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Abstract: We show how to use Bayesian uncertainty analysis to study several three-

way contingency tables, each obtained from a single area, when one, two or three

categories are missing. This is an extension of Nandram and Woo (2015) to cover

small areas. One approach to analyze these data is to construct several tables

(one complete and the others incomplete) with each table corresponding to one

or more missing categories. When tables are incomplete and nonignorable nonre-

sponse models are used, there are nonidentifiable parameters. To deal with these

parameters, we describe five hierarchical Bayesian models, which are an ignorable

nonresponse model and four nonignorable nonresponse models. Rather than per-

forming a sensitivity analysis, we perform the Bayesian uncertainty analysis by

placing priors on the nonidentifiable parameters. This is done to reduce the effects

of the nonidentifiable parameters that is accomplished by projecting the parameters

to a lower dimensional space and allowing the reduced set of parameters to share a

common distribution. Also, this procedure allows a “borrowing of strength” from

larger areas to improve estimation in smaller areas. We use the griddy Gibbs sam-

pler to fit our models and we use goodness-of-fit procedures to assess model fit. We

use an illustrative example and a simulation study to compare our models when

inference is made about finite population proportions of the cells of the three-way

tables.

Key words and phrases: Bayesian uncertainty analysis, griddy Gibbs sampler,

model diagnostics, nonidentifiable parameters, nonignorable nonresponse model.

1. Introduction

In survey sampling, data may consist of contingency tables with missing cells.

We consider the problem of nonignorable nonresponse for three-way (r × c× u)

categorical tables, each obtained from a single small area. There are both item

and unit nonresponses. Unit nonresponse occurs when none of the categorical

variables is observed. Item nonresponse occurs when a categorical variable is not

observed. For both item and unit nonresponse, none of the possible categories

is observed for any of the missing categorical variables. We do not know how
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different are the observed data and the missing data. In fact, when there are some

differences between observed and missing data, it is better to use a nonignorable

missing data model because of its generality.

It is pertinent to distinguish between ignorable and nonignorable nonre-

sponse models. These are associated with the missing data mechanism (Little

and Rubin (2002)), and there are three types of missing data mechanism. Miss-

ing completely at random (MCAR) occurs if the missingness is independent of

both the observed and the unobserved data, and missing at random (MAR) when

conditional on the observed data, missingness is independent of the unobserved

data. Missing not at random (MNAR) is neither MCAR nor MAR. While under

the MCAR mechanism, missing data do not contribute to the analysis, under

the MAR mechanism incomplete data may be relevant. Models for MCAR and

MAR are called ignorable, and models for MNAR missing data mechanism are

called nonignorable. Since the missing data are different from the observed data,

the main issue of MNAR is how to fill in nonresponse. However, the general

difficulty with nonignorable nonresponse models is that there are nonidentifiable

parameters (e.g., see Nandram and Choi (2010)). Nandram and Woo (2015),

henceforth NW, described Bayesian uncertainty analysis for nonignorable nonre-

sponse models that incorporate a sensitivity analysis directly into the Bayesian

nonignorable nonresponse models. This methodology was done for a single area.

There are both item and unit nonresponses in a three-way contingency table.

To deal with missing data, we consider the data to consist of eight tables. One

table is for complete data and seven tables are for incomplete data - one table for

missing row, one table for missing column, one table for missing length, one table

for both missing row and column, one table for both missing row and length, one

table for both missing column and length, and a table for which neither row,

column nor length has been observed. We model the observed and missing data

from these eight separate tables. We can fit a multinomial data model to these

tables including the nonresponse data. Pioneering work was done by Chen and

Fienberg (1974) who provided a non-Bayesian analysis for incomplete two-way

tables. Another approach uses log-linear model for nonignorable nonresponse

(e.g., Draper (1995); Barker, Rosenberger and DerSimonian (1992); Rubin, Stern

and Behovar (1995)).

Nandram and Choi (2002) used an expansion model to study nonignorable

nonresponse binary data and Nandram and Katzoff (2012) used a similar model

for polychotomous data. If a centering parameter is set to unity, the expansion

model of nonignorable nonresponse degenerates into an ignorable nonresponse
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model. This can be used to express uncertainty about ignorability (Forster and

Smith (1998)). We use an idea of Nandram, Cox and Choi (2005) and Nan-

dram et al. (2005) who assumed an ignorable model, obtained samples of the

response probabilities, and used these sampled response probabilities to fit the

response probabilities of a nonignorable nonresponse model while controlling its

parameters.

If we have no information about the missing data, we do not know how to fill

in the missing cells. We need to deal with subjectivity and imprecision which are,

respectively, due to missingness and sampling (Molenberghs, Kenward and Goet-

ghebeur (2001)). By fitting several plausible overspecified models, it provides an

expression of uncertainty about the parameters of interest. Molenberghs et al.

(1999) gave some examples of categorical tables in which different nonignorable

nonresponse models have the same fit to the observed data but the prediction of

the missing counts is different. That is, nonignorable nonresponse models cannot

be examined using the observed data alone even if they fit well, the plausibility

of the model assumptions needs to be examined carefully.

This paper represents an extension of NW to accommodate small areas, and

it has four more sections. In Section 2, we give a review of NW. In Section 3,

we describe competing hierarchical Bayesian nonignorable nonresponse models

of small areas using Bayesian uncertainty analysis. In Section 4, we illustrate our

methodology with public-use data from ten states in the third National Health

and Nutrition Examination Survey (NHANES III), and we report on a simulation

study to assess our methodology. In Section 5, we have concluding remarks.

2. A Review of Nandram and Woo (2015)

In a nonignorable nonresponse model, a sensitivity analysis is necessary to

study the effects of nonidentifiable parameters on the parameters of interest.

Typically, the sensitivity analysis is performed by setting the nonidentifiable pa-

rameters at various plausible values. Instead of the sensitivity analysis for the

nonidentifiable parameters, we extend Nandram and Woo (2015), NW, to accom-

modate small areas. Therefore, it is pertinent to review Bayesian uncertainty

analysis in NW.

In the frequentist point of view, Molenberghs, Kenward and Goetghebeur

(2001) provided a general principle for missing data. The parameter space con-

sists of two sets (η, ν), where η is a minimal set of parameters which can be

estimated when ν is specified. Here, η is called the estimable parameter and ν
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the sensitivity parameter. Since the value of ν is specified, we have an estimate

η̂(ν). The range of these estimates over all plausible values of ν is the interval of

ignorance. The union of the 100(1 − α)% confidence intervals over all plausible

values of ν gives the uncertainty interval.

NW formulated the work of Molenberghs, Kenward and Goetghebeur (2001)

within the Bayesian framework. This permitted a ‘Bayesian uncertainty interval’

for the finite population parameters to include both subjectivity and imprecision.

NW considered two sets of parameters and put prior distributions on them. Thus,

p(η, ν) = p(η|ν)p(ν),

where again η is the set of parameters of interest and ν is the set of nonidentifiable

parameters. The prior on ν is specified on a set of plausible values of ν. If ν

is specified as in a sensitivity analysis, η will be identified. Thus, one way to

specify p(ν) is to put a uniform distribution over all plausible values of ν. Rather

than performing a sensitivity analysis, a Bayesian uncertainty analysis puts a

prior on the nonidentifiable parameters. This is related to analysis of biases in

observational studies (Greenland (2009)). The uncertainty interval is the (1−α)

credible interval for η when a prior distribution is placed on the nonidentifiable

parameters.

For a Bayesian uncertainty analysis there are two strategies, projection and

pooling in a three-way categorical table. In the projection strategy, we can

project parameters to a lower dimensional space. NW considered a two-way

(2 × 2) table. Let the count in (1, 1) cell be z, the first row total be x, and the

first column total be y, the corresponding cell probabilities are θ, p and q. Then

for a random sample of n, NW used the joint density

p(x, y, z|θ, p, q) =
n!θz(p− θ)(x−z)(q − θ)(y−z)(1− p− q + θ)(n−x−y+z)

z!(x− z)!(y − z)!(n− x− y + z)!
,

where 0 < z ≤ x, y < n and 0 < θ < p, q < 1.

NW considered a three-way (2 × 2 × 2) table. They can generalize this

multinomial distribution and they assumed each level of the first category with

proportion of r and count of w gives rise to a 2× 2 table. Let the counts in the

two tables be (x1, y1, z1) and (x2, y2, z2). Then NW used the joint probability

mass function of (w, x1, y1, z1, x2, y2, z2)

p(w, x1, y1, z1, x2, y2, z2|r, θ1, p1, q1, θ2, p2, q2)

=
n!

w!(n− w)!
rw(1− r)(n−w) (2.1)
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× w!θz11 (p1 − θ1)(x1−z1)(q1 − θ1)(y1−z1)(1− p1 − q1 + θ1)
(w−x1−y1+z1)

z1!(x1 − z1)!(y1 − z1)!(w − x1 − y1 + z1)!

× (n− w)!θz22 (p2 − θ2)(x2−z2)(q2 − θ2)(y2−z2)(1− p2 − q2 + θ2)
(n−w−x2−y2+z2)

z2!(x2 − z2)!(y2 − z2)!(n− w − x2 − y2 + z2)!
,

where 0 < z1 ≤ x1, y1 < w, 0 < z2 ≤ x2, y2 < n−w, 0 < r < 1, 0 < θ1 < p1, q1 <

1, 0 < θ2 < p2, q2 < 1.

The eight tables have distinct parameters (rt, θt1, qt1, qt1, θt2, qt2, qt2) with

the restrictions shown below (2.1), t = 1, . . . , 8, with probability mass functions

similar to (2.1). The number of observations in the tth and table is nt with∑8
1 nt = n. Except for the complete table, these parameters are nonidentifiable.

Therefore, the nonignorable nonresponse model has a joint probability mass func-

tion of (w, x1, y1, z1, x2, y2, z2) given (rt, θt1, qt1, qt1, θt2, qt2, qt2) are independent

with probability mass functions similar to (2.1).

In the pooling strategy, NW allowed the reduced set of parameters to share

a common distribution. They specified a joint conjugate prior distribution for

(rt, θt1, qt1, qt1, θt2, qt2, qt2) as

rt|µ0, τ
i.i.d.∼ Beta{µ0τ, (1− µ0)τ},

(θtj , ptj − θtj , qtj − θtj , 1− ptj − qtj + θtj)|µ1, µ2, µ3, τ
i.i.d.∼

Dirichlet{µ1τ, (µ2 − µ1)τ, (µ3 − µ1)τ, (1− µ2 − µ3 + µ1)τ},

where j = 1, 2, t = 1, . . . , 8, and 0 < µ0 < 1, 0 < µ1 < µ2, µ3 < 1, τ > 0. If the

parameters µ0, µ1, µ2, µ3, and τ are specified, then the model is well identified.

For sensitivity analysis we can take various values of these parameters, but it

is more sensible to perform a Bayesian uncertainty analysis. NW treated these

parameters as hyper parameters, and placed priors on them. This permits a study

of subjectivity to provide a coherent method to obtain an uncertainty interval

for the finite population proportion. It does not work completely; NW needed

some adjustment that puts a bound on µ1, B, and assumed a shrinkage prior for

τ . Therefore, they assumed that hyper parameters are constrained on the set

S = {(µ0, µ1, µ2, µ3) : 0 < µ0 < 1, 0 < B < µ1 < µ2, µ3 < 1} and

(µ0, µ1, µ2, µ3)|B ∼ Uniform(S),

B ∼ Uniform(a, b), p(τ) =
1

(1 + τ)2
, τ > 0.

This passes on the nonidentifiable effects to a smaller set of hyper parameters.

Thus, projection and pooling lead to a reduced set of nonidentifiable parameters.

In this paper, we extend NW to accommodate small areas. We provide a



1844 WOO, NANDRAM AND KIM

Bayesian uncertainty analysis for nonignorable nonresponse in three-way contin-

gency tables obtained from small areas. In small area estimation, it is a standard

practice to assume that the area effects are exchangeable. This assumption is

accommodated by allowing the area effects to have a common parametric distri-

bution, and there is a “borrowing of strength” of the data from larger areas to

improve the reliability in the estimates of the model parameters corresponding

to the smaller areas.

3. The Nonignorable Nonresponse Models of Small Areas

In this paper, we index small areas by i = 1, . . . , A; rows by j = 1, . . . , r;

columns by k = 1, . . . , c; lengths by ` = 1, . . . , u; and the eight tables by t =

1, . . . , T, T = 8. For a three-way categorical table, let Jits = 1 if the sth and

individual in ith and area belongs to the tth and table and Jits = 0 for the other

seven tables, and let Iijk`s = 1 if the sth and individual in ith and area belongs to

the cell (j, k, `) of the three-way table and Iijk`s = 0 for all other cells. Also let

witjk`s = JitsIijk`s. Now, let pitjk` be the probability that an individual belongs

to cell (j, k, `) of tth and sub-table in the three-way table for ith and area, and

let πit be the probability that an individual belongs to the tth and sub-table for

ith and area.

In the ignorable nonresponse model, parameters pitjk` do not depend on t,

and the parameters are identifiable and estimable. Yet the ignorable nonresponse

model contains imprecision and subjectivity of the relationship between respon-

dents and nonrespondents, subjectivity and imprecision cannot be separated. As

pointed out by a referee, for categorical variable j, we can write

P (j missing|j = 1) =

∑
t∈J(t)

∑c
k=1

∑u
`=1 pit1k`πit∑

t∈T
∑c

k=1

∑u
`=1 pit1k`πit

, (3.1)

where J(t) is the set of tables in which categorical variable j is not observed,

and T is the set of all tables. Clearly, if the pitjk` depend on t, (3.1) is not

necessarily equal to P (j missing|j = 2). For the ignorable nonresponse model

with pitjk` = pijk`, the
∑c

k=1

∑u
`=1 pi1k` in the numerator cancels with that in

the denominator so that P (j missing|j = 1) = P (j missing|j = 2).

The ignorable nonresponse model arises from a MAR mechanism but ob-

viously the model can be incorrect and a more general model may include the

ignorable nonresponse model as a special case. However, when there may be

information in the nonresponse data, we consider the nonignorable nonresponse

model which includes a possible difference between observed and missing data
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(i.e., subjectivity). In the nonignorable nonresponse model, the parameters πit
are identifiable, but the parameters pijk`t are not identifiable for t = 2, . . . , 8.

Under simple random sampling, our basic model is

Jis|πi
i.i.d.∼ Multinomial(1,πi),

Iis|Jits = 1,pit
i.i.d.∼ Multinomial(1,pit),

where Jis = (Ji1s, . . . , JiT s)
′, Iis = (Ii111s,...,Iircus

)′, πi = (πi1, . . . , πiT )′, pit =

(pit111, . . . , pitrcu)′.

Let ψijk`t = πitpitjk`. Then because
∑

t πit = 1 and
∑

jk` pitjk` = 1 for each

t = 1, . . . , 8,
∑

t

∑
jk` πitpitjk` = 1. Letting witjk`s = JitsIijk`s, it follows that

wis|pi,πi
i.i.d.∼ Multinomial(1,ψi),

where wis = (wi1111s, . . . , wiT rcus)
′, pi = (pi1111, . . . , piT rcu)′, ψi = (ψi1111, . . . ,

ψiT rcu)′.

While the parameters πit are identifiable, the parameters pitjk` are not iden-

tifiable for t = 2, . . . , 8. Given the constraints and the observed data, inference

for the pitjk` is independent of the πit. To reduce the effects of nonidentifiable

parameters, we consider the nonignorable nonresponse model using Bayesian un-

certainty analysis as in NW.

In the first strategy of Bayesian uncertainty analysis, we can project pitjk`
to a lower dimensional space. This can be done by expressing the pitjk` as

functions of a reduced set of parameters. In our current work, we have nit
individuals in tth and table for ith and area and ni =

∑8
t=1 nit. Also, for the

eight tables the cell counts are zitj =
∑nit

s=1witj11s, xitj =
∑nit

s=1

∑u
`=1witj1`s,

yitj =
∑nit

s=1

∑c
k=1witjk1s, witj =

∑nit

s=1

∑c
k=1

∑u
`=1witjk`s, and the correspond-

ing superpopulation proportions are θitj , pitj , qitj and rit. We describe the data

structure in Figure 1 and Table 1.

The joint probability mass function under the nonignorable nonresponse

model is

p(wit1, xit1, yit1, zit1, xit2, yit2, zit2|rit, θit1, pit1, qit1, θit2, pit2, qit2)

=
nit!

wit1!wit2!
rwit1

it (1− rit)wit2×

2∏
j=1

witj !θ
zitj
itj (pitj−θitj)xitj−zitj (qitj−θitj)yitj−zitj (1−pitj−qitj+θitj)witj−xitj−yitj+zitj

zitj !(xitj−zitj)!(yitj−zitj)!(witj−xitj−yitj+zitj)!
,

where wit2 = nit − wit1.
In the next strategy, we can allow the reduced set of parameters to share a
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θθ

Figure 1. The structure of proportions and data for three-way categorical table.

Table 1. Tables of observed and missing counts for a general table.

Table Observed Missing
t1 xk, yk, zk, (k = 1, 2), w None
t2 x1 + x2, y1 + y2, z1 + z2 x1, y1, z1, w
t3 y1, y2, w x1, x2, z1, z2
t4 x1, x2, w y1, y2, z1, z2
t5 w x1, x2, y1, y2, z1, z2
t6 x1 + x2 x1, x2, y1, y2, z1, z2, w
t7 y1 + y2 x1, x2, y1, y2, z1, z2, w
t8 None xk, yk, zk, (k = 1, 2), w

NOTE : Table t1 is complete; each of Tables t2, t3, t4 has one category
missing; each of Tables t5, t6, t7 has two categories missing, and Table
t8 has all categories missing.

common distribution. This passes on the nonidentifiable effects to a smaller set

of hyper parameters. In our model, we use a Beta prior density and a Dirichlet

prior density for categorical cell probabilities,

rit|µ0, τ
i.i.d.∼ Beta{µ0τ, (1− µ0)τ},

(θitj , pitj − θitj , qitj − θitj , 1− pitj − qitj + θitj)|µ1, µ2, µ3, τ
i.i.d.∼

Dirichlet{µ1τ, (µ2 − µ1)τ, (µ3 − µ1)τ, (1− µ2 − µ3 + µ1)τ},

where 0 < µ0 < 1, 0 < µ1 < µ2, µ3 < 1, τ > 0.

These two strategies lead to a reduced set of nonidentifiable parameters. The

specification of priors on these parameters is the Bayesian uncertainty analysis.

We consider three ways to specify priors. Henceforth, we focus on the 2× 2× 2

table. The methodology for a general r× c×u table is similar, but the notations
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are more complex.

To lay our foundation, we first describe the ignorable nonresponse model

(Ig) in which the parameters rit, θitj , pitj , and qitj do not depend on t, assuming

θitj = θi, pitj = pi, and qitj = qi, j = 1, 2. Therefore, the joint probability mass

function of the ignorable nonresponse model is

p(wi1, xi1, yi1, zi1, xi2, yi2, zi2|ri, θi, pi, qi)

=
ni!

wi1!(ni − wi1)!
rwi1

i (1− ri)ni−wi1

×
wi1!θ

zi1+zi2
i (pi − θi)xi1+xi2−zi1−zi2(qi − θi)yi1+yi2−zi1−zi2

zi1!zi2!(xi1 − zi1)!(xi2 − zi2)!(yi1 − zi1)!(yi2 − zi2)!

× (1− pi − qi + θi)
ni−xi1−xi2−yi1−yi1+zi1+zi2

(wi1 − xi1 − yi1 + zi1)!(ni − wi1 − xi2 − yi2 + zi2)!
.

We take priors for parameters in the ignorable nonresponse model as

ri|µ0, τ
i.i.d.∼ Beta{µ0τ, (1− µ0)τ},

(θi, pi − θi, qi − θi, 1− pi − qi + θi)|µ1, µ2, µ3, τ
i.i.d.∼

Dirichlet{µ1τ, (µ2 − µ1)τ, (µ3 − µ1)τ, (1− µ2 − µ3 + µ1)τ},
(µ0, µ1, µ2, µ3) ∼ Uniform(S),

p(τ) =
1

(1 + τ)2
, τ > 0,

where hyper parameters are constrained on the set S = {(µ0, µ1, µ2, µ3) : 0 <

µ0 < 1, 0 < µ1 < µ2, µ3 < 1}.

3.1. Nonignorable nonresponse models

In this section we describe four nonignorable nonresponse models that ex-

tend the ignorable nonresponse model. The four models differ in their prior

specifications.

First, we describe the nonignorable nonresponse model (Nig1) with data-

based priors that are needed because of the nonidentifiable parameters in Nig1.

We assume that θitj = θit, pitj = pit and qitj = qit, j = 1, 2. The joint probability

mass function of the nonignorable nonresponse model (Nig1, Nig2) is

p(wit1, xit1, yit1, zit1, xit2, yit2, zit2|rit, θit, pit, qit)

=
nit!

wit1!(nit − wit1)!
rwit1

it (1− rit)nit−wit1

×
wit1!θ

zit1+zit2
it (pit − θit)xit1+xit2−zit1−zit2(qit − θit)yit1+yit2−zit1−zit2

zit1!zit2!(xit1 − zit1)!(xit2 − zit2)!(yit1 − zit1)!(yit2 − zit2)!
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× (1− pit − qit + θit)
nit−xit1−xit2−yit1−yit2+zit1+zit2

(wit1 − xit1 − yit1 + zit1)!(nit − wit1 − xit2 − yit2 + zit2)!
.

We take priors for parameters as

rit|µ0, τ
i.i.d.∼ Beta{µ0τ, (1− µ0)τ}, (3.2)

(θit, pit − θit, qit − θit, 1− pit − qit + θit)|µ1, µ2, µ3, τ
i.i.d.∼ (3.3)

Dirichlet{µ1τ, (µ2 − µ1)τ, (µ3 − µ1)τ, (1− µ2 − µ3 + µ1)τ},

where 0 < µ0 < 1, 0 < µ1 < µ2, µ3 < 1, τ > 0.

In Nig1 we use a data-based prior for µ0, µ1, µ2, µ3, and τ , considering priors

for them based on data that are recorded when we fit the ignorable nonresponse

model. When we fit the ignorable nonresponse model, after a burn-in period, we

select the H iterates, (µ
(h)
0 , µ

(h)
1 , µ

(h)
2 , µ

(h)
3 ), h = 1, . . . ,H, of µ0, µ1, µ2, µ3, τ . In

addition, we need to estimate the hyper parameters, µ00, µ10, µ20, µ30 and α0, β0
of priors. To do so, we assume that these H iterates follow the model,

µ
(h)
0 |µ00, τ0

i.i.d.∼ Beta{µ00τ0, (1− µ00)τ0}, 0 < µ00 < 1, τ0 > 0,

(µ
(h)
1 , µ

(h)
2 − µ

(h)
1 , µ

(h)
3 − µ

(h)
1 − µ

(h)
2 − µ

(h)
3 + µ

(h)
1 )|µ10, µ20, µ30, τ0

i.i.d.∼
Dirichlet{µ10τ0, (µ20 − µ10)τ0, (µ30 − µ10)τ0, (1− µ20 − µ30 + µ10)τ0},

τ (h)
i.i.d.∼ Gamma(α0, β0),

where 0 < µ10 < µ20, µ30 < 1. The posterior means of µ00, µ10, µ20, µ30, τ0
are µ

(0)
00 , µ

(0)
10 , µ

(0)
20 , µ

(0)
30 , τ

(0)
0 and estimates of α0, β0 are obtained as α

(0)
0 , β

(0)
0

(maximum likelihood estimates). Now the data-based prior distributions on

(µ0, µ1, µ2, µ3, τ) are

µ0|µ(0)00 , τ
(0)
0 ∼ Beta{µ(0)00 τ

(0)
0 , (1− µ(0)00 )τ

(0)
0 },

(µ1, µ2 − µ1, µ3 − µ1, 1− µ2 − µ3 + µ1)|µ(0)10 , µ
(0)
20 , µ

(0)
30 , τ

(0)
0 ∼

Dirichlet{µ(0)10 τ
(0)
0 , (µ

(0)
20 − µ

(0)
10 )τ

(0)
0 , (µ

(0)
30 − µ

(0)
10 )τ

(0)
0 , (1− µ(0)20 − µ

(0)
30 + µ

(0)
10 )τ

(0)
0 },

τ ∼ Gamma(α
(0)
0 , β

(0)
0 ).

Second, we keep the assumption θitj = θit, pitj = pit, and qitj = qit, j =

1, 2 and we consider the nonignorable nonresponse model (Nig2) without data-

based priors; we take priors for parameters as (3.2)–(3.3). The hyper parameters

µ0, µ1, µ2, µ3 are constrained on the set S. If µ0, µ1, µ2, µ3, and τ are specified,

then the model is well identified. One way to do the adjustment is to put a bound

on µ1, say B, and take a proper diffuse prior for τ . Therefore, these parameters

are constrained on the set S = {(µ0, µ1, µ2, µ3) : 0 < µ0 < 1, 0 < B ≤ µ1 <
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µ2, µ3 < 1}; see NW. Then we take priors for hyper parameters as

(µ0, µ1, µ2, µ3)|B ∼ Uniform(S), (3.4)

B ∼ Uniform(a, b), (3.5)

p(τ) =
1

(1 + τ)2
, τ > 0, (3.6)

where a and b should be specified. For example, we can give a nonparametric

interval of (a, b). A lower bound a might assume that only observed data are

included in cell (1, 1, 1) and an upper bound b might assume that all missing data

are included in cell (1, 1, 1), thereby forming a pessimistic-optimistic range for

B.

In Ig, Nig1, and Nig2, we assume the cell probabilities θitj = θit, pitj = pit,

and qitj = qit, j = 1, 2. Next, we distinguish these cell probabilities in the

nonignorable nonresponse model. Nig3 is a general model, an extension of Nig1

that uses a data-based prior, and Nig4 is a general model, an extension of Nig2

that does not use data-based prior. Letting wit2 = nit−wit1, the joint probability

mass function of the nonignorable nonresponse model (Nig3, Nig4) is

p(wit1, xit1, yit1, zit1, xit2, yit2, zit2|rit, θit1, pit1, qit1, θit2, pit2, qit2)

=
nit!

wit1!(nit − wit1)!
rwit1

it (1− rit)nit−wit1×

2∏
j=1

witj !θ
zitj
itj (pitj−θitj)xitj−zitj (qitj−θitj)yitj−zitj (1−pitj−qitj+θitj)witj−xitj−yitj+zitj

zitj !(xitj−zitj)!(yitj−zitj)!(witj−xitj−yitj+zitj)!
.

We take priors for parameters as

rit|µ0, τ
i.i.d.∼ Beta{µ0τ, (1− µ0)τ},

(θitj , pitj − θitj , qitj − θitj , 1− pitj − qitj + θitj)|µ1, µ2, µ3, τ
i.i.d.∼

Dirichlet{µ1τ, (µ2 − µ1)τ, (µ3 − µ1)τ, (1− µ2 − µ3 + µ1)τ}.

For the hyper parameters µ0, µ1, µ2, µ3, and τ in Nig3, we take data-based priors

similar to those in Nig1, and for the hyper parameters in Nig4, we take priors

similar to Nig2 (without data-based priors; see (3.4)–(3.6)).

Let rit1 = rit, rit2 = 1− rit and dmis and dobs denote all missing data and all

observed data, respectively. Then, the joint posterior density of all parameters

and missing values is

π(r,θ,p, q,dmis, µ0, µ1, µ2, µ3, τ |dobs)
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∝
A∏
i=1

T∏
t=1

2∏
j=1

[
(ritjθitj)

zitj

zitj !

{ritj(pitj − θitj)}(xitj−zitj)

(xitj − zitj)!
{ritj(qitj − θitj)}(yitj−zitj)

(yitj − zitj)!

× {ritj(1− pitj − qitj + θitj)}(witj−xitj−yitj+zitj)

(witj − xitj − yitj + zitj)!

×
θµ1τ−1
itj

Γ(µ1τ)

(pitj − θitj)(µ2−µ1)τ−1

Γ((µ2 − µ1)τ)

(qitj − θitj)(µ3−µ1)τ−1

Γ((µ3 − µ1)τ)

× (1− pitj − qitj + θitj)
(1−µ2−µ3+µ1)τ−1

Γ((1− µ2 − µ3 + µ1)τ)

]
×

A∏
i=1

T∏
t=1

{
rµ0τ−1
it

Γ(µ0τ)

(1− rit)(1−µ0)τ−1

Γ((1− µ0)τ)

}
× {Γ(τ)}3AT

(1 + τ)2
,

where r = (r111, . . . , rAT2)
′, θ = (θ111, . . . , θAT2)

′, p = (p111, . . . , pAT2)
′, q =

(q111, . . . , qAT2)
′.

We use the griddy Gibbs sampler to draw samples from this joint poste-

rior density. The joint conditional posterior distribution of the missing data

have standard multinomial forms. In the joint conditional posterior density,

(θitj , pitj , qitj) are independent over t and j, and they have standard Dirichlet

distributions. However, the joint posterior density of (µ0, µ1, µ2, µ3, τ) is not in

closed form. Therefore, each of them is obtained using a grid method (e.g., Nan-

dram and Yin (2016)). Also, we need the conditional posterior densities for the

incomplete Tables t2-t8, and these are given in Appendix A.

3.2. Inference for finite population proportions

For the ith and area, we assume that a random sample of size ni is selected

from a finite population of size Ni, there is no selection bias, and the ni selected

individuals can be classified into a three-way table of counts.

Our target is the finite population proportion for the jth and row, the kth

and column, and `th and length in the ith and area, Pijk`, i = 1, . . . , A, j = k =

` = 1, 2. Let Nit denote the total number responding for ith and area in the tth

and table. Then using standard notation in survey sampling, we can write our

target as

Pi111 = fiz̄i1 + (1− fi)Z̄i1,
Pi211 = fiz̄i2 + (1− fi)Z̄i2,
Pi112 = fi(x̄i1 − z̄i1) + (1− fi)(X̄i1 − Z̄i1),
Pi212 = fi(x̄i2 − z̄i2) + (1− fi)(X̄i2 − Z̄i2),
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Pi121 = fi(ȳi1 − z̄i1) + (1− fi)(Ȳi1 − Z̄i1),
Pi221 = fi(ȳi2 − z̄i2) + (1− fi)(Ȳi2 − Z̄i2),
Pi122 = fi(w̄i1 − x̄i1 − ȳi1 + z̄i1) + (1− fi)(W̄i1 − X̄i1 − Ȳi1 + Z̄i1),

Pi222 = fi(n̄i − w̄i1 − x̄i2 − ȳi2 + z̄i2) + (1− fi)(N̄i − W̄i1 − X̄i2 − Ȳi2 + Z̄i2),

where z̄ij , x̄ij − z̄ij , ȳij − z̄ij , w̄i1 − x̄ij − ȳij + z̄ij , and n̄i − w̄i1 − x̄ij − ȳij + z̄ij ,

i = 1, . . . , A, j = 1, 2, are the sample proportions, Z̄ij , X̄ij − Z̄ij , Ȳij − Z̄ij ,

W̄i1−X̄ij− Ȳij+Z̄ij , and N̄i−W̄i1−X̄ij− Ȳij+Z̄ij , i = 1, . . . , A, j = 1, 2, are the

nonsample proportions, and fi = ni/Ni, i = 1, . . . , A, are the sampling fractions.

Both the sample proportions and the nonsample proportions are unobserved.

Thus, given the sampled data, both of them are random variables. While the

sample proportion is obtained directly from the model fitting, the nonsample

proportion has to be predicted.

Now we show how to predict the nonsampled proportions. Let Ñi = Ni−ni
denote the number of nonsample individuals for ith and area, Ñit = Nit − nit,
Ñi = (Ñi1, . . . , Ñi8)

′ and πi = (πi1, . . . , πi8)
′. Then under the nonignorable

nonresponse model, for i = 1, . . . , A, t = 2, . . . , T , j = 1, 2,

Ñi|πi ∼ Multinomial(Ni − ni,πi),

Ñit1|Ñit, rit
ind.∼ Binomial(Ñit, rit), Ñit2 = Ñit − Ñit1,

Zitj , Xitj − Zitj , Yitj − Zitj ,Witj −Xitj − Yitj + Zitj |Ñitj , θitj , pitj , qitj
ind.∼ Multinomial{Ñitj , (θitj , pitj − θitj , qitj − θitj , 1− pitj − qitj + θitj)}.

4. An Illustrative Example and a Simulation Study

We performed two empirical studies to assess the difference between the ig-

norable nonresponse model and the nonignorable nonresponse models. In Section

4.1 we discuss an illustrative example and in Section 4.2 we describe a simulation

study.

4.1. Illustrative example

We have data from the NHANES III (National Center for Health Statistics

(1992)) with ten selected states (also called areas). We use three categorical vari-

ables; family income divided by family size (INS), number of gardening activities

in a week (NG), and bone mineral density (BMD). Because INS indicates poverty,

NG shows weekly physical activity volume, and BMD is used to diagnose osteo-

porosis, a disease of elderly females, we consider the relationship among these
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Table 2. Counts and sampling sizes for NHANES III by area.

Area
INS NG BMD 1 2 3 4 5 6 7 8 9 10

0 0 0 15 3 1 0 4 1 4 2 2 4
1 7 0 0 0 0 0 1 0 1 3
2 4 0 0 0 0 0 0 0 0 6

1 0 7 1 2 0 0 1 3 1 1 1
1 6 1 0 0 0 1 1 1 0 1
2 4 3 0 1 0 0 1 0 1 2

2 0 42 11 11 0 8 1 29 5 10 33
1 30 9 7 3 2 2 19 3 4 22
2 15 6 3 1 1 0 14 1 2 22

1 0 0 49 15 5 3 12 1 12 11 6 12
1 34 10 0 4 6 1 18 3 8 5
2 5 1 1 0 5 3 2 0 4 4

1 0 25 0 7 2 3 4 9 4 7 4
1 26 6 5 3 8 5 7 4 5 3
2 9 1 1 1 0 0 3 2 2 1

2 0 70 24 14 4 10 13 47 17 18 36
1 101 30 12 9 9 8 61 14 27 38
2 51 11 4 3 4 8 37 7 20 12

2 0 0 4 0 0 0 1 0 4 1 1 4
1 3 6 1 2 1 0 2 0 0 1
2 3 1 0 0 1 1 1 0 2 4

1 0 2 2 2 0 1 0 1 0 1 1
1 7 0 1 0 1 2 3 1 0 1
2 0 0 0 0 1 0 0 0 0 3

2 0 14 8 4 1 1 1 22 4 2 3
1 17 6 3 7 1 5 16 2 3 8
2 9 8 2 4 0 1 9 0 4 8

Sampling size (n) 559 163 86 48 80 59 326 83 131 242

NOTE: INS is 0 if family income divided by family size is less than 4.75, 1 if it
is greater than 4.75 and 2 if it is missing. NG is 0 if the number of gardening
in a week is less than 4, 1 if it is greater than 4 and 2 if it is missing. Set BMD
0 if BMD is actually greater than 0.64 mg/cm2 (normal), 1 if it is less than
0.64 mg/cm2 (bone disease), and 2 if missing. The cutpoints for BMD are set
by the WHO, and those for INS and NG are suggested by experts.

variables. In Table 2, we present the contingency tables of counts by state. We

also present the sample size (ni) of the ith and area and, for prediction of the finite

population proportions, we take the population sizes Ni = 20× ni, i = 1, . . . , 10.

The cutpoints for BMD are set by the World Health Organization (WHO), and

those for INS and NG are suggested by experts.
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We used the griddy Gibbs sampler to fit the four models to the NHANES

III data. For all models, we monitored the convergence of the Gibbs samplers

using trace plots, autocorrelation plots and Geweke test of stationarity. For our

data, we used 11,000 iterates with the first 1,000 iterates used as a ‘burn-in’

period (based on the trace plots). We found negligible autocorrelations among

the iterates, and so we did not need to have thinning to provide a random sample.

In our Gibbs samplers, the p-values of the Geweke test were all greater than 0.10.

First, we fit the ignorable nonresponse model, and we recorded summaries

for ri, θi, pi, qi and the finite population proportions. When we fit the ignorable

nonresponse model, we obtained estimates of µ00, µ10, µ20, µ30 and α0, β0. The

posterior means and 95% credible intervals (CI) were as follows: For µ00, µ
(0)
00 =

0.305 and CI = (0.091, 0.656); for µ10, µ
(0)
10 = 0.298 and CI = (0.062, 0.544);

for µ20, µ
(0)
20 = 0.546 and CI = (0.290, 0.766); for µ30, µ

(0)
30 = 0.508 and CI =

(0.274, 0.756); for τ0, τ
(0)
0 = 18.255 and CI = (1.601, 73.032). We got values of

α0 and β0 using maximum likelihood estimates, α
(0)
0 = 5.009 and β

(0)
0 = 0.125 for

Nig1. For Nig3, we fit the ignorable nonresponse model and recorded summaries

for ri, θij , pij , qij . The posterior means and 95% credible intervals were as follows:

For µ00, µ
(0)
00 = 0.312 and CI = (0.094, 0.657); for µ10, µ

(0)
10 = 0.305 and CI =

(0.078, 0.541); for µ20, µ
(0)
20 = 0.551 and CI = (0.274, 0.778); for µ30, µ

(0)
30 = 0.518

and CI = (0.260, 0.757); for τ0, τ
(0)
0 = 17.974 and CI = (1.623, 76.224). We

got values of α0 and β0 using maximum likelihood estimates, α
(0)
0 = 6.469 and

β
(0)
0 = 0.145 for Nig3.

We compared the ignorable nonresponse model (Ig) and the four nonignor-

able nonresponse models (Nig1, Nig2, Nig3, Nig4). We studied the finite popu-

lation proportion corresponding to each cell of the 2×2×2 categorical table. To

investigate the pooling features of the four models, we also fit them to each area

separately. We have studied all eight cells of the three-way table by area but,

because of space restrictions, we have presented numerical summaries – posterior

mean (PM), posterior standard deviation (PSD), and 95% credible interval (CI)

– in Table 3 for the cell (1, 1, 1) by state (i.e., P111 dropping subscript i).

The PMs are very similar for all the models, and they differ significantly

over areas. There are no surprises here. A similar pattern holds for the direct

estimates. But it is surprising that the pooled estimates can differ substantially

from the direct estimates. Sometimes they are much larger and sometimes much

smaller. This phenomenon is likely due to the sparseness of the contingency

tables with many of the cell counts too small. The PMs over the pooled models

are mostly similar.
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Table 3. Posterior inference of the finite population proportion for cell (1, 1, 1) by area.

Model Direct Pooled
Area PM PSD CI PM PSD CI

1

Ig 0.085 0.010 (0.067, 0.104) 0.084 0.009 (0.067, 0.102)
Nig1 0.083 0.014 (0.055, 0.110) 0.082 0.011 (0.061, 0.104)
Nig2 0.086 0.013 (0.061, 0.114) 0.082 0.012 (0.059, 0.106)
Nig3 0.091 0.015 (0.062, 0.122) 0.094 0.013 (0.069, 0.121)
Nig4 0.094 0.016 (0.064, 0.125) 0.093 0.015 (0.066, 0.122)

2

Ig 0.100 0.020 (0.064, 0.142) 0.092 0.017 (0.062, 0.127)
Nig1 0.085 0.026 (0.034, 0.138) 0.083 0.014 (0.057, 0.112)
Nig2 0.094 0.027 (0.044, 0.149) 0.083 0.015 (0.055, 0.114)
Nig3 0.093 0.028 (0.042, 0.151) 0.087 0.016 (0.059, 0.120)
Nig4 0.097 0.032 (0.038, 0.161) 0.087 0.017 (0.057, 0.122)

3

Ig 0.076 0.026 (0.033, 0.134) 0.088 0.021 (0.050, 0.134)
Nig1 0.085 0.032 (0.031, 0.155) 0.098 0.019 (0.064, 0.140)
Nig2 0.102 0.034 (0.044, 0.174) 0.099 0.021 (0.061, 0.144)
Nig3 0.079 0.032 (0.026, 0.149) 0.103 0.021 (0.065, 0.149)
Nig4 0.084 0.038 (0.027, 0.174) 0.103 0.022 (0.063, 0.152)

4

Ig 0.023 0.014 (0.004, 0.058) 0.048 0.017 (0.019, 0.086)
Nig1 0.028 0.016 (0.005, 0.068) 0.067 0.014 (0.041, 0.096)
Nig2 0.043 0.022 (0.010, 0.095) 0.065 0.015 (0.038, 0.096)
Nig3 0.028 0.017 (0.004, 0.068) 0.072 0.017 (0.042, 0.108)
Nig4 0.030 0.020 (0.004, 0.079) 0.072 0.016 (0.044, 0.107)

5

Ig 0.106 0.027 (0.059, 0.164) 0.094 0.021 (0.057, 0.140)
Nig1 0.103 0.027 (0.057, 0.161) 0.088 0.017 (0.058, 0.124)
Nig2 0.101 0.029 (0.052, 0.164) 0.088 0.018 (0.056, 0.126)
Nig3 0.116 0.032 (0.062, 0.186) 0.093 0.019 (0.060, 0.134)
Nig4 0.122 0.034 (0.064, 0.198) 0.092 0.019 (0.058, 0.134)

6

Ig 0.032 0.017 (0.007, 0.072) 0.052 0.017 (0.022, 0.090)
Nig1 0.038 0.018 (0.010, 0.080) 0.069 0.014 (0.042, 0.098)
Nig2 0.044 0.021 (0.014, 0.092) 0.068 0.015 (0.040, 0.101)
Nig3 0.037 0.018 (0.010, 0.080) 0.071 0.016 (0.042, 0.106)
Nig4 0.040 0.021 (0.010, 0.090) 0.071 0.016 (0.043, 0.105)

7

Ig 0.081 0.014 (0.054, 0.111) 0.082 0.013 (0.058, 0.110)
Nig1 0.081 0.019 (0.046, 0.120) 0.085 0.014 (0.059, 0.113)
Nig2 0.090 0.019 (0.055, 0.130) 0.086 0.015 (0.057, 0.115)
Nig3 0.088 0.020 (0.053, 0.130) 0.096 0.016 (0.065, 0.129)
Nig4 0.092 0.023 (0.050, 0.141) 0.096 0.017 (0.064, 0.131)

8

Ig 0.076 0.023 (0.039, 0.126) 0.078 0.019 (0.045, 0.118)
Nig1 0.077 0.023 (0.037, 0.126) 0.080 0.016 (0.052, 0.114)
Nig2 0.078 0.024 (0.040, 0.134) 0.080 0.016 (0.051, 0.116)
Nig3 0.078 0.024 (0.037, 0.130) 0.079 0.017 (0.049, 0.116)
Nig4 0.080 0.027 (0.036, 0.140) 0.077 0.017 (0.048, 0.115)
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Table 3. Continued.

Model Direct Pooled
Area PM PSD CI PM PSD CI

9
Ig 0.048 0.014 (0.024, 0.080) 0.057 0.014 (0.033, 0.087)

Nig1 0.052 0.016 (0.025, 0.089) 0.070 0.013 (0.046, 0.098)
Nig2 0.059 0.017 (0.031, 0.097) 0.069 0.014 (0.043, 0.097)
Nig3 0.060 0.020 (0.027, 0.106) 0.081 0.016 (0.052, 0.114)
Nig4 0.064 0.022 (0.028, 0.115) 0.080 0.017 (0.051, 0.116)

10
Ig 0.185 0.026 (0.135, 0.238) 0.163 0.023 (0.121, 0.209)

Nig1 0.175 0.033 (0.108, 0.241) 0.124 0.021 (0.085, 0.167)
Nig2 0.180 0.035 (0.111, 0.247) 0.127 0.022 (0.088, 0.173)
Nig3 0.187 0.032 (0.126, 0.252) 0.132 0.022 (0.092, 0.177)
Nig4 0.192 0.036 (0.121, 0.261) 0.133 0.024 (0.089, 0.184)

NOTE : PM is the posterior mean, PSD is the posterior standard deviation and CI
is the 95% credible interval.

As expected, the PSDs under the pooled models are smaller than those

under the individual models, sometimes substantially. For example, in Table 3

for State 2 the PSDs under the pooled (individual) models are 0.017 (0.020),

0.014 (0.026), 0.015 (0.027), 0.017 (0.032). This is a well established result in

small area estimation. The PSDs over the pooled models are mostly similar.

We have seen states (4, 5, 6, 8) where the PSDs are slightly larger under the

ignorable nonresponse model. There are several reasons for this, but we do not

discuss them here.

We also drew plots for PM (top panel) and PSD (bottom panel) of the finite

population proportions from direct models versus pooled models in Figure 2.

We have seen the same patterns in all cells of the three-way contingency tables

(seven plots are omitted to save space). We have compared the PMs for the

pooled models over states by cell using plots (not shown), and we observed that

the four models are generally similar. For each cell we have noticed one or two

states in which the estimates under Ig are substantially smaller or higher than

under Nig1, Nig2, Nig3, and Nig4. Some examples are P121, P211, P221, and P222

for State 2, State 5, State 3, and State 6, respectively.

To assess the overall fit of the models, we performed three goodness-of-fit

procedures, the deviance information criterion (DIC) together with the complex-

ity (PD) or effective number of parameters, the Bayesian posterior predictive

p-value (BPP), and the log pseudo marginal likelihood (LPML), a summary of

the conditional predictive ordinate (CPO) values. For any of the nonignorable

nonresponse models (e.g., Nig4), letting d = (dobs,dmis),
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Figure 2. Plots of PMs (top panel) and PSDs (botton panel) of the finite population
proportion for cell (1, 1, 1) by area.

NOTE : ◦ is Ig, 4 is Nig1, + is Nig2, × is Nig3 and ∗ is Nig4.

p(d|r,θ,p, q) =

A∏
i=1

T∏
t=1

2∏
j=1

p(wit1, xit1, yit1, zit1, xit2, yit2, zit2|rit, θitj , pitj , qitj).

Let r
(h)
it , θ

(h)
itj , p

(h)
itj , q

(h)
itj , i = 1, . . . , A, t = 1, . . . , T , j = 1, 2, h = 1, . . . ,H,

denote the iterates from the griddy Gibbs sampler under the nonignorable non-

response model and let the posterior means be r̄it, θ̄itj , p̄itj , q̄itj and let r(h) =(
r
(h)
11 , . . . , r

(h)
AT

)
′, θ(h) =

(
θ
(h)
111, . . . , θ

(h)
AT2

)
′, p(h) =

(
p
(h)
111, . . . , p

(h)
AT2

)
′, q(h) =

(
q
(h)
111,

. . . , q
(h)
AT2

)
′, r̄ = (r̄11, . . . , r̄AT )′, θ̄ = (θ̄111, . . . , θ̄AT2)

′, p̄ = (p̄111, . . . , p̄AT2)
′,

q̄ = (q̄111, . . . , q̄AT2)
′. Then, for the nonignorable nonresponse model the de-

viance information criterion is given by

DIC = 2D̄ −D(r̄, θ̄, p̄, q̄), (4.1)
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D̄ = −2
∑H

h=1 log(p(d|r(h),θ(h),p(h), q(h)))/H and D(r̄, θ̄, p̄, q̄) = −2log(p(d|r̄,
θ̄, p̄, q̄)). Models with smaller DICs are preferred over those with larger DICs.

However, since DIC tends to select over-fitted models, Yan and Sedransk (2007)

described the Bayesian predictive p-values as a backup.

Let yitjk` and pitjk` denote, respectively, the cell (j, k, `) count and probabil-

ity in the tth and table for the ith and area and let yit = (yit111, . . . , yitrcu)′ be

the multinomial distribution with probabilities pit = (pit111, . . . , pitrcu)′. Clearly,

E(yitjk`|pitjk`) = nitpitjk` and V ar(yitjk`|pitjk`) = nitpitjk`(1 − pitjk`). For the

nonignorable nonresponse model, we choose the discrepancy to be

T (y;p) =

A∑
i=1

T∑
t=1

∑
jk`

{yitjk` − E(yitjk`|pitjk`)}2

V ar(yitjk`|pitjk`)
,

where y = (y11111, . . . , yATrcu)′ and p = (p11111, . . . , pATrcu)′. Then, we can

obtain the respective Bayesian predictive p-values corresponding to the models,

p{T (y(rep);p) ≥ T (y(obs);p)}. Here, these probabilities are calculated over their

corresponding iterates p(h), h = 1, . . . ,H. A value of this probability, not close

to 0 or 1, is indicative of a good fit of the model.

In addition, we can give another measure for evaluating the goodness-of-fit,

LPML. The likelihood of each area is given by

p(wi, zi,xi,yi|ri,θi,pi, qi)

=

T∏
t=1

p(wit1, zit1, xit1, yit1, zit2, xit2, yit2|rit, θit1, pit1, qit1, θit2, pit2, qit2),

where wi = (wi11, . . . , wiT2)
′, zi = (zi11, . . . , ziT2)

′, xi = (xi11, . . . , xiT2)
′, yi =

(yi11, . . . , yiT2)
′, ri = (ri1, . . . , riT )′, θi = (θi11, . . . , θiT2)

′, pi = (pi11, . . . , piT2)
′,

and qi = (qi11, . . . , qiT2)
′. The leave-one-out cross-validation predictive density

under the nonignorable nonresponse model is given by

p(wi, zi,xi,yi|w(i), z(i),x(i),y(i))

=

∫
p(wi, zi,xi,yi|Ω)π(Ω|w(i), z(i),x(i),y(i))dΩ,

where (w(i), z(i),x(i),y(i)) denotes (wi, zi,xi,yi) after omitting the data from

the ith and area and Ω = (r,θ,p, q). Then, the CPO can be estimated by

ĈPOi =

{
1

H

H∑
h=1

1

p
(
wi, zi,xi,yi

∣∣∣r(h)i ,θ
(h)
i ,p

(h)
i , q

(h)
i

)}−1,
where

(
r
(h)
i ,θ

(h)
i ,p

(h)
i , q

(h)
i

)
are hth and samples from the griddy Gibbs samper.
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Table 4. Model Diagnostic statistics.

Model DIC BPP LPML
Ig 1,489.1 0.2582 −724.5389

Nig1 1,472.6 0.5356 −709.5037
Nig2 1,466.4 0.5385 −701.1168
Nig3 1,471.4 0.4650 −707.4640
Nig4 1,470.5 0.4821 −708.0226

NOTE: Nig2 is selected.

Then LPML is

LPML =

A∑
i=1

log(ĈPOi).

Here larger values of LPML indicate better fitting models.

The results of diagnostic statistics are shown in Table 4. The BPPs of the

models are not close to 0 or 1 so that, based on the BPPs, there are virtually no

differences among the models. DICs of the nonignorable nonresponse models are

lower than those of the ignorable nonresponse model and this indicates that the

nonognorable nonresponse models are better. Also LPMLs of the nonignorable

nonresponse models are larger than the one under the ignorable nonresponse

model, again indicating the nonignorable nonresponse models are better than the

ignorable nonresponse model. It is interesting that Nig2 appears to be the best

model overall. Because Nig1 has a data-based prior, we prefer not to recommend

it. While Nig2 is selected by the DIC and LPML, we prefer Nig4 because it is

the most general model; the differences in the DICs or LPML are small at any

rate.

4.2. Simulation study

We performed a simulation study to further assess the performance between

the ignorable nonresponse model (Ig) and the general nonignorable nonresponse

model (Nig4). We kept r = c = ` = 2 and A = 10 and the sample size ni as in

the original data. After fitting the ignorable nonresponse model to NHANES III

data, we obtained the posterior means µ̂0 = 0.2512, µ̂1 = 0.3269, µ̂2 = 0.5767,

µ̂3 = 0.5133 and τ̂ = 39.0423 for the hyper parameters µ0, µ1, µ2, µ3, and τ . Our

strategy was to generate data from Ig and fit both Ig and Nig4 and to generate

data from Nig4 and fit both Ig and Nig4. Apart from the Ig-Nig4 dichotomy, we

also studied the effects of increasing the number of areas (states) (A = 10, 25,

50, 100). Thus, we have an experiment with two factors (model at two levels and

number of areas at 4 levels). To get more areas, we replicated the data for the



BAYESIAN MODELS FOR CONTINGENCY TABLES WITH NONIGNORABILITY 1859

10 areas (we set only marginal sample sizes).

Thus, we generated cell proportions from (a) the ignorable nonresponse

model,

ri|µ̂0, τ̂
i.i.d.∼ Beta{µ̂0τ̂ , (1− µ̂0)τ̂},

(θi, pi − θi, qi − θi, 1− pi − qi + θi)|µ̂1, µ̂2, µ̂3, τ̂
i.i.d.∼

Dirichlet{µ̂1τ̂ , (µ̂2 − µ̂1)τ̂ , (µ̂3 − µ̂1)τ̂ , (1− µ̂2 − µ̂3 + µ̂1)τ̂}

and (b) the nonignorable nonresponse model,

rit|µ̂0, τ̂
i.i.d.∼ Beta{µ̂0τ̂ , (1− µ̂0)τ̂},

(θitj , pitj − θitj , qitj − θitj , 1− pitj − qitj + θitj)|µ̂1, µ̂2, µ̂3, τ̂
i.i.d.∼

Dirichlet{µ̂1τ̂ , (µ̂2 − µ̂1)τ̂ , (µ̂3 − µ̂1)τ̂ , (1− µ̂2 − µ̂3 + µ̂1)τ̂}.

With these values, we generated the cell counts for the ignorable nonresponse

model from

zitj , xitj − zitj , yitj − zitj , witj − xitj − yijt + zitj |ri, θi, pi, qi
ind.∼

Multinomial{ni, ri(θi, pi − θi, qi − θi, 1− pi − qi + θi)}.

In a similar manner, letting rit1 = rit and rit2 = 1 − rit, we generated the cell

counts for the nonignorable nonresponse model from

zitj , xitj − zitj , yitj − zitj , witj − xitj − yijt + zitj |rit, θitj , pitj , qitj
ind.∼

Multinomial{ni, ritj(θitj , pitj − θitj , qitj − θitj , 1− pitj − qitj + θitj)}.

We performed this procedure to get 100 datasets from the ignorable nonre-

sponse model and 100 datasets from the nonignorable nonresponse model. Then

we fit each of these datasets using both the ignorable nonresponse model and the

nonignorable nonresponse model (Nig4). To compare results between the direct

and pooled models, we also fit each of these datasets to the direct (individually)

model. We denote the true values of Pijk` by P̂
(h)
ijk`, obtained from the simula-

tions. Also, we computed the posterior mean of the finite population proportion,

PM
(h)
ijk`, and the posterior standard deviation, PSD

(h)
ijk`, h = 1, . . . , 100, under Ig

and Nig4.

We calculated AB =
∑100

h=1AB
(h) and PRMSE = (1/100)

∑100
h=1 PRMSE(h),

where

AB(h) =

A∑
i=1

r∑
j=1

c∑
k=1

u∑
`=1

∣∣∣P̂ (h)
ijk` − PM

(h)
ijk`

∣∣∣ ,
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Table 5. Average (AVG) and standard error (SE) of the absolute biases (AB) and the
posterior root mean squared errors (PRMSE) over the 100 runs by area and model.

AB PRMSE
Direct Pooled Direct Pooled

A fitted AVG SE AVG SE AVG SE AVG SE

10
Ig 2.8141 0.0288 1.7175 0.0236 0.5474 0.0065 0.3509 0.0044

Nig4 2.5959 0.0253 1.3226 0.0172 0.5514 0.0060 0.2854 0.0034

25
Ig 6.8462 0.0573 4.0057 0.0367 0.8668 0.0101 0.5164 0.0056

Nig4 6.2029 0.0409 3.0472 0.0303 0.8586 0.0091 0.4112 0.0046

50
Ig 14.3109 0.0962 7.7513 0.0474 1.2599 0.0141 0.7136 0.0073

Nig4 13.2332 0.0765 5.8750 0.0401 1.2550 0.0133 0.5580 0.0059

100
Ig 28.3993 0.0970 15.3055 0.0497 1.7536 0.0177 0.9991 0.0086

Nig4 25.9389 0.0867 11.2179 0.0345 1.7478 0.0175 0.7729 0.0063

NOTE: Data were generated from the nonignorable nonresponse model (Nig4),
and both Ig and Nig4 were fitted using direct (individually) model and pooled
(small area) model.

PRMSE(h) =

√√√√ A∑
i=1

r∑
j=1

c∑
k=1

u∑
`=1

{(
P̂

(h)
ijk` − PM

(h)
ijk`

)2
+ PSD(h)2

ijk`

}
represent, respectively, the bias and the posterior root mean squared error corre-

sponding to the hth and dataset. We also calculated the 95% credible interval for

each of the 100 simulated runs. We looked at the width (W
(h)
ijk`) and the credible

incidence (I
(h)
ijk`), where I

(h)
ijk` = 1 if the 95% credible interval contains the true

value P̂
(h)
ijk` and I

(h)
ijk` = 0 if the 95% credible interval does not contain the true

value P̂
(h)
ijk`. For each area and each model, we took the average of these quanti-

ties. For example, the estimated probability content of the 95% credible interval

is C = (1/100)
∑100

h=1C
(h), where C(h) =

∑A
i=1

∑r
j=1

∑c
k=1

∑u
`=1 I

(h)
ijk`/Arcu.

When data are generated from Ig and both Ig and Nig4 are fitted, we have

seen very similar results, with marginal gains of Ig over Nig in terms of bias, pos-

terior mean squared error, and credible interval estimation (probability contents

and widths). So it is not necessary to present summaries for data generated from

Ig. In Tables 5 and 6, we present summaries when data are generated from Nig4.

First, we discuss Table 5. AB is much smaller for Nig4 (pooled model) over

the direct model. It is also true that AB is smaller under Nig4 than Ig, nearly

50% smaller. AB increases with A, the number of small areas. The results for

PRMSE show similar comparisons.

Second, we discuss interval estimation in Table 6. C is higher for the pooled

model than direct model and closer to the nominal value of 95%. It is also true
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Table 6. Summaries of the estimated probability contents (C) and the widths (W ) of
the 95% credible intervals over the 100 runs by area and model.

C W
Direct Pooled Direct Pooled

A fitted AVG SE AVG SE AVG SE AVG SE

10
Ig 0.8459 0.0048 0.8985 0.0045 0.1315 0.0002 0.0960 0.0003

Nig4 0.9375 0.0033 0.9475 0.0030 0.1555 0.0004 0.0829 0.0004

25
Ig 0.8572 0.0042 0.8979 0.0036 0.1332 0.0011 0.0904 0.0004

Nig4 0.9462 0.0032 0.9484 0.0016 0.1567 0.0009 0.0772 0.0003

50
Ig 0.8509 0.0024 0.9016 0.0017 0.1333 0.0006 0.0886 0.0002

Nig4 0.9426 0.0022 0.9513 0.0013 0.1587 0.0006 0.0751 0.0003

100
Ig 0.8467 0.0017 0.9099 0.0015 0.1327 0.0003 0.0889 0.0001

Nig4 0.9400 0.0013 0.9638 0.0012 0.1556 0.0003 0.0746 0.0002

NOTE: Data were generated from the nonignorable nonresponse model (Nig4), and
both Ig and Nig4 were fitted using direct (individually) model and pooled (small
area) model.

that C under Nig4 is closer to the 95% nominal value than under Ig. There

are minor increases in the coverage as A increases. It is interesting that while

Nig4 has coverages closer to 95%, it gives shorter credible intervals. The pooled

Nig4 has a much shorter interval (roughly 50% shorter) than the direct and

substantially shorter than Ig. Again, there are small changes with A. We have

also studied the highest posterior density (HPD) intervals (not shown), and we

have seen similar results.

Our simulation study provides confidence in our pooled nonignorable non-

response model. We have shown rather convincingly that the direct estimators

perform badly and Nig4 is much better than Ig in terms of absolute bias, the

preferred posterior root mean squared error, which incorporates both squared

bias and variance, and coverages and widths of the 95% credible intervals.

5. Concluding Remarks

The purpose of this paper has been to develop a methodology to analyze

data from incomplete three-way contingency tables, each table corresponding to

a small area. We have studied one ignorable nonresponse model and four nonig-

norable nonresponse models, constructing each of the nonignorable nonresponse

models with a reduced set of nonidentifiable parameters; each of the eight in-

complete tables has a set of parameters. We allowed these parameters to share

a common effect, thereby passing on the nonidentifiable effects to a manageable

set of parameters. Two of our models use Bayesian uncertainty analysis, where
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we set artificial priors on these hyper parameters. This allows a study of un-

certainty about the finite population proportions. The most general model (one

of the two models that use Bayesian uncertainty analysis) is selected. Thus, we

have extended NW (Nandram and Woo (2015)) to accommodate small areas.

We have presented an illustrative example to estimate the finite population

proportions corresponding to the cells of the 2× 2× 2 table for the ten US states

in NHANES III. We have used the griddy Gibbs sampler for model fitting and

performed a model assessment using DIC, BPP, and LPML. We have shown that

there are differences among the ignorable nonresponse model and the nonignor-

able nonresponse models. We have argued that our most general nonignorable

nonresponse model is to be preferred for these data.

Our simulation shows rather convincingly that the nonignorable nonresponse

model is better than the ignorable nonresponse model. To make this assessment,

we have used relative bias, posterior root mean squared error, and coverage.

Indeed, this is plausible because the nonignorable nonresponse model contains

some degree of difference between the responders and nonresponders.
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Appendix: Some Conditional Posterior distributions for Gibbs sam-

pling

Given the data, d = (dobs,dmis), µ0, µ1, µ2, µ3, τ and rt, θtj , ptj , qtj are inde-

pendent with

rit|wit1, µ0, τ,d
ind.∼ Beta{wit1 + µ0τ, nit − wit1 + (1− µ0)τ},

θitj , pitj − θitj , qitj − θitj , 1− pitj − qitj + θitj |nit, zitj , xitj , yitj , µ1, µ2, µ3, τ,d
ind.∼

Dirichlet{zitj + µ1τ, xitj − zitj + (µ2 − µ1)τ, yitj − zit + (µ3 − µ1)τ,
witj − xitj − yitj + zit + (1− µ2 − µ3 + µ1)τ},

where i = 1, . . . , A, t = 1, . . . , T , j = 1, 2 throughout. The joint conditional

posterior density of µ0, µ1, µ2, µ3, τ is
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p(µ0, µ1, µ2, µ3, τ |r,θ,p, q,d)

∝ Γ(τ)3AT

(1 + τ)2

A∏
i=1

T∏
t=1

rµ0τ−1
it

Γ(µ0τ)

(1− rit)(1−µ0)τ−1

Γ((1− µ0)τ)

×
A∏
i=1

T∏
t=1

2∏
j=1

{
θµ1τ−1
itj

Γ(µ1τ)

(pitj − θitj)(µ2−µ1)τ−1

Γ((µ2 − µ1)τ)

(qitj − θitj)(µ3−µ1)τ−1

Γ((µ3 − µ1)τ)

× (1− pitj − qitj + θitj)
(1−µ2−µ3+µ1)τ−1

Γ((1− µ2 − µ3 + µ1)τ)

}
,

where 0 < µ0 < 1, 0 < B ≤ µ1 < µ2, µ3 < 1, τ > 0. Samples from this joint

conditional posterior density can be obtained using the grid method.

We need the conditional posterior densities for Tables t2-t8 for ith and area,

i = 1, . . . , A.

For Table t2, xi21 + xi22 = xi2, yi21 + yi22 = yi2 and zi21 + zi22 = zi2 are

observed. Then,

zi21|zi2, ri2 ∼ Binomial(zi2, ri2),

xi21 − zi21|xi2, zi21, ri2 ∼ Binomial(xi2 − zi2, ri2),
yi21 − zi21|yi2, zi2, ri2 ∼ Binomial(yi2 − zi2, ri2),
wi21 − xi21 − yi21 + zi21|ni2, xi2, yi2, zi2, ri2 ∼ Binomial(ni2 − xi2 − yi2 + zi2, ri2).

For Table t3, wi31, yi31 and yi32 are observed. Then,

zi31|yi31, θi31, qi31 ∼ Binomial

(
yi31,

θi31
qi31

)
,

xi31 − zi31|wi31, yi31, θi31, pi31, qi31 ∼ Binomial

(
wi31 − yi31,

pi31 − θi31
1− qi31

)
,

zi32|yi32, θi32, qi32 ∼ Binomial

(
yi32,

θi32
qi32

)
,

xi32 − zi32|wi32, yi32, θi32, pi32, qi32 ∼ Binomial

(
wi32 − yi32,

pi32 − θi32
1− qi32

)
.

For Table t4, wi41, xi41 and xi42 are observed. Then,

zi41|xi41, θi41, pi41 ∼ Binomial

(
xi41,

θi41
pi41

)
,

yi41 − zi41|wi41, xi41, θi41, pi41, qi41 ∼ Binomial

(
wi41 − xi41,

qi41 − θi41
1− pi41

)
,

zi42|xi42, θi42, pi42 ∼ Binomial

(
xi42,

θi42
pi42

)
,
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yi42 − zi42|wi42, xi42, θi42, pi42, qi42 ∼ Binomial

(
wi42 − xi42,

qi42 − θi42
1− pi42

)
.

For Table t5, only wi51 is observed. Then,

(zi51, xi51 − zi51, yi51 − zi51, wi51 − xi51 − yi51 + zi51)
′|wi51, θi51, pi51, qi51

∼ Multinomial{wi51, (θi51, pi51 − θi51, qi51 − θi51, 1− pi51 − qi51 + θi51)
′},

(zi52, xi52 − zi52, yi52 − zi52, wi52 − xi52 − yi52 + zi52)
′|wi52, θi52, pi52, qi52

∼ Multinomial{wi52, (θi52, pi52 − θi52, qi52 − θi52, 1− pi52 − qi52 + θi52)
′}.

For Table t6, xi61 + xi62 = xi6 is observed. Then,

(zi61, xi61 − zi61, zi62, xi6 − xi61 − zi62)′|xi6, ri6, θi61, pi61, θi62, pi62

∼ Multinomial

{
xi6,

(
ri6θi61
pi61

,
ri6(pi61−θi61)

pi61
,
(1−ri6)θi62

pi62
,
(1−ri6)(pi62−θi62)

pi62

)′}
,

(yi61 − zi61, wi61 − xi61 − yi61 + zi61, yi62 − zi62, wi62 − xi62 − yi62 + zi62)
′

∼ Multinomial

{
ni6 − xi6,

(
ri6(qi61 − θi61)

1− pi61
,
ri6(1− pi61 − qi61 + θi61)

1− pi61
,

(1− ri6)(qi62 − θi62)
1− pi62

,
(1− ri6)(1− pi62 − qi62 + θi62)

1− pi62

)′}
.

For Table t7, yi71 + yi72 = yi7 is observed. Then,

(zi71, yi71 − zi71, zi72, yi7 − yi71 − zi72)′|yi7, ri7, θi71, pi71, qi71, θi72, pi72, qi72

∼ Multinomial

{
yi7,

(
ri7θi71
qi71

,
ri7(qi71−θi71)

qi71
,
(1−ri7)θi72

qi72
,
(1−ri7)(qi72−θi72)

qi72

)′}
,

(xi71 − zi71, wi71 − xi71 − yi71 + zi71, xi72 − zi72, wi72 − xi72 − yi72 + zi72)
′

∼ Multinomial

{
ni7 − yi7,

(
ri7(pi71 − θi71)

1− qi71
,
ri7(1− pi71 − qi71 + θi71)

1− qi71
,

(1− ri7)(pi72 − θi72)
1− qi72

,
(1− ri7)(1− pi72 − qi72 + θi72)

1− qi72

)′}
.

For Table t8, all counts are missing. Then,

wi81|ri8 ∼ Binomial(ni8, ri8),

(zi81, xi81 − zi81, yi81 − zi81, wi81 − xi81 − yi81 + zi81)
′|wi81, θi81, pi81, qi81

∼ Multinomial{wi81, (θi81, pi81 − θi81, qi81 − θi81, 1− pi81 − qi81 + θi81)
′},

(zi82, xi82 − zi82, yi82 − zi82, wi82 − xi82 − yi82 + zi82)
′|wi82, θi82, pi82, qi82

∼ Multinomial{wi82, (θi82, pi82 − θi82, qi82 − θi82, 1− pi82 − qi82 + θi82)
′}.
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