross-covariance operators are of rank M , where M < ∞, we obtain

the representations (Yang, Müller and Stadtmüller (2011)),

CXY (f) (t) =

M∑
k=1

σk〈f, ψk〉φk(t), t ∈ S,

CY X(f) (t) =

M∑
k=1

σk〈f, φk〉ψk(t), t ∈ T , (3.3)

whence

sup
‖u‖=‖v‖=1

cov(〈u,X〉, 〈v, Y 〉) = σ1,

and the maximum is attained at u = φ1 and v = ψ1. Repeating the maxi-

mization on sequences of orthogonal complements generates the singular values

(σ1, σ2, . . . ) and associated singular functions uk = φk; vk = ψk, k = 1, 2, . . . ,

leading to representations of cross-covariance surfaces
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CXY (s, t) =

M∑
k=1

σkφk(s)ψk(t),

CY X(s, t) =

M∑
k=1

σkψk(s)φk(t), (3.4)

The Hilbert-Schmidt theorem then implies the singular decompositions

X(s) = X̃(s) + νX(s), X̃(s) = µX(s) +

M∑
m=1

ζmφm(s),

Y (t) = Ỹ (t) + νY (t), Ỹ (t) = µY (t) +

M∑
k=1

ξkψk(t), (3.5)

where νX ∈ L2 is in the kernel of the operator AXYX , a function with AXYX(νX)

= 0, and analogously νY ∈ L2 is in the kernel of AY XY . The random functions

νX and νY are remainder functions with zero means and zero cross-covariance

that are unrelated to the cross-covariance operators and cannot be represented

by the singular functions φj and ψj .

The singular components of X are ζm =
∫
Xc(s)φm(s)ds, 1 6 m 6 M,

the coefficients of X with respect to its expansion in the orthonormal functions

{φm}1≤m≤M and ξk =
∫
Y c(t)ψk(t)dt, 1 6 k 6 M, the components of Y with

respect to its expansion in the orthonormal functions {ψk}1≤k≤M . From (3.4),

one finds

Eζm = 0, Eξk = 0, E(ζmξk) = 0 for m 6= k, and E(ζmξm) = σm. (3.6)

While the remainder processes νX and νY are uncorrelated, νX is uncor-

related with the ξk and νY is uncorrelated with the ζj , we make the stronger

assumption that νX is independent of Y and νY is independent of X. We obtain

E{Y (t)|X} = E{Ỹ (t)|X}, while νX plays the role of an additional error in the

predictor that is unrelated to the response. Like in some errors-in-variables re-

gression approaches it is then more meaningful to replace the original regression

target E(Y |X) by the target E(Y |X̃), a model where predictors are not contam-

inated by unrelated errors. Here it is fortuitous that denoised predictors X̃ can

be readily obtained from the data by the singular representation. This provides

the motivation to consider the functional regression model E(Y |X̃) as our target,

which can be written as

E(Y |ζ1, . . . , ζM ) = µY +

M∑
k=1

E(ξk|ζ1, . . . , ζM )ψk. (3.7)
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We further postulate an additive structure for each response process singular

component. With M included components, this leads to the model

E(ξk|ζ1, . . . , ζM ) = fk0 +

M∑
j=1

fkj(ζj), k = 1, . . . ,M, (3.8)

where fk0 is an unknown constant and fkj for 1 ≤ j ≤M are unknown univariate

functions, so that

E{Y (t)|ζ1, . . . , ζM} = µY (t) +

M∑
k=1

fk0 +

M∑
j=1

fkj(ζj)

ψk(t). (3.9)

Let Ikj denote given intervals on which one aims to estimate the component

functions fkj . The univariate functions fkj at (3.8) are then subject to the

constraints ∫
I
fkj(uj)p(u) du = 0, 1 ≤ j, k ≤M, (3.10)

which are necessary for identifiability of the fkj , where I = Ik1×· · ·× IkM and p

is the joint density function of (ζ1, . . . , ζM ). The constant fk0 and the component

functions fkj depend on the intervals Ikj and the associated constraints in such

a way that they differ only by a constant if the intervals and constraints change.

Importantly, their sum fk0 +
∑M

j=1 fkj(ζj) does not depend on the choice of these

intervals and I. To see this, express E(ξk|ζ1, . . . , ζM ) as f∗k0 +
∑M

j=1 f
∗
kj(ζj) with

f∗kj satisfying
∫∞
−∞ f

∗
kj(uj)pj(uj) = 0 for all 1 ≤ j ≤ M , where the pj denote the

marginal densities of ζj . Expressing E(ξk|ζ1, . . . , ζM ) also as fk0 +
∑M

j=1 fkj(ζj)

with fkj now satisfying
∫
I fkj(uj)p(u) du = 0 for all 1 ≤ j ≤M , it holds that

fkj(uj) = f∗kj(uj)−
{∫

I
p(u) du

}−1 ∫
I
f∗kj(uj)p(u) du, 1 ≤ j ≤M,

fk0 = f∗k0 +

M∑
j=1

{∫
I
p(u) du

}−1 ∫
I
f∗kj(uj)p(u) du.

4. Estimation

We assume throughout that the sample of realizations (Xi, Yi)i=1,...,n of func-

tional processes X and Y consists of random trajectories that are either fully

observed, or are sampled at a dense and regular grid. In the latter case, the

estimates described in the following require an additional interpolation step.

4.1. Estimation of singular functions and singular components

For the estimation of the singular values and singular functions {(σj , φj , ψj) :
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1 ≤ j < M} as well as singular components ζj and ξk, the starting point are

cross-sectional averages to estimate the cross-covariance surfaces,

ĈY X(s, t) = n−1
n∑
i=1

{Yi(s)− µ̂Y (s)}{Xi(t)− µ̂X(t)},

ĈXY (s, t) = n−1
n∑
i=1

{Xi(s)− µ̂X(s)}{Yi(t)− µ̂Y (t)},

where µ̂X(t) = n−1
∑n

i=1Xi(t) and µ̂Y (t) = n−1
∑n

i=1 Yi(t). These are the build-

ing blocks for the estimation of singular functions and singular values. Then

the shared eigenvalues and eigenfunctions of the integral operators ÂXYX and

ÂY XY , based on estimated kernels ÂXYX(s, t) =
∫
T ĈXY (s, u)ĈY X(u, t) du and

ÂY XY (s, t) =
∫
S ĈY X(s, u)ĈXY (u, t) du, respectively, are obtained by numerical

eigen-decomposition of suitably discretized versions of these estimated kernels.

The resulting shared eigenvalue estimates σ̂21 ≥ σ̂22 ≥ · · · , which correspond to

the singular value estimates, are then ordered in declining order.

Denoting the corresponding orthonormal eigenfunctions of ÂXYX by φ̂j , and

those of ÂY XY by ψ̂j , the resulting singular components are (σ̂j , φ̂j , ψ̂j). The

singular components ζij =
∫
Xc
i (s)φj(s)ds and ξij =

∫
Y c
i (s)ψj(s)ds for Xi and

Yi are then obtained by numerically approximating the integrals ζ̂ij =
∫
{Xi(s)−

µ̂X(s)}φ̂j(s)ds and ξ̂ij =
∫
{Yi(s)− µ̂Y (s)}ψ̂j(s)dt.

4.2. Estimation in the singular additive model

We implement the smooth backfitting idea of Mammen, Linton and Nielsen

(1999) to fit model (3.8) for each singular component ξk of Y , aiming to solve

the integral equations

fkj(uj) = E(ξk|ζj = uj)−
M∑
l 6=j

∫
fkl(ul)

pjl(uj , ul)

pj(uj)
dul, 1 ≤ j ≤M, (4.1)

where pj and pjl are the marginal and joint density functions, respectively, of

ζj and (ζj , ζl). The main idea is to estimate the unknown functions in (4.1),

E(ξk|ζj = uj), pjl(uj , ul) and pj(uj), plug the estimators into (4.1) and then

solve the estimated integral equations.

The singular components ζj will usually have unbounded supports. We con-

sider estimating the additive regression function E(ξk|ζ1, . . . , ζM ) at (3.8) only

on a compact subset of the support of ζ = (ζj : 1 ≤ j ≤ M), however. This

is in the same spirit as the usual practice in nonparametric regression, namely

to estimate the nonparametric regression function on a compact set. Since the
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predictors ζij and ξik are not available but need to be estimated, and since the

domains where the fkj are estimated are different from the supports of ζj , it is

necessary to modify the existing methodology and theory of smooth backfitting

for the current setting.

Let Ikj denote the intervals where one wants to estimate the component

functions fkj . The univariate functions fkj at (3.8) are subject to the constraints∫
I
fkj(uj)p(u) du = 0, 1 ≤ j, k ≤M, (4.2)

which are necessary for identifiability of fkj , where I = Ik1 × · · · × IkM and p

denotes the joint density function of (ζ1, . . . , ζM ). Here the constant fk0 and the

component functions fkj change if the intervals Ikj in the constraints change.

However, the corresponding component functions differ from each other only by

constants, and their sum fk0 +
∑M

j=1 fkj(ζj) does not depend on the choice of I

as was demonstrated at the end of Section 3.

In the following, we omit the index k for the singular component of Y in Ikj ,

writing Ij ≡ Ikj . With pIj (uj) = {
∫
I p(u) du}−1

∫
I−j

p(u) du−j , I−j =
∏
l 6=j Il,

(4.2) is equivalent to∫
Ij

fkj(uj)p
I
j (uj) duj = 0, 1 ≤ j ≤M. (4.3)

In the current setting one cannot adopt the usual constraints
∫∞
−∞ fkj(u)

pj(u) du = 0, where pj is the marginal density of ζj , since this requires the es-

timation of fkj on the entire support of ζj . One can employ constraints other

than (4.2), for example,
∫
Ij
fkj(u)wj(u) du = 0 for some known weight func-

tions wj . One technical advantage of the latter is that it leads to the constraint∫
Ij
f̂kj(u)wj(u) du = 0 for the estimator f̂kj that uses the same known weight

wj , so that one need not carry out an additional asymptotic analysis of the con-

straints for the estimators. Because of this advantage, the latter approach was

adopted in Lee, Mammen and Park (2010, 2012). In contrast, (4.3) leads to a

constraint for the estimator whereby the density pIj is replaced by an estimated

density. This requires asymptotic analysis of the effects of estimating pIj on the

statistical properties of the estimator of fkj . Nevertheless, we choose the con-

straint (4.3) since it is natural and yields simpler forms for fk0 and its estimator.

The methods and theory that we describe below can be modified accordingly if

one uses a different constraint.

To derive an analogue of (4.1), we define pI0 =
∫
I p(u) du and pIjl(uj , ul) =∫

I−jl
p(u) du−jl/p

I
0, where u−jl is the vector u with (uj , ul) deleted and I−jl =
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l′ 6=j,l Il′ . Then

fkj(uj) =
1

pI0 · pIj (uj)

∫
I−j

E(ξk|ζ = u)p(u) du−j − fk0
(4.4)

−
M∑
l 6=j

∫
Il

fkl(ul)
pIjl(uj , ul)

pIj (uj)
dul, 1 ≤ j ≤M,

where fk0 =
∫
I E(ξk|ζ = u)p(u) du/pI0 under the constraints (4.3). For the esti-

mation of the integral equation (4.4), if the singular components ζij and ξik were

available, we could use these for solving the backfitting equation, in which case

the asymptotics would be a straightforward extension of the existing theory of

smooth backfitting. Since the singular functions φj and ψk are also unknown,

we replace them by corresponding estimators as defined in Section 4.1. A major

technical challenge is to find suitable bounds to control the effect of estimating

the singular components ζij and ξik on the estimation of the additive functions

fkj .

Define a scaled kernel function

Khj
(u, v) = I(u ∈ Ij)

Khj
(u− v)∫

Ij
Khj

(t− v) dt
(4.5)

whenever
∫
Ij
Khj

(t− v) dt 6= 0, and Khj
(u, v) = 0 otherwise, where Khj

(u− v) =

h−1j K(h−1j (u− v)) for a baseline kernel K, and a bandwidth hj . Observing that

pIj and pIjl are conditional densities of ζj and (ζj , ζl), respectively, given that the

event ζ ∈ I occurs, suggests the estimates

p̂Ij (u) =
n−1

∑n
i=1Khj

(u, ζ̂ij)I(ζ̂i ∈ I)

p̂I0
,

(4.6)

p̂Ijl(u, v) =
n−1

∑n
i=1Khj

(u, ζ̂ij)Khl
(v, ζ̂il)I(ζ̂i ∈ I)

p̂I0
,

where p̂I0 = n−1
∑n

i=1 I(ζ̂i ∈ I) and I is the indicator. The definition of the scaled

kernel function entails∫
Ij

p̂Ij (u) du = 1,

∫
Il

p̂Ijl(u, v) dv = p̂Ij (u).

We also estimate fk0 by f̂k0 = n−1
∑n

i=1 ξ̂ikI(ζ̂i ∈ I)/p̂I0, and the first term on

the right hand side of (4.4) by

f̃kj(u) =

{
n−1

n∑
i=1

Khj
(u, ζ̂ij)I(ζ̂i ∈ I)

}−1
n−1

n∑
i=1

ξ̂ikKhj
(u, ζ̂ij)I(ζ̂i ∈ I). (4.7)

Our smooth backfitting estimator (f̂kj : 1 ≤ j ≤ M) of (fkj : 1 ≤ j ≤ M) is
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defined as the solution of the backfitting system of equations

f̂kj(u) = f̃kj(u)− f̂k0 −
M∑
l 6=j

∫
Il

f̂kl(v)
p̂Ijl(u, v)

p̂Ij (u)
dv, 1 ≤ j ≤M, (4.8)

subject to the constraints∫
Ij

f̂kj(u)p̂Ij (u) du = 0, 1 ≤ j ≤M. (4.9)

An iteration scheme to obtain the solution of the equation (4.8) starts with

an initial tuple (f̂
[0]
kj : 1 ≤ j ≤ M), updating (f̂

[r]
kj : 1 ≤ j ≤ M) in the rth cycle

by

f̂
[r]
kj (u) = f̃kj(u)− f̂k0 −

j−1∑
l=1

∫
Il

f̂
[r]
kl (v)

p̂Ijl(u, v)

p̂Ij (u)
dv

(4.10)

−
M∑

l=j+1

∫
Il

f̂
[r−1]
kl (v)

p̂Ijl(u, v)

p̂Ij (u)
dv.

Once the estimators of all components are in hand, we predict the response

process Y by

Ŷ (t) = µ̂Y (t) +

M∑
k=1

M∑
j=1

f̂kj(ζ̂j)ψ̂k(t). (4.11)

We demonstrate in Section 5 that with probability tending to one the backfitting

equation (4.8) has a unique solution and the iterative algorithm (4.10) converges

to the solution exponentially fast, under weak conditions.

5. Theoretical Results

5.1. Consistency of the singular functions and singular components

The convergence rates of the estimators of the singular functions φ̂j and ψ̂j
and of the singular components are key auxiliary results and are based on

E‖ÂXYX −AXYX‖op = O(n−1/2), E‖ÂY XY −AY XY ‖op = O(n−1/2), (5.1)

where ‖ · ‖op denotes the operator norm. These results hold if E‖X‖2‖Y ‖2 <∞.

Under the additional assumptions that the eigenvalues σ21, . . . , σ
2
j+1 are separated

and that E‖X‖2α‖Y ‖2α <∞ for some α ≥ 2, properties (5.1) ultimately lead to

the following results for the maximal errors of the estimated singular components,

max
1≤i≤n

|ζ̂ij − ζij | = Op(n
−(α−1)/2α), max

1≤i≤n
|ξ̂ij − ξij | = Op(n

−(α−1)/2α), (5.2)

with further details provided in Section A.2 of the Supplementary Materials.
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5.2. Consistency of the estimated singular additive model

Without loss of generality, assume that Ij = [0, 1] for all 1 ≤ j ≤ M and

let p
(1)
j (u) = ∂p(u)/∂uj with f ′kj , f

′′
kj , respectively, denoting first and second

derivatives of fkj . Define

β̃kj(u) =

∫
v2K(v) dv

M∑
l=1

c2lE

{
f ′kl(ζl)

p
(1)
l (ζ)

p(ζ)

∣∣∣ζj = u, ζ ∈ I

}
,

τ2kj(u) =
1

pI0p
I
j (u)

c−1j Var(ξk|ζj = u, ζ ∈ I)

∫
K(v)2 dv,

βkj(u) = β∗kj(u) +
1

2
c2jf
′′
kj(u)

∫
u2K(u) du,

where constants cj are as in condition (A2) below, and the tuple (β∗kj : 1 ≤ j ≤
M) is the solution of the system of equations

β∗kj(u) = β̃kj(u)−
M∑
l 6=j

∫
Il

β∗kl(v)
pIjk(u, v)

pIj (u)
dv, 1 ≤ j ≤M,

subject to the constraints∫ 1

0
β∗kj(u)pIj (u) du = c2j

∫ 1

0
f ′kj(u)

∂

∂u
pIj (u) du

∫
u2K(u) du.

We need the following assumptions.

(A1) The baseline kernel function K is bounded, has compact support [−1, 1], is

symmetric around zero, differentiable and its derivative is Lipschitz contin-

uous.

(A2) The bandwidths hj satisfy n1/5hj → cj for some positive constants cj .

(A3) The joint density p of ζ is bounded away from zero and infinity on I.

(A4) The additive functions fkj are twice continuously differentiable and the

densities pj and pjk are (partially) continuously differentiable on [0, 1].

(A5) E|ξk|c <∞ for c > 5/2 and Var(ξk|ζj = ·, ζ ∈ I) are continuous on [0, 1].

(A6) E‖X‖2α < ∞ and E‖Y ‖2α < ∞ for some α > 5 and the eigenvalues

σ21, . . . , σ
2
M+1 are separated.

Assumptions (A1)–(A4) are widely assumed in kernel smoothing theory. The

moment condition (A5) is also typical for response variables in regression models,

which is ξk in our case, while (A6) is used to prove (5.2) for α > 5, which entails
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that both max1≤i≤n |ζ̂ij − ζij | and max1≤i≤n |ξ̂ij − ξij | are of smaller order than

the univariate rate n−2/5.

Theorem 1. Assume (A1)–(A6). Then, (i) with probability tending to one, there

exists a unique solution (f̂kj : 1 ≤ j ≤M) of (4.8) subject to the constraints (4.9);

(ii) there exist constants 0 < γ < 1 and c > 0 such that with probability tending

to one∫ 1

0

{
f̂
[r]
kj (u)− f̂kj(u)

}2
pIj (u) du ≤ c · γ2r

1 +

M∑
j=1

∫ 1

0
f̂
[0]
kj (u)2pIj (u) du

 ;

(iii) for a given vector (u : 0 < uj < 1, 1 ≤ j ≤ M), the estimators f̂kj(uj) for

1 ≤ j ≤M are asymptotically independent and

n2/5
{
f̂kj(uj)− fkj(uj)

}
d−→ N

(
βkj(uj), τ

2
kj(uj)

)
.

If the true singular components ζij and ξik are used in the estimators f̃kj , p̂
I
j

and p̂Ijl, then Theorem 1 is a straightforward extension of the existing theory of

smooth backfitting, as one only needs to take care of the truncation I(ζ̂i ∈ I) in

f̃kj , p̂
I
j and p̂Ijl. Thus, the main step in the proof of Theorem 1 is to show that the

estimation of the singular components ζij and ξik has a negligible effect on the

convergence of f̂
[r]
kj and on the first-order asymptotic properties of the estimators

f̂kj . The proof of the theorem is in Section A.3 of the Supplementary Materials.

6. Simulation Results

We generated paired random processes Xi, Yi with given singular components

by

Xi(s) =

K∑
j=1

ζijφj(s) + µx(s) and

Yi(t) =

K∑
j=1

ξijψj(t) + µy(t), s ∈ S = [0, S], t ∈ T = [0, T ],

with K = 4, S = 10, T = 5 and {φj(s), ψj(t)}, j = 1, . . . , 4, s ∈ S, t ∈ T , chosen

as Fourier basis with φ1(s) =
√

2/S sin(2πs/S), φ2(s) = −
√

2/S cos(4πs/S),

φ3(s) =
√

2/S sin(6πs/S), φ4(s) = −
√

2/S cos(8πs/S), µx(s) = sin(s) + s, and

ψ1(t) = −
√

2/T cos(2πt/T ), ψ2(t) =
√

2/T sin(4πt/T ), ψ3(t) = −
√

2/T cos(6πt/T ),

ψ4(t) =
√

2/T sin(8πt/T ), µy(t) = sin(t) + t. The random predictor vector

ζ = {ζj}, j = 1, . . . , 4, was generated by a normal distribution with zero mean

and covariance matrix
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cov(ζ) =


16 6 2 −2

6 8 3 1

2 3 4 1.5

−2 1 1.5 2

 ,
and the vector of response coefficients ξ = {ξj}, j = 1, . . . , 4, using the ad-

ditive functions f11(x) = −1.98 − 0.11x + 0.12x2, f12(x) = −0.58 + 0.13x +

0.07x2, f13(x) = −0.30+0.11x+0.08x2, f14(x) = 2.03+0.16x−1.01x2, f21(x) =

−1.85 + 0.08x+ 0.12x2, f22(x) = 1.35 + 0.11x−0.17x2, f23(x) = −0.26−0.12x+

0.07x2, f24(x) = 0.04 + 0.47x− 0.02x2, f31(x) = 0.12 + 0.04x− 0.01x2, f32(x) =

1.10 + 0.14x− 0.14x2, f33(x) = −0.81− 0.71x+ 0.20x2, f34(x) = 0.05 + 0.28x−
0.02x2, f41(x) = −0.79+0.06x+0.05x2, f42(x) = 0.08−0.01x2, f43(x) = −0.12+

0.20x+ 0.03x2, f44(x) = −0.32 + 0.14x+ 0.16x2. The random coefficient vectors

ξi for the i-th subject were then obtained as ξik =
∑4

j=1 fkj(ζij), k = 1, . . . , 4.

The additive functions fjk were constructed to satisfy the constraints

E{fij(ζj)} = 0, E(ζmξk) = 0 for m 6= k, E(ζmξm) = σm.

The design points sl, tl on [0, S] and [0, T ] where functions are sampled were

chosen as 100 equidistant points, respectively, and observations were generated

as

X̃(sl) = X(sl) + νX(sl), Ỹ (tl) = Y (tl) + νY (tl),

where νX , νY are remainder processes as in (3.5), obtained as νX(sl) = zx1ρx1(sl)+

zx2ρx2(sl) and νY (tl) = zy1ρy1(tl)+zy2ρy2(tl), with zx1, zy1
i.i.d.∼ N(0, σ2), zx2, zy2

i.i.d.∼ N(0, 0.5σ2) and

ρx1(sl) =
√

2/S sin(12πsl/S), ρx2(sl) = −
√

2/S cos(10πsl/S),

ρy1(tl) = −
√

2/T cos(12πtl/T ), ρy2(tl) =
√

2/T sin(10πtl/T ).

As in (3.8) we consider the number of components M to be the same for

predictor and response processes and report simulation results for combinations

of sample sizes n = 100, 500 and factors σ = 1, 5 by which νX , νY are multiplied,

allowing for different magnitudes of the remainder processes. We report the val-

ues of Integrated Squared Prediction Error, ISPE =
∫
{Ỹ (t) − Ŷ (t)}2dt, for the

proposed singular additive modeling (SAM) approach, and also for the functional

linear model (FLM) as in (1.3), (1.5) and the functional additive model (FAM).

The latter is additive in the functional principal component (FPC) scores of pre-

dictor processes X, E(ηY m|X) =
∑∞

j=1 gmj(ηXj), using the principal component

scores ηY m of response processes Y and ηXj of predictor processes X as defined

in (1.4) (Müller and Yao (2008)).
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Table 1. The 25th, 50th and 75th percentiles of scaled integrated squared prediction
error comparing the proposed singular additive modeling (SAM), the functional additive
model (FAM) (Müller and Yao, 2008) and the functional linear model (FLM), as in (1.3),
(1.5). Results are based on 400 simulation runs for sample size n = 100. Model training
and prediction is done by 5-fold cross-validation, where M is the number of singular
components for both predictor and response processes, where σ2 indicates the strength
of the residual processes.

n = 100
25th 50th 75th

M σ2 SAM FAM FLM SAM FAM FLM SAM FAM FLM
3 1 3.60 3.89 5.22 7.03 8.56 11.09 15.15 22.70 29.22
4 1 3.56 4.26 5.41 6.93 9.26 11.49 14.56 24.00 29.70
5 1 3.53 4.70 5.60 6.88 10.10 11.94 14.47 25.46 30.39
3 5 7.84 9.09 10.36 14.59 17.64 20.01 26.70 35.02 40.21
4 5 7.68 9.15 10.33 14.19 17.76 19.87 25.86 35.41 40.05
5 5 7.56 9.36 10.26 14.07 18.34 19.85 25.48 36.68 40.03

Table 2. Same as Table 1, but for n = 500.

n = 500
25th 50th 75th

M σ2 SAM FAM FLM SAM FAM FLM SAM FAM FLM
3 1 3.23 3.32 4.67 6.13 7.35 9.76 13.27 19.60 26.64
4 1 3.15 3.41 4.72 5.95 7.53 9.84 12.72 19.85 26.70
5 1 3.11 3.51 4.76 5.91 7.69 9.95 12.52 20.06 26.82
3 5 6.88 8.26 9.53 12.99 16.05 18.51 23.93 31.38 37.56
4 5 6.76 7.79 9.22 12.76 15.28 17.79 23.30 30.12 36.41
5 5 6.66 7.58 8.96 12.59 15.01 17.40 22.97 29.84 35.88

When implementing SAM, here and in our data analysis in Section 6, we

standardized each of the estimated singular components ζ̂ij and subsequently

chose the intervals Ijk in (3.10) as Ikj = [−2, 2] for the standardized values, then

after fitting transformed back to the original scale when reporting the results.

The tuning parameters for SAM, except for M , which was fixed at various levels,

were chosen by 5-fold cross-validation.

From the results in Table 1 (for n = 100) and Table 2 (for n = 500) we find

that SAM performs consistently better than FLM or FAM in these comparisons

for all quantiles of ISPE that were considered. As expected, the ISPEs increase for

larger values of σ and decrease for larger sample size. The second best performer

is FAM, followed by FLM.

In a second simulation we generated singular components for predictor pro-
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Table 3. Same as Table 1, but for σ = 1 only in the second simulation scenario where
data are generated with two rather than four singular components.

n = 100
25th 50th 75th

M SAM FAM FLM SAM FAM FLM SAM FAM FLM
3 1.74 2.91 5.99 3.39 4.94 9.16 7.07 10.51 15.82
4 1.55 3.07 5.91 3.08 5.51 9.40 6.36 11.63 16.88
5 1.49 3.29 5.90 2.98 6.11 9.63 6.20 12.96 17.84

cesses as [
ζi1
ζi2

]
∼ N (0,Σ) , where Σ =

[
8 3

3 4

]
and for response processes as ξi1 = f11(ζi1) + f12(ζi2), ξi2 = f21(ζi1) + f22(ζi2),

with additive functions f11(x) = −1.84 − 0.37x + 0.23x2, f12(x) = −1.21 +

0.27x+ 0.30x2, f21(x) = 1.58 + 0.11x− 0.20x2, f22(x) = −2.05− 0.28x+ 0.51x2.

The following singular functions and mean functions were chosen for predictor

processes X, φ1(s) =
√

2/S sin(2πs/S), φ2(s) = −
√

2/S cos(6πs/S), µx(s) =

sin(s) + s, and for response processes Y , ψ1(t) = −
√

2/T cos(2πt/T ), ψ2(t) =√
2/T sin(6πt/T ), µy(t) = sin(t) + t. All other settings were as above. In Fig-

ure 1 we demonstrate the surface estimates of the additive regressions of ξ1 on

ζ1, ζ2, and of ξ2 on ζ1, ζ2, for n = 100 and n = 500 for this second simulation sce-

nario. We show estimates with close to median mean integrated squared errors

(MISE) among 400 simulations and find that these surface estimates improve as

the sample size gets larger. Table 3 indicates that in terms of ISPE, the results

are similar to those in the first simulation scenario.

7. Data Analysis

We demonstrate the comparative performance of FLM and SAM for data

that were obtained in a nephrological study for 32 hemodialysis patients (Kay-

sen et al. (2000)). For each patient the expression levels of acute phase blood

proteins were collected longitudinally. Exploring the longitudinal relationship be-

tween the negative acute phase protein Albumin (alb) and positive acute phase

protein α-aminoglobulin (aag), we use aag as predictor and alb as response. To

avoid biases resulting from non-uniform observation designs, we removed the ob-

servations falling within the first and last 5% of the design points. Since the

measurement times were more and more spread out away from the origin with

increasing spacings, we log-transformed them, which led to more regular designs.
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Figure 1. First row left for first (a) and right for second (b) singular component of
response processes Y versus first and second singular component of predictor processes
X, true relationships. Second row depicts corresponding estimates (c) and (d) with SAM
for n = 100 and third row in (e) and (f) for n = 500. These estimates were selected to
have an MISE that is near the median over 400 Monte Carlo runs.
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Figure 2. Longitudinal recordings of Albumin (left panel) and of α-aminoglobulin (right
panel) with log time scale for n = 32 subjects. The thick black lines indicate the
corresponding group means obtained by local linear kernel smoothing.

The spaghetti plots of alb and aag are shown in Figure 2.

The quartiles of integrated squared prediction error ISPE obtained when

applying SAM and FLM using five-fold cross-validation are reported in Table 4.

The selection of the number of included components for SAM was based on the

number of components selected by applying the BIC criterion for FLM (Yang,

Müller and Stadtmüller (2011)). This is expected to favor the FLM. Nevertheless,

the results in Table 3 show that the overall predictive performance of SAM is

somewhat better than that of FLM. We conclude that one can often achieve

improvements by implementing functional linear models via singular additive

modeling.

8. Discussion

We did not fully investigate the choice of the number of included components

M , for which we used the data-based BIC criterion that is geared towards the

functional linear model but may provide a suboptimal choice for the singular

additive model. A full investigation of this choice is left as a topic for future

research.

For the derivation and implementation of the proposed singular additive

model (SAM) with smooth backfitting, we have made several assumptions that

are plausible but nevertheless restrictive. A basic assumption is that there are

only finitely many singular components that are sufficient to explain the re-
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Table 4. The 25th, 50th and 75th percentiles of integrated squared prediction error
ISPE for the proposed singular additive model (SAM) and the functional linear model
(FLM), when predicting Albumin trajectories from α-aminoglobulin trajectories for n =
32 subjects. Model training and prediction was done by selecting separate tuning and
test sets, using 5-fold cross-validation.

n = 32
SAM FLM

25th 0.24 0.25
50th 0.38 0.39
75th 0.57 0.85

gression relation between X and Y and that the remainders νX and νY of the

infinite-dimensional processes X and Y can be ignored. This assumption seems

at least more plausible than a corresponding assumption on the FPCs, since the

latter are constructed without taking into account the interaction between X

and Y . This is the main motivation for functional singular component analysis

(Yang, Müller and Stadtmüller (2011)) and singular component based functional

regression (Zhang and Wang (2016)). A second restrictive assumption is that the

functional data are fully observed without errors, which is rarely if ever the case

in practical applications. In situations where trajectories are observed with noise

or on an irregular grid, a pre-smoothing step can be employed, but to get the

requisite uniform bounds, additional restrictive assumptions on the underlying

smooth processes X and Y are needed (see, e.g., Müller, Stadtmüller and Yao

(2006)).

A third assumption is that additive regression models are reasonable and that

the idea of dimension reduction through singular components carries forward to

additive models. Additional assumptions are needed for the fitting of the additive

model, as described in detail in the theory section. Also, we are only able to

estimate the additive functions on compact intervals even though the predictor

scores are typically not bounded.

On the other hand, we have strengthened the case that using singular com-

ponents can be advantageous not only for functional correlation but also when

using additive models, and presumably also other functional regression models

when both predictors and responses are functional. As we demonstrate, the pro-

posed smooth backfitting approach works reasonably well. By adopting smooth

backfitting, we are able to deal with the dependency of the predictor scores that

is an inherent feature of functional singular components.
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Supplementary Materials

These consist of Section A.1., where the dependency of the functional singu-

lar components is discussed, Section A.2, which contains a proof of the important

auxiliary result given in (5.2), and Section A.3 with the proof of Theorem 1.
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