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Abstract: With nonignorable missing data, likelihood-based inference should be

based on the joint distribution of the study variables and their missingness indica-

tors. These joint models cannot be estimated from the data alone, thus requiring

the analyst to impose restrictions that make the models uniquely obtainable from

the distribution of the observed data. We present an approach for constructing

classes of identifiable nonignorable missing data models. The main idea is to use a

sequence of carefully set up identifying assumptions, whereby we specify potentially

different missingness mechanisms for different blocks of variables. We show that

the procedure results in models with the desirable property of being non-parametric

saturated.
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1. Introduction

When data are missing not at random (MNAR) (Rubin (1976)), appropriate

likelihood-based inference requires explicit models for the full-data distribution,

i.e., the joint distribution of the study variables and their missingness indicators.

Because of the missing data, this distribution is not uniquely identified from the

observed data alone (Little and Rubin (2002)). To enable inference, analysts must

impose restrictions on the full-data distribution. Such assumptions generally are

untestable; however, a minimum desideratum is that they result in a unique full-

data distribution for the observed-data distribution at hand, i.e., the distribution

that can be identified from the incomplete data.

We present a strategy for constructing identifiable full-data distributions

with nonignorable missing data. In its most general form, the strategy is to

expand the observed-data distribution sequentially by identifying parts of the

full-data distribution associated with blocks of variables, one block at a time.

This partitioning of the variables allows analysts to specify different missing-

ness mechanisms in the different blocks; for example, use the missing at random
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(MAR, Rubin (1976)) assumption for some variables and a nonignorable miss-

ingness assumption for the rest to obtain a partially ignorable mechanism (Harel

and Schafer (2009)). We ensure that the resulting full-data distributions are

non-parametric saturated (NPS, Robins (1997)), that is, their implied observed-

data distribution matches the actual observed-data distribution, as detailed in

Section 2.2.

Related approaches to partitioning variables with missing data have ap-

peared previously in the literature. Zhou, Little and Kalbfleisch (2010) pro-

posed to model blocks of study variables and their missingness indicators in a

sequential manner; however, their approach does not guarantee identifiability of

the full-data distribution. Harel and Schafer (2009) mentioned the possibility of

treating the missingness in blocks of variables differently, but provide no results

on identification. Robins (1997) proposed the group permutation missingness

mechanism, which assumes MAR sequentially for blocks of variables and results

in a NPS model. This is a particular case of our more general procedure, as we

describe in Section 3.4.

The remainder of the article is organized as follows. In Section 2, we de-

scribe notation and provide more details on the NPS property. In Section 3,

we introduce our strategy for identifying a full-data distribution in a sequential

manner. In Section 4 we present some examples of how to use this strategy for

the case of two categorical study variables, for the construction of partially ig-

norable mechanisms, and for sensitivity analyses. Finally, in Section 5 we discuss

possible future uses of our identifying approach.

2. Notation and Background

2.1. Notation

Let X = (X1, . . . , Xp) denote p random variables taking values on a sample

space X . Let Mj be the missingness indicator for variable j, where Mj = 1 when

Xj is missing and Mj = 0 when Xj is observed. Then M = (M1, . . . ,Mp) takes

values on {0, 1}p. Let µ be a dominating measure for the distribution of X, and

let ν represent the product measure between µ and the counting measure on

{0, 1}p. The full-data distribution is the joint distribution of X and M. We call

its density f with respect to ν the full-data density. The full-data distribution

cannot be recovered from sampled data, even with an infinite sample size.

An element m = (m1, . . . ,mp) ∈ {0, 1}p is called a missingness pattern.

Given m ∈ {0, 1}p we define m̄ = 1p −m to be the indicator vector of observed
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variables, where 1p is a vector of ones of length p. For each m, we define Xm =

(Xj : mj = 1) to be the missing variables and Xm̄ = (Xj : m̄j = 1) to be the

observed variables, which have sample spaces Xm and Xm̄, respectively. The

observed-data distribution is the distribution involving the observed variables

and the missingness indicators, which has density f(Xm̄ = xm̄,M = m) =∫
Xm

f(X = x,M = m)µ(dxm), where x ∈ X represents a generic element of the

sample space, and we define xm and xm̄ similarly as with the random vectors.

An alternative way of representing the observed-data distribution is by in-

troducing the materialized variables X∗ = (X∗1 , . . . , X
∗
p ), where

X∗j ≡

{
Xj , if Mj = 0,

∗, if Mj = 1,

and “∗” is a placeholder for missingness. The sample space X ∗j of each X∗j is the

union of {∗} and the sample space Xj of Xj . The materialized variables contain

all the observed information: if X∗j = ∗ then Xj was not observed, and if X∗j = xj
for any value xj 6= ∗ then Xj was observed and Xj = xj . Given m ∈ {0, 1}p

and xm̄ ∈ Xm̄, we define x∗ ≡ x∗(m,xm̄), such that x∗m̄ = xm̄ and x∗m = ∗,

where ∗ is a vector with the appropriate number of ∗ symbols. For example, if

m = (1, 1, 0) and xm̄ = x3, then x∗ = (∗, ∗, x3). The event X∗ = x∗(m,xm̄)

is equivalent to M = m and Xm̄ = xm̄, which implies that the distribution of

X∗ is equivalent to the observed-data distribution. Therefore, with some abuse

of notation, the observed-data density can be written in terms of X∗, that is

f{X∗ = x∗(m,xm̄)} ≡ f(Xm̄ = xm̄,M = m). When there is no need to refer

to the m and xm̄ that define x∗, we simply write f(X∗ = x∗) to denote the

observed-data density evaluated at an arbitrary point.

In what follows we often write f(X = x,M = m) simply as f(X,M),

f(X∗ = x∗) as f(X∗), and likewise for other expressions, provided that there

is no ambiguity. For the sake of simplicity, we use “f” for technically differ-

ent functions, but their actual interpretations should be clear from the argu-

ments passed to them. For example, we denote the missingness mechanism as

f(M = m|X = x), or simply f(M|X).

2.2. Non-parametric saturated modeling

Since the true joint distribution of X and M cannot be identified from ob-

served data alone, we need to work under the assumption that the full-data

distribution falls within a class defined by a set of restrictions.

Definition 1 (Identifiability). Consider a class of full-data distributions FA
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defined by a set of restrictions A. We say that the class FA is identifiable if there

is a mapping from the set of observed-data distributions to FA.

If we only require identifiability from a set of full-data distributions, two dif-

ferent observed-data distributions could map to the same full-data distribution.

Robins (1997) introduced the stricter concept of a class of full-data distributions

being non-parametric saturated – also called non-parametric identified (Vanstee-

landt et al. (2006); Daniels and Hogan (2008)).

Definition 2 (Non-parametric Saturation). Consider a class of full-data distri-

butions FA defined by a set of restrictions A. We say that the class FA is non-

parametric saturated if there is a one-to-one mapping from the set of observed-

data distributions to FA.

The set A of restrictions, or identifiability assumptions, that define a NPS

class allow us to build a full-data distribution, say with density fA(X = x,M =

m), from an observed-data distribution with density f(Xm̄ = xm̄,M = m),

so that fA(Xm̄ = xm̄,M = m) = f(Xm̄ = xm̄,M = m), where by definition

fA(Xm̄ = xm̄,M = m) =
∫
Xm

fA(X = x,M = m)µ(dxm). In terms of X∗, the

NPS property is expressed as fA(X∗) = f(X∗).

NPS is a desirable property, particularly for comparing inferences under

different approaches to handling nonignorable missing data. When two missing

data models satisfy NPS, we can be sure that any discrepancies in inferences

are due entirely to the different assumptions on the non-identifiable parts of the

full-data distribution. In contrast, without NPS, it can be difficult to disentangle

what parts of the discrepancies are due to the identifying assumptions and what

parts are due to differing constraints on the observed-data distribution. Thus,

NPS greatly facilitates sensitivity analysis (Robins (1997)).

For a given m, we refer to the conditional distribution of the missing study

variables given the observed data as the missing-data distribution – also known

as the extrapolation distribution (Daniels and Hogan (2008)) – with density

f(Xm = xm|Xm̄ = xm̄,M = m). These distributions correspond to the non-

identifiable parts of the full-data distribution. A NPS approach is equivalent

to a recipe for building these distributions from the observed-data distribution

without imposing constraints on the latter.

NPS models can be constructed in many ways. For example, in pattern mix-

ture models, one can use the complete-case missing-variable restriction (Little

(1993)), which sets f(Xm = xm|Xm̄ = xm̄,M = m) = f(Xm = xm|Xm̄ =

xm̄,M = 0p), for all m ∈ {0, 1}p. Although Little (1993) considered paramet-
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ric models for each f(Xm̄ = xm̄|M = m), this does not have to be the case,

and therefore pattern mixture models can be NPS. Another example is the per-

mutation missingness model of Robins (1997), which for a specific ordering of

the study variables assumes that the probability of observing the kth variable

depends on the previous study variables and the subsequent observed variables.

The group permutation missingness model of Robins (1997) is an analog of the

latter for groups of variables and is also NPS. Sadinle and Reiter (2017) intro-

duced a missingness mechanism where each variable and its missingness indicator

are conditionally independent given the remaining variables and missingness in-

dicators, which leads to a NPS model. Tchetgen Tchetgen, Wang and Sun (2016)

proposed a NPS approach based on discrete choice models. Finally, we note that

MAR models also can be NPS, as shown by Gill, van der Laan and Robins (1997).

3. Sequential Identification Strategy

We consider the p variables as divided into K blocks, X = (X1, . . . ,XK),

where Xk = (Xtk−1+1, . . . , Xtk). As our results only concern the identification

of full-data distributions starting from an observed-data distribution, we assume

that f(X∗) = f(X∗1, . . . ,X
∗
K) is known. The identification strategy consists of

specifying a sequence of assumptions A1, . . . , AK , one for each block of variables,

where each Ak allows us to identify the conditional distribution of Xk and Mk

given X<k ≡ (X1, . . . ,Xk−1), X∗>k ≡ (X∗k+1, . . . ,X
∗
K), and a carefully chosen

subset of the missingness indicators M<k ≡ (M1, . . . ,Mk−1) described below.

We first provide a general description of how A1, . . . , AK allow us to identify

parts of the full-data distribution in a sequential manner and then, in Theorem

1, present the formal identification result.

3.1. Description

We now present the steps needed to implement the identification strategy.

A graphical summary of the procedure is provided in Figure 1.

Step 1. Write f(X∗) = f(X∗1|X∗>1)f(X∗>1). Consider an identifiability as-

sumption A1 on the distribution of X1 and M1 given X∗>1 to obtain a distri-

bution with density fA1
(X1,M1|X∗>1) with the NPS property fA1

(X∗1|X∗>1) =

f(X∗1|X∗>1). From this define fA1
(X1,M1,X

∗
>1) ≡ fA1

(X1,M1|X∗>1)f(X∗>1).

Step 2. Divide the t1 variables in X1 into two sets indexed by R1 and S1,

where R1 ∪ S1 = {1, . . . , t1} and R1 ∩ S1 = ∅. Let MR1
and MS1

be the cor-

responding missingness indicators, and write fA1
(X1,M1,X

∗
>1) = fA1

(MS1
|X1,

MR1
,X∗>1)fA1

(X1,MR1
,X∗>1), where fA1

(X1,MR1
,X∗>1) = fA1

(X∗2|X1,MR1
,
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f(X∗)

fA1(X1,M1,X
∗
>1)

fA≤2
(X≤2,MR1

,M2,X
∗
>2)

...

fA≤K−1
(X≤K−1,MRK−2

,MK−1,X
∗
K)

fA≤K
(X,MRK−1

,MK)

A1{f(X∗
1|X∗

>1)}

A2{fA1
(X∗

2|X1,MR1
,X∗

>2)}

A3{fA≤2
(X∗

3|X≤2,MR2
,X∗

>3)}

AK−1{fA≤K−2
(X∗

K−1|X≤K−2,MRK−2
,X∗

K)}

AK{fA≤K−1
(X∗

K |X≤K−1,MRK−1
)}

Figure 1. Sequential identification strategy. We write Ak{fA≤k−1
(X∗

k| · · · )} to in-
dicate that assumption Ak is being used to obtain a conditional full-data density
fA≤k

(Xk,Mk| · · · ) from fA≤k−1
(X∗

k| · · · ).

X∗>2)fA1
(X1,MR1

,X∗>2). Consider an identifiability assumption A2 on the distri-

bution of X2 and M2 given X1,MR1
and X∗>2 to obtain a distribution with den-

sity fA≤2
(X2,M2|X1,MR1

,X∗>2) with the NPS property fA≤2
(X∗2|X1,MR1

,X∗>2)

= fA1
(X∗2|X1,MR1

,X∗>2). Define

fA≤2
(X≤2,MR1

,M2,X
∗
>2) ≡ fA≤2

(X2,M2|X1,MR1
,X∗>2)fA1

(X1,MR1
,X∗>2).

Step k + 1. Take fA≤k
(X≤k,MRk−1

,Mk,X
∗
>k) from the kth step. Let

Rk ∪ Sk = {tk−1 + 1, . . . , tk} ∪ Rk−1, Rk ∩ Sk = ∅, and MRk
and MSk

be

the corresponding missingness indicators. Write fA≤k
(X≤k,MRk−1

,Mk,X
∗
>k) =

fA≤k
(MSk

|X≤k,MRk
,X∗>k)fA≤k

(X≤k,MRk
,X∗>k), where fA≤k

(X≤k,MRk
,X∗>k)

= fA≤k
(X∗k+1|X≤k,MRk

,X∗>k+1)fA≤k
(X≤k,MRk

,X∗>k+1). Consider an identifia-

bility assumption Ak+1 on the distribution of Xk+1 and Mk+1 given X≤k,MRk

and X∗>k+1 to obtain a distribution with density fA≤k+1
(Xk+1,Mk+1|X≤k,MRk

,
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X∗>k+1) with the NPS property fA≤k+1
(X∗k+1|X≤k,MRk

,X∗>k+1) = fA≤k
(X∗k+1|

X≤k,MRk
,X∗>k+1). Define

fA≤k+1
(X≤k+1,MRk

,Mk+1,X
∗
>k+1)

≡ fA≤k+1
(Xk+1,Mk+1|X≤k,MRk

,X∗>k+1)fA≤k
(X≤k,MRk

,X∗>k+1).

Step K. With assumption AK on the distribution of XK and MK given

X<K and MRK−1
, obtain

fA≤K
(X,MRK−1

,MK) ≡ fA≤K
(XK ,MK |X<K ,MRK−1

)fA<K
(X<K ,MRK−1

).

Obtain the implied distribution of the study variables, with density fA≤K
(X),

from this last equation.

Remark 1. The main characteristic of the Rk subsets is that if an index does not

appear in Rk−1, then it cannot appear in Rk, unless it is one of tk−1 + 1, . . . , tk.

The flexibility in the choosing of these subsets gives flexibility in the setting up of

the identifiability assumptions: different versions of our identification approach

can be obtained by making assumptions conditioning on different subsets of the

missingness indicators. As long as the Rk subsets satisfy Rk ⊆ {tk−1+1, . . . , tk}∪
Rk−1, Theorem 1 guarantees that the final full-data distribution is NPS.

Remark 2. The sequence for A1, . . . , AK follows the order of the blocks X1, . . . ,

XK . In many cases these blocks may not have a natural order. Different orderings

of the blocks lead to different sets of assumptions, thereby leading to different

final full-data distributions and implied distributions of the study variables. To

clarify this point, suppose that we have three blocks of variables: XB, XC , and

XD. When XD is first in the order, A1 concerns the distribution of XD and

MD given X∗B and X∗C ; likewise, when XC is first in the order, A1 concerns the

distribution of XC and MC given X∗B and X∗D. Similarly, A2 and A3 also will

change depending on the order of the variables, thereby implying changes in the

final full-data distribution.

3.2. Non-parametric saturation

The previous presentation makes it clear that the identifying assumptions A1,

. . . , AK allow us to identify fA≤K
(X,MRK−1

,MK), and furthermore, fA≤k
(MSk

|
X≤k,MRk

,X∗>k) for each k < K, although each of these conditional densities

remains unused after step k in the procedure. A full-data distribution with

density f̃A≤K
(X,M) that encodes A1, . . . , AK can be expressed as

f̃A≤K
(X,M) = fA≤K

(X,MRK−1
,MK)f̃A≤K

(MS1
, . . . ,MSK−1

|X,MRK−1
,MK),



1748 SADINLE AND REITER

where the second factor can be written as
∏K−1

k=1 f̃A≤K
(MSk

|X,MS>k
,MRK−1

,

MK), with S>k ≡ Sk+1∪· · ·∪SK−1, and MS>k
≡ (MSk+1

, . . . ,MSK−1
). From the

definition of the sets Sk and Rk, it is easy to see that S>k ∪RK−1 = Rk ∪ {tk +

1, . . . , tK−1}, and therefore we can write f̃A≤K
(MSk

|X,MS>k
,MRK−1

,MK) =

f̃A≤K
(MSk

|X,MRk
,M>k).

The sequential identification procedure does not identify any f̃A≤K
(MSk

|X,
MRk

,M>k), but only fA≤k
(MSk

|X≤k,MRk
,X∗>k), that is, it identifies the distri-

bution of MSk
given the variables X≤k, the missingness indicators MRk

, and the

materialized variables X∗>k, but not given the missing variables among X>k ac-

cording to M>k. Nevertheless, the full specification of f̃A≤K
(MSk

|X,MRk
,M>k)

is irrelevant given that any such conditional distribution that agrees with

fA≤k
(MSk

|X≤k,MRk
,X∗>k) leads to the same fA≤K

(X). One such distribution

satisfies

f̃A≤K
(MSk

|X,MRk
,M>k) = fA≤k

(MSk
|X≤k,MRk

,X∗>k), k < K. (3.1)

Here the conditional distribution of MSk
given X, MRk

, and M>k does not

depend on the missing variables among X>k according to M>k. This guarantees

the existence of a full-data distribution with density

f̃A≤K
(X,M) = fA≤K

(X,MRK−1
,MK)

K−1∏
k=1

fA≤k
(MSk

|X≤k,MRk
,X∗>k), (3.2)

which encodes the assumptions A1, . . . , AK . Theorem 1 guarantees that this

construction leads to NPS full-data distributions.

Theorem 1. Let R1, . . . , RK−1 be a sequence of subsets such that Rk ⊆ {tk−1 +

1, . . . , tk} ∪ Rk−1. Let A1, . . . , AK be a sequence of identifying assumptions, Ak

being an assumption on the conditional distribution of Xk and Mk given X<k,

MRk−1
, and X∗>k, such that for a given density g(X∗k|X<k,MRk−1

,X∗>k), one

can construct a density gAk
(Xk,Mk|X<k,MRk−1

,X∗>k) with the NPS property

gAk
(X∗k|X<k,MRk−1

,X∗>k) = g(X∗k|X<k,MRk−1
,X∗>k). Then, given an observed-

data density f(X∗), there exists a full-data density f̃A≤K
(X,M) that encodes the

assumptions A1, . . . , AK and satisfies the NPS property f̃A≤K
(X∗) = f(X∗).

Proof. We explained how assumptions A1, . . . , AK along with the extra assump-

tion in (3.1) lead to the full-data density in (3.2). We now show the NPS property

of (3.2). To start, we integrate (3.2) over the missing variables in XK according

to MK . Since none of the factors in
∏K−1

k=1 fA≤k
(MSk

|X≤k,MRk
,X∗>k) depend

on these missing variables, we obtain
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fA≤K−1
(X≤K−1,MRK−1

,X∗K)

K−1∏
k=1

fA≤k
(MSk

|X≤k,MRk
,X∗>k)

= fA≤K−1
(X≤K−1,MRK−1

,MSK−1
,X∗K)

K−2∏
k=1

fA≤k
(MSk

|X≤k,MRk
,X∗>k)

= fA≤K−1
(X≤K−1,MRK−2

,MK−1,X
∗
K)

K−2∏
k=1

fA≤k
(MSk

|X≤k,MRk
,X∗>k). (3.3)

Similarly, we now integrate (3.3) over the missing variables in XK−1 accord-

ing to MK−1. Given that none of the factors in
∏K−2

k=1 fA≤k
(MSk

|X≤k,MRk
,X∗>k),

depend on these missing variables, and given the way fA≤K−1
(X≤K−1,MRK−2

,

MK−1,X
∗
K) is constructed (see generic step k + 1 in Section 3.1), we obtain

fA≤K−2
(X≤K−2,MRK−2

,X∗>K−2)

K−2∏
k=1

fA≤k
(MSk

|X≤k,MRk
,X∗>k).

These arguments and process can be repeated, sequentially integrating over

the missing variables in Xk according to Mk, k = K − 2, . . . , 1, finally obtaining

the observed-data density f(X∗).

3.3. Special cases

Two special sequential identification schemes can be derived from our general

presentation. One is obtained when for all k we take Rk = {tk−1 + 1, . . . , tk} ∪
Rk−1, Sk = ∅, and therefore MRk

= M≤k. In this case, each Ak+1 is on the

distribution of Xk+1 and Mk+1 given X≤k,M≤k and X∗>k+1, so the assumption

conditions on the whole set of missingness indicators M≤k and not just on a

subset of these. The other is obtained when for all k we take Rk = ∅, Sk = {tk−1+

1, . . . , tk}, and so MSk
= Mk. In this case, each Ak+1 is on the distribution of

Xk+1 and Mk+1 given X≤k and X∗>k+1, thus each assumption conditions on none

of the missingness indicators M≤k.

3.4. Connection with the mechanisms of Robins (1997)

An important particular case of our sequential identification strategy is ob-

tained when all MSk
= Mk and each Ak is taken to be a conditional MAR

assumption, that is, when we assume that f(Mk = mk|X≤k−1,Xk,X
∗
>k) =

f(Mk = mk|X≤k−1,Xk,m̄k
,X∗>k), with Xk,m̄k

being the observed variables among

Xk according to mk. Along with (3.1), this leads to the combined assumption

f(Mk = mk|X,M>k) = f(Mk = mk|X<k,Xk,m̄k
,X∗>k). (3.4)
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The missingness mechanism derived from this approach corresponds to the group

permutation missingness of Robins (1997). When each block contains only one

variable, it corresponds to the permutation missingness mechanism of Robins

(1997). If the ordering of the variables or blocks of variables is regarded as

temporal, as in a longitudinal study or a survey that asks questions in a fixed

sequence, Robins (1997) interpreted (3.4) as follows: the nonresponse propensity

at the current time period depends on the values of study variables in the previous

time periods, whether observed or not, but not on what is missing in the present

and future time periods.

If the order of the blocks of variables was reversed, that is, if A1 was on the

distribution of XK and MK given X∗<K , A2 was on the distribution of XK−1

and MK−1 given X∗<K−1 and XK , and so on, then we would have the following

interpretation: the nonresponse propensity at the current time period depends

on the values of study variables in the future time periods, whether observed or

not, but not on what is missing in the present and past time periods. This inter-

pretation is arguably easier to explain in the context of respondents answering

a questionnaire. The nonresponse propensity for question t can depend on the

respondent’s answers to questions that appear later in the questionnaire and to

questions that she has already answered, but not on the information that she has

not revealed.

4. Applications

4.1. Sequential identification for two categorical variables

Consider two categorical random variables X1 ∈ X1 = {1, . . . , I} and X2 ∈
X2 = {1, . . . , J}, and let M1 and M2 be their missingness indicators. Let P
denote the joint distribution of (X1, X2,M1,M2). The observed-data distribution

corresponds to the probabilities

πij00 ≡ P(X∗1 = i,X∗2 = j) = P(X1 = i,X2 = j,M1 = 0,M2 = 0),

πi+01 ≡ P(X∗1 = i,X∗2 = ∗) = P(X1 = i,M1 = 0,M2 = 1),

π+j10 ≡ P(X∗1 = ∗, X∗2 = j) = P(X2 = j,M1 = 1,M2 = 0),

π++11 ≡ P(X∗1 = ∗, X∗2 = ∗) = P(M1 = 1,M2 = 1),

for i ∈ X1, j ∈ X2. We seek to construct a full-data distribution PA≤2
(X1, X2,M1,

M2) from the observed-data distribution P(X∗1 , X
∗
2 ) by imposing assumptions A1

and A2, so that PA≤2
(X∗1 , X

∗
2 ) = P(X∗1 , X

∗
2 ), that is, we want PA≤2

to be NPS.

To use the general identification strategy presented in Section 3 we define
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each variable as its own block. With only two variables, set R1 can be either

R1 = {1} or R1 = ∅. We present examples below corresponding to these options.

Example 1. Consider R1 = {1}, S1 = ∅, and the identifying assumptions:

A1 : X1 ⊥⊥M1|X∗2 ; and A2 : X2 ⊥⊥M2|M1, X1.

Under A1, PA1
(X1,M1|X∗2 ) = PA1

(X1|X∗2 )PA1
(M1|X∗2 ) = P(X1|X∗2 ,M1 =

0)P(M1|X∗2 ), where P(X1|X∗2 ,M1 = 0) and P(M1|X∗2 ) are identified from the

observed data distribution. When X∗2 = j 6= ∗, P(X1 = i|X∗2 = j,M1 = 0) =

P(X1 = i|X2 = j,M1 = 0,M2 = 0) = πij00/π+j00, and P(M1 = m1|X∗2 =

j) = P(M1 = m1|X2 = j,M2 = 0) = π+jm10/π+j+0. Similarly, when X∗2 = ∗
we find P(X1 = i|X∗2 = ∗,M1 = 0) = πi+01/π++01 and P(M1 = m1|X∗2 = ∗) =

π++m11/π+++1. Since P(X∗2 ) can be obtained from the observed-data distribution

as P(X2 = j,M2 = 0) = π+j+0 when X∗2 = j 6= ∗, and as P(M2 = 1) =

π+++1 when X∗2 = ∗, using PA1
(X1,M1|X∗2 ) we obtain a joint distribution for

(X1,M1, X
∗
2 ) that relies on A1, defined as PA1

(X1,M1, X
∗
2 ) ≡ PA1

(X1,M1|X∗2 )

P(X∗2 ). Note that PA1
can be written as an explicit function of the observed-data

distribution.

We now use PA1
and identifying assumption A2 to obtain PA≤2

(X2,M2|X1,

M1). From the definition of X∗2 , PA1
(X1,M1, X

∗
2 ) can be written as PA1

(X1,M1,

X2,M2 = 0) when X∗2 6= ∗ and PA1
(X1,M1,M2 = 1) when X∗2 = ∗. From this

we can obtain

PA1
(M2=1|X1,M1)=

PA1
(X1,M1,M2=1)

PA1
(X1,M1,M2=1)+

∑
x2∈X2

PA1
(X1,M1, X2=x2,M2=0)

,

PA1
(X2|X1,M1,M2 = 0) =

PA1
(X1,M1, X2,M2 = 0)∑

x2∈X2
PA1

(X1,M1, X2 = x2,M2 = 0)
.

We then obtain PA≤2
(X2,M2|X1,M1) = PA≤2

(X2|X1,M1)PA≤2
(M2|X1,M1) =

PA1
(X2|X1,M1,M2 = 0)PA1

(M2|X1,M1), which gives us a way to obtain

PA≤2
(X2,M2|X1,M1) as a function of the distribution PA1

, which in turn is

a function of the observed-data distribution. The final full-data distribution is

obtained as PA≤2
(X1,M1, X2,M2) ≡ PA≤2

(X2,M2|X1,M1)PA1
(X1,M1), where

PA1
(X1,M1) can be obtained from PA1

. After some algebra we find

PA≤2
(X1 = i,X2 = j,M1 = m1,M2 = m2)

=
(πij00/π+j00)π+jm10

{
∑

l(πil00/π+l00)π+lm10}m2

(
πi+01

π++01
π++m11

)m2

.

It is easy to see that PA≤2
is NPS, that is PA≤2

(X∗1 , X
∗
2 ) = P(X∗1 , X

∗
2 ). From the

final distribution PA≤2
(X1, X2,M1,M2) we can now obtain

PA≤2
(X1 = i,X2 = j) =
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πij00 + πi+01
πij00

πi+00
+ π+j10

πij00

π+j00
+ π++11

πi+01

π++01

(πij00/π+j00)π+j10∑
l(πil00/π+l00)π+l10

, (4.1)

which is the distribution of inferential interest.

We stress that the final full-data distribution is not invariant to the order in

which the blocks of variables appear in the sequence of assumptions. From (4.1)

it is clear that the final distribution of the study variables would be different had

we identified a distribution for (X∗1 , X2,M2) first. Indeed, if we were to follow the

steps in the previous example but reversing the order of the variables, then we

would be assuming that X2 ⊥⊥M2|X∗1 and X1 ⊥⊥M1|M2, X2, which are different

from A1 and A2 in this example.

Example 2. Consider R1 = ∅, S1 = {1}, and the identifying assumptions

B1 : X1 ⊥⊥M1|X∗2 , and B2 : X2 ⊥⊥M2|X1.

Assumption B1 is the same as A1 in Example 1, and so PB1
(X1,M1, X

∗
2 ) =

PA1
(X1,M1, X

∗
2 ). Assumption B2 is made conditioning only on X1, so we need to

marginalize over M1 to obtain PB1
(X1, X

∗
2 ) = PB1

(X1,M1 = 0, X∗2 )+PB1
(X1,M1

= 1, X∗2 ):

PB1
(X1 = i,X∗2 = j) = PB1

(X1 = i,X2 = j,M2 = 0) =
πij00

π+j00
π+j+0,

PB1
(X1 = i,X∗2 = ∗) = PB1

(X1 = i,M2 = 1) =
πi+01

π++01
π+++1.

From this we can obtain

PB1
(M2 = 1|X1) =

PB1
(X1,M2 = 1)

PB1
(X1,M2 = 1) +

∑
x2∈X2

PB1
(X1, X2 = x2,M2 = 0)

,

PB1
(X2|X1,M2 = 0) =

PB1
(X1, X2,M2 = 0)∑

x2∈X2
PB1

(X1, X2 = x2,M2 = 0)
.

Using assumption B2, we obtain PB≤2
(X2,M2|X1) = PB≤2

(X2|X1)PB≤2
(M2|

X1) = PB1
(X2|X1,M2 = 0)PB1

(M2|X1). From this we obtain PB≤2
(X1, X2,M2)

≡ PB1
(X1)PB≤2

(X2,M2|X1) as

PB≤2
(X1 = i,X2 =j,M2 =m2) =

(πij00/π+j00)π+j+0

{
∑

l(πil00/π+l00)π+l+0}m2

(
πi+01

π++01
π+++1

)m2

.

Marginalizing over M2, we get

PB≤2
(X1 = i,X2 = j) = π+j+0

πij00

π+j00
+ π+++1

πi+01

π++01

(πij00/π+j00)π+j+0∑
l(πil00/π+l00)π+l+0

.

AssumptionsB1 andB2 are enough to identify PB≤2
(X1, X2,M2), and thereby

a distribution of the study variables PB≤2
(X1, X2). Although irrelevant for ob-

taining the distribution of the study variables, it is worth noticing that B1 and B2
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do not allow us to fully identify PB≤2
(M1|X1, X2,M2). From PB1

(X1,M1, X
∗
2 ) we

have PB1
(M1|X1, X2,M2 = 0) = P(M1|X2,M2 = 0) and PB1

(M1|X1,M2 = 1) =

P(M1|M2 = 1), but PB≤2
(M1|X1, X2,M2 = 1) remains unidentified. A full-data

distribution P̃B≤2
becomes identified under the extra assumption P̃B≤2

(M1|X1, X2,

M2 = 1) = P̃B≤2
(M1|X1,M2 = 1), which corresponds to the extra assumption in

(3.1).

The set of assumptions that we used in this example can be summarized in

terms of the missingness mechanism P̃B≤2
(M1,M2|X1, X2) = P̃B≤2

(M1|X1, X2,

M2)P̃B≤2
(M2|X1, X2), where P̃B≤2

(M1|X1, X2,M2 = 1) = P(M1|M2 = 1), P̃B≤2

(M1|X1, X2,M2 = 0) = P(M1|X2,M2 = 0), and P̃B≤2
(M2|X1, X2) = PB1

(M2|X1).

This corresponds to the permutation missingness (PM) mechanism of Robins

(1997).

As in Example 1, the full-data distribution changes when we modify the

order in which the blocks of variables appear in the identifying assumptions.

Changing the order of the variables in this example would correspond to making

the assumptions X2 ⊥⊥M2|X∗1 and X1 ⊥⊥M1|X2.

4.2. Sequential identification for partially ignorable mechanisms

Harel and Schafer (2009) introduced different notions of the missing data

being partially ignorable. In particular, in some scenarios one may think that

the missingness is ignorable for some, but not for all the variables. For exam-

ple, consider a survey with two blocks of items XS and XN that contain re-

sponses to sensitive and non-sensitive questions, respectively. Given the nature

of these variables, one might think that the missingness among the XN variables

could be ignored, but not among XS . Our sequential identification procedure

can be used to guarantee identifiability under such partially ignorable mecha-

nisms. Our goal here is to show that we can identify a NPS full-data distribution

f̃A≤2
(XS ,XN ,MS ,MN ) with the property that the missingness mechanism for

XN is partially MAR given MS (Harel and Schafer (2009)), that is,

f̃A≤2
(MN = mN |XN ,XS ,MS) = f̃A≤2

(MN = mN |XN,m̄N
, X∗S), (4.2)

while f̃A≤2
(MS |XN ,XS) is determined by some nonignorable assumption. As

before, we consider f(X∗S ,X
∗
N ) to be known.

Following our sequential identification procedure, we first consider an iden-

tifying assumption for the distribution of XN and MN given X∗S . We use the

conditional MAR assumption:

A1 : f(MN = mN |XN ,X
∗
S) = f(MN = mN |XN,m̄N

,X∗S). (4.3)
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This assumption guarantees the existence of a distribution of the variables XN ,

MN , and X∗S with density fA1
(XN ,MN ,X

∗
S) ≡ fA1

(MN |XN ,X
∗
S)fA1

(XN |X∗S)

f(X∗S), where fA1
(XN |X∗S) can be obtained from f(X∗N |X∗S) as described in page

28 of Robins (1997) and fA1
(MN |XN ,X

∗
S) as in (4.3).

Taking R1 = ∅ in our identification procedure, we can now consider any

identifying assumption, say A2, for the distribution of XS and MS given XN that

allows us to obtain fA≤2
(XS ,MS |XN ) with the NPS property fA≤2

(X∗S |XN ) =

fA1
(X∗S |XN ). For example, A2 could come from one of the approaches mentioned

in Section 2.2. We then define fA≤2
(XN ,XS ,MS) ≡ fA≤2

(XS ,MS |XN )fA1
(XN ).

To fully identify a full-data distribution f̃A≤2
(XS ,XN ,MS ,MN ) that en-

codes assumptions A1 and A2, we further require the conditional missingness

mechanism f̃A≤2
(MN |XN ,XS ,MS). Under the extra assumption

f̃A≤2
(MN |XN ,XS ,MS) = f̃A≤2

(MN |XN ,X
∗
S), (4.4)

and then using A1, we have identified a full-data distribution with the NPS

property guaranteed by Theorem 1.

A possibility for the A2 assumption could come from the itemwise condition-

ally independent nonresponse (ICIN) mechanism of Sadinle and Reiter (2017),

which is NPS. With XS = (XS1, . . . , XSpS
), the ICIN assumption for XS and

MS given XN can be written as

XSj ⊥⊥MSj |XS(−j),MS(−j),XN ; j = 1, . . . , pS , (4.5)

where XS(−j) is the vector obtained from removing the jth entry of XS , likewise

for MS(−j). Our sequential identification procedure guarantees that assumptions

in (4.2) and (4.5) jointly identify a NPS full-data distribution.

Example 3. For simplicity, consider XN = X1 and XS = (X2, X3). The

observed-data density can be written as the product of the density of the observed

variables given each missingness pattern times the probability of the missingness

pattern, that is f(Xm̄,M = m) = fm(Xm̄)πm, which for three variables is given

by f000(X1, X2, X3)π000, f100(X2, X3)π100, f010(X1, X3)π010, . . . , f011(X1)π011,

and π111. Assumption A1 in (4.3) in this case is A1 : X1 ⊥⊥ M1|X∗2 , X∗3 , which

for all x2 ∈ X2 and x3 ∈ X3 can be expanded as X1 ⊥⊥M1|M2 = 0,M3 = 0, X2 =

x2, X3 = x3; X1 ⊥⊥ M1|M2 = 1,M3 = 0, X3 = x3; X1 ⊥⊥ M1|M2 = 0,M3 =

1, X2 = x2; and X1 ⊥⊥ M1|M2 = 1,M3 = 1. Using A1 and the observed-data

distribution we obtain fA1
(X1,M1|X∗2 , X∗3 ) = fA1

(X1|X∗2 , X∗3 )fA1
(M1|X∗2 , X∗3 ) =

f(X1|M1 = 0, X∗2 , X
∗
3 )f(M1|X∗2 , X∗3 ), where f(X1|M1 = 0, X∗2 , X

∗
3 ) is obtained

from
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f(X1|M1 = 0,M2 = 0,M3 = 0, X2, X3) =
f000(X1, X2, X3)

f000(X2, X3)
,

f(X1|M1 = 0,M2 = 1,M3 = 0, X3) =
f010(X1, X3)

f010(X3)
,

f(X1|M1 = 0,M2 = 0,M3 = 1, X2) =
f001(X1, X2)

f001(X2)
,

f(X1|M1 = 0,M2 = 1,M3 = 1) = f011(X1); and f(M1|X∗2 , X∗3 ) from

f(M1=m1|M2 = M3 = 0, X2, X3) ∝ [f000(X2, X3)π000]I(m1=0)

[f100(X2, X3)π100]I(m1=1),

f(M1 = m1|M2 = 1,M3 = 0, X3) ∝ [f010(X3)π010]I(m1=0)[f110(X3)π110]I(m1=1),

f(M1 = m1|M2 = 0,M3 = 1, X2) ∝ [f001(X2)π001]I(m1=0)[f101(X2)π101]I(m1=1),

f(M1 = m1|M2 = 1,M3 = 1) ∝ [π011]I(m1=0)[π111]I(m1=1).

From this we can define fA1
(X1,M1, X

∗
2 , X

∗
3 ) ≡ fA1

(X1,M1|X∗2 , X∗3 )f(X∗2 , X
∗
3 ),

where f(X∗2 , X
∗
3 ) is obtained from f(M2 = 0,M3 = 0, X2, X3) = f000(X2, X3)π000

+f100(X2, X3)π100, f(M2 = 1,M3 = 0, X3) = f010(X3)π010 + f110(X3)π110,

f(M2 = 0,M3 = 1, X2) = f001(X2)π001 + f101(X2)π101, and f(M2 = 1,M3 =

1) = π011 + π111.

We now incorporate the ICIN assumption for the distribution of (X2, X3,M2,

M3) given X1. We have A2 : {X2 ⊥⊥M2|X3,M3, X1; and X3 ⊥⊥M3|X2,M2, X1}.
The identification results of Sadinle and Reiter (2017) guarantee that assump-

tion A2 leads to a conditional distribution fA≤2
(X2, X3,M2,M3|X1) with the

NPS property fA≤2
(X∗2 , X

∗
3 |X1) = fA1

(X∗2 , X
∗
3 |X1), where fA1

(X∗2 , X
∗
3 |X1) can

be obtained easily from fA1
(X1,M1, X

∗
2 , X

∗
3 ). Section 5.1 of Sadinle and Reiter

(2017) provides explicit formulae for the full-data distribution under the ICIN

assumption as a function of the observed-data distribution, in the case of two

variables. We can use those formulae here with fA1
(X∗2 , X

∗
3 |X1) to obtain condi-

tional ICIN full-data distributions that depend on X1. To simplify the notation

below we replace fA1
by g, and fA≤2

by h, and we denote gm2m3
(X2, X3|X1) ≡

g(X2, X3|X1,M2 = m2,M3 = m3) and hm2m3
(X2, X3|X1) ≡ h(X2, X3|X1,M2 =

m2,M3 = m3). Following the formulae of Sadinle and Reiter (2017), we obtain

h00(X2, X3|X1) = g00(X2, X3|X1), h01(X2, X3|X1) = g00(X2, X3|X1)g01(X2|X1)/

g00(X2|X1), h10(X2, X3|X1) = g00(X2, X3|X1)g10(X3|X1)/g00(X3|X1),

h11(X2, X3|X1) ∝ g00(X2, X3|X1)g01(X2|X1)g10(X3|X1)

g00(X2|X1)g00(X3|X1)
,

and h(M2 = m2,M3 = m3|X1) = g(M2 = m2,M3 = m3|X1).
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In all,

fA≤2
(X1, X2, X3,M2 = m2,M3 = m3) =

hm2m3
(X2, X3|X1)g(M2 = m2,M3 = m3, X1),

from which we can obtain the distribution of the study variables fA≤2
(X1, X2, X3).

A full-data density f̃A≤2
(X1, X2, X3,M1,M2,M3) becomes identified under the

extra assumption (4.4). This distribution therefore encodes the partial ignora-

bility assumption (4.2) for the missingness in X1 and the ICIN assumption (4.5)

for (X2, X3,M2,M3) given X1.

4.3. Usage in sensitivity analysis

To illustrate how this approach can be used for sensitivity analysis, we use

data related to the 1991 plebiscite in which Slovenians voted for independence

from Yugoslavia (Rubin, Stern and Vehovar (1995)). The data come from the

Slovenian public opinion survey, which contained the questions: XI : are you in

favor of Slovenia’s independence? XS : are you in favor of Slovenia’s secession

from Yugoslavia? XA: will you attend the plebiscite? We call these the Indepen-

dence, Secession, and Attendance questions, respectively. The possible responses

to each of these were yes, no, and don’t know. We follow Rubin, Stern and

Vehovar (1995) in treating don’t know as missing data.

We use the missingness mechanism of Example 3, and compare it with an

ignorable approach, a pattern mixture model (PMM) under the complete-case

missing-variable restriction (Little (1993)), and the ICIN approach of Sadinle and

Reiter (2017) that assumes Xj ⊥⊥ Mj |X−j ,M−j ; j = I, S,A. The Attendance

question is arguably the least sensitive of the three questions, so it seems rea-

sonable to consider a partially ignorable mechanism where the nonresponse for

XA is ignorable given MI and MS , as in (4.2), and the nonresponse for XI and

XS satisfy the ICIN assumption conditioning on XA, as in (4.5) in Example 3.

Nothing prevents us from using this approach exchanging the roles of the vari-

ables, so we also consider two other partially ignorable missingness mechanisms,

depending on whether we take the nonresponse for XI or for XS as ignorable.

To implement these approaches, we first use a Bayesian approach to estimate

the observed-data distribution. The observed data can be organized in a three-

way contingency table with cells corresponding to each element of {yes, no,

don’t know}3, as presented in Rubin, Stern and Vehovar (1995). Treating these

data as a random sample from a multinomial distribution, we take a conjugate

prior distribution for the cell probabilities: symmetric Dirichlet with parameter
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Figure 2. Samples from joint posterior distributions of P(Independence = Yes, Atten-
dance = Yes) and P(Attendance = No). Pattern mixture model under the complete-case
missing-variable restriction. The three partially ignorable missingness (PIM) mech-
anisms correspond to which variable we take as having ignorable missingness. The
plebiscite results are represented by �. These are shown to illustrate differences between
approaches and not to declare better vs worse assumptions for these data.

1/27. We took 5,000 draws from the posterior distribution of the observed-data

distribution, and for each of these we applied the formulae presented in Example

3 to obtain posterior draws of the full-data distribution under each of the three

partially ignorable mechanisms. We used a similar approach to obtain posterior

draws of the full-data distribution under ICIN, PMM, and ignorability. For each

of the approaches we then obtained draws of the implied probabilities for the

items.

Figure 2 displays 5,000 draws from the joint posterior distribution of

P(Independence = yes, Attendance = yes) and P(Attendance = no) under each

of the six missingness mechanisms considered. Despite the fact that all of these

approaches agree in their fit to the observed data, we obtain quite different infer-

ences. When inferences are so sensitive to the identifying assumptions, perhaps
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the most honest way to proceed is to report all the results under all assumptions

deemed plausible given the context.

5. Discussion

The sequential identification procedure can be set up in many different ways,

leading to different possibilities for constructing nonignorable missingness mech-

anisms. The main differences among these possibilities lie in the assumptions

about how missingness from any one block of variables affects missingness in

other blocks, as illustrated in the examples of Section 3.3 and Section 4. In

general, the procedure allows for different levels of dependence on missing vari-

ables while ensuring non-parametric saturated models, which provides a useful

framework for sensitivity analysis.

Although we considered K blocks of variables, we expect that in practice

most analysts would use K = 2 blocks when the variables do not naturally fall

into ordered blocks of variables. For example, analysts may want to partition

variables into one group that requires careful assessment of sensitivity to vari-

ous missingness mechanisms, such as outcome variables in regression modeling

with high fractions of missingness, and a second group that can be treated with

generic missingness mechanisms like conditional MAR, such as covariates with

low fractions of missingness. These cases require partially ignorable mechanisms

like those in Section 4.2. Another scenario arises when analysts have prior in-

formation on how the missingness occurs for a set of variables, but not for the

rest. As well, analysts might have auxiliary information on the marginal distri-

bution of a few variables, perhaps from a census or other surveys, that enable the

identification of mechanisms where the probability of nonresponse for a variable

depends explicitly on the variable itself (Hirano et al. (2001); Deng et al. (2013)).

Our sequential identification procedure provides a constructive way of ob-

taining estimated full-data distributions from estimated observed-data distribu-

tions while ensuring non-parametric saturated models. To implement these ap-

proaches, one needs sufficient numbers of observations for each missing data

pattern, so as to allow accurate non-parametric estimation of the observed-data

distribution. This can be challenging in modest-sized samples with large numbers

of variables. Of course, this is the case with most methods for handling missing

data, including pattern mixture models. In such cases, one may have to sacrifice

non-parametric saturated modeling of the observed data in favor of parametric

models.
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