GENERALIZED METHOD OF MOMENTS FOR NONIGNORABLE MISSING DATA

Li Zhang ${ }^{1}$, Cunjie Lin ${ }^{2}$ and Yong Zhou ${ }^{3,4}$
${ }^{1}$ Northwest University, ${ }^{2}$ Renmin University of China, ${ }^{3}$ Chinese Academy of Sciences and ${ }^{4}$ Shanghai University of Finance and Economics

Abstract

In this study, we consider the problem of nonignorable missingness in the framework of generalized method of moments. To model the missing propensity, a semiparametric logistic regression model is adopted and we modify this model with nonresponse instrumental variables to overcome the identifiability issue. Under the identifiability conditions, we mitigate the effects of nonignorable missing data through reformulated estimating equations imputed via a kernel regression method, then the idea of generalized method of moments is applied to estimate the parameters of interest and the tilting parameter in propensity simultaneously. Moreover, the consistency and the asymptotic normality of the proposed estimators are established and we find that the price we pay for estimating an unknown tilting parameter is an increased variance for the estimator of population parameters, that is quite acceptable in contrast with validation sample, especially for practical problems. The proposed method is evaluated through simulation studies and demonstrated on a data example.

Key words and phrases: Estimating equations, exponential tilting, generalized method of moments, kernel regression, nonignorable missing, nonresponse instrument.

1. Introduction

Missing data is a common occurrence in many applications, including clinical trials, sampling survey, and observational studies, among others. It may arise due to subjects' refusal to undergo complete examinations, unavailability of measurements, and loss of data. Most statistical models for dealing with the missing data depend on a missing data mechanism which is described by Little and Rubin (1987). They defined missing completely at random (MCAR) to be a process in which the probability of being observed is independent of observed or missing quantities. And missing at random (MAR) refers to the case where the propensity of missing data is conditionally independent of unobserved quantities given the observed quantities. Both MCAR and MAR are said to be ignorable
in the sense that the propensity of missing data depends only on the observed data. If the missingness also depends on the unobserved quantities, the missing data mechanism is termed nonignorable. For example, people with high incomes may be less likely to report their incomes, and in clinical trials, people who are getting worse are more likely to drop out than people who are getting better. In contrast to the ignorable mechanism, nonignorable missingness is associated with the unobserved values, and it leads to much more complexity for subsequent statistical inference.

Various methods have been developed to handle missing data, especially when missing mechanism is ignorable. But for nonignorable missing data, statistical inference usually depends on some unverifiable assumptions, and incorrect use of methods under ignorable assumptions may result in biased estimates. In this study, we focus on the identifiability and estimation for parameters of interest with nonignorable missing data. Let y be the response of interest subject to missingness, δ be the response status indicator of y. Suppose that a vector of covariates x is always observed, and given x, the conditional density of y is $f(y \mid x)$. The conditional probability $\pi(x, y)=P(\delta=1 \mid x, y)$ is called the propensity of missing data. Under some parametric assumptions on both $\pi(x, y)$ and $f(y \mid x)$, Greenlees, Reece and Zieschang (1982) and Baker and Laird (1988) studied likelihood estimators with nonignorable missing data. Their fully parametric assumption for joint modeling of the propensity and the population model is restrictive and the estimates are sensitive to failure of the assumed models. More efforts have been made to develop semiparametric approaches because $\pi(x, y) f(y \mid x)$ may be nonidentifiable when both $\pi(x, y)$ and $f(y \mid x)$ are purely nonparametric (Robins and Ritov (1997)). For example, Tang, Little and Raghunathan (2003) proposed a pseudo-likelihood method with a parametric model for $f(y \mid x)$ but an unspecified $\pi(x, y)$. Zhao and Shao (2015) studied the identifiability and estimation in a generalized linear model with a nonparametric missing mechanism.

Qin, Leung and Shao (2002) and Kott and Chang (2010) studied a likelihoodbased estimation and a calibration weighting approach, respectively, for data with nonignorable nonresponse, assuming a parametric model for $\pi(x, y)$ and a nonparametric model for $f(y \mid x)$. Wang, Shao and Kim (2014) utilized a nonresponse instrument, an auxiliary variable related to y but not related to the nonresponse probability, to overcome the difficulty of identifiability, and applied the generalized method of moments to estimate the parameters in parametric propensity and nonparametric population. It is difficult to verify their model assumption on propensity under nonignorable missingness, and a weaker assumption for $\pi(x, y)$
is more desirable in applications. Kim and Yu (2011) proposed a semiparametric logistic regression model for $\pi(x, y)$ and studied the semiparametric estimation of mean functional. This is weaker than the parametric assumption and some refined methods based on this model can be found in Zhao, Zhao and Tang (2013), Tang, Zhao and Zhu (2014) and Niu et al. (2014). However, to estimate the parameters of population and avoid the identifiability issue, they all assumed that the tilting parameter in the propensity is known or can be estimated using external data, which limits its applications to a great extent. To remove this limitation on methodology, Shao and Wang (2016) proposed to estimate the propensity using the generalized method of moments. Then other population parameters can be estimated using the inverse propensity weighting approach.

In this study, we consider the problem of nonignorable missingness in the framework of generalized method of moments with the propensity serving as auxiliary information. The properties of the population are characterized by some parameters of interest via estimating equations without specifying distribution for the underlying population. The semiparametric logistic regression model is adopted to model the propensity. We propose to estimate the parameters of interest and the tilting parameter of propensity simultaneously with the assistance of a generalized method of moments. To estimate the parameters, we impute the estimating equations by transforming the distribution of the unobserved data into that of the observed data based on the exponential tilting model. Then we get unbiased estimating equations consisted of both observed and missing information of data through a kernel regression method. The key advantage of this approach is that the parameters of interest and the tilting parameter can be estimated simultaneously without a validation sample and restrictive assumptions concerning population and propensity. We establish the consistency and asymptotic normality of the proposed estimators for both parameters of interest and the tilting parameter of propensity.

The rest of this article is organized as follows. In Section 2, we discuss the identifiability of the model and describe the model formulation. We describe the estimation procedure in Section 3. In Section 4, we discuss the theoretical results for the two cases in which the true value of the tilting parameter is known and unknown. We also propose the method to estimate the asymptotic variance. The results of simulation studies are reported in Section 5 and the data example is studied in Section 6. Some concluding remarks are given in Section 7, and the proofs are included in the Appendix.

2. Basic Setup and Identifiability

Let $\left(X_{i}, Y_{i}\right), 1 \leq i \leq n$, be n independent realizations of random variables $(X, Y) . Y$ is a response variable and the X are d-dimensional covariates. Suppose there are q estimating functions $\psi(y, x, \boldsymbol{\theta})=\left(\psi_{1}(y, x, \boldsymbol{\theta}), \ldots, \psi_{q}(y, x, \boldsymbol{\theta})\right)^{\tau}$ satisfying $E \psi\left(Y, X, \boldsymbol{\theta}_{0}\right)=0$, where $\boldsymbol{\theta}_{0}$ is the true value of p-dimensional parameter $\boldsymbol{\theta}$ and $q>p$. We are interested in making statistical inference on $\boldsymbol{\theta}$. If Y is fully observed, we can estimate $\boldsymbol{\theta}_{0}$ by minimizing

$$
\left\{\frac{1}{n} \sum_{i=1}^{n} \psi\left(Y_{i}, X_{i}, \boldsymbol{\theta}\right)\right\}^{\tau} W\left\{\frac{1}{n} \sum_{i=1}^{n} \psi\left(Y_{i}, X_{i}, \boldsymbol{\theta}\right)\right\}
$$

where W is a $q \times q$ weight matrix, but this cannot be used directly with missing data.

Here we focus on the case where Y_{i} is subject to missingness and X_{i} is always observed. Let δ_{i} be the missing indicator for $Y_{i}, \delta_{i}=1$ if Y_{i} is observed and $\delta_{i}=0$ otherwise. We assume that δ_{i} is independent of δ_{j} for any $i \neq j$, and that the response mechanism is $\delta_{i} \mid\left(X_{i}, Y_{i}\right) \sim \operatorname{Bernoulli}\left(\pi_{i}\right)$. The nonignorable missingness means π_{i} depends on X_{i} as well as Y_{i}, so we write $\pi_{i}=\pi\left(X_{i}, Y_{i}\right)$. We consider a semiparametric logistic regression model for the propensity (Kim and Yu (2011)),

$$
\begin{equation*}
\pi(X, Y)=P(\delta=1 \mid X, Y)=\frac{\exp (\alpha Y+g(X))}{1+\exp (\alpha Y+g(X))} \tag{2.1}
\end{equation*}
$$

where $g(\cdot)$ is an unspecified function and α is the tilting parameter. Since g and α are not identifiable without further assumptions, we study the identifiability of the model before estimation. Similar to the discussion of Wang, Shao and Kim (2014), the identifiability can be resolved with the aid of a nonresponse instrument, the covariates X has two components, $X=(U, Z)$, and Z acts as the instrumental variable with Z independent of δ given Y and U, but is associated with Y even in the presence of U. For the general case with semiparametric propensity, we extend the results in Wang, Shao and Kim (2014).

Theorem 1. For missing data (X_{i}, Y_{i}, δ_{i}), the observed likelihood

$$
\prod_{i: \delta_{i}=1} \pi\left(X_{i}, Y_{i}\right) f\left(Y_{i} \mid X_{i}\right) \prod_{i: \delta_{i}=0} \int\left\{1-\pi\left(X_{i}, y\right)\right\} f\left(y \mid X_{i}\right) d y
$$

is identifiable under the following conditions,
(C1) The covariates X can be decomposed into components, $X=(U, Z)$, such that $P(\delta=1 \mid Y, X)=P(\delta=1 \mid Y, U)=H(g(U)+\alpha Y)$, where α is an unknown parameter and g is a continuously differentiable function not de-
pending on $z . H(\cdot)$ is a known, strictly monotone, and twice differentiable function.
(C2) For any given u, there exist two values of Z, z_{1} and z_{2}, such that $f\left(y \mid u, z_{1}\right) \neq$ $f\left(y \mid u, z_{2}\right)$, where $f(y \mid u, z)$ has monotone likelihood ratio in the sense that $f\left(y \mid u, z_{1}\right) / f\left(y \mid u, z_{2}\right)$ is nondecreasing in y for any given u.

According to the identifiability conditions, we can reformulate the response probability model (2.1) as

$$
\begin{equation*}
\pi(X, Y)=\pi(U, Y)=\frac{\exp (\alpha Y+g(U))}{1+\exp (\alpha Y+g(U))} \tag{2.2}
\end{equation*}
$$

Here, Z does not appear in model (2.2) but assists in resolving the identifiability issue. Based on (2.2), we can identify all parameters including $\boldsymbol{\theta}, \alpha$, and g. The question then is how to estimate these parameters using the available data.

3. Estimation Procedure

To estimate the unknown parameters $\boldsymbol{\theta}_{0}$ of interest, we propose to impute the estimating functions $\psi(Y, X, \boldsymbol{\theta})$ using the observed data. Under the ignorable missing mechanism condition, Zhou, Wan and Wang (2008) proposed to estimate parameters based on the estimating functions

$$
\psi^{*}\left(Y_{i}, X_{i}, \boldsymbol{\theta}\right)=\delta_{i} \psi\left(Y_{i}, X_{i}, \boldsymbol{\theta}\right)+\left(1-\delta_{i}\right) \hat{m}\left(X_{i}, \boldsymbol{\theta}\right),
$$

where $\hat{m}\left(X_{i}, \boldsymbol{\theta}\right)$ is a consistent estimator of $m\left(X_{i}, \boldsymbol{\theta}\right)=E\left\{\psi(Y, X, \boldsymbol{\theta}) \mid X=X_{i}\right\}$. Under the nonignorable propensity (2.2), we consider the adjusted functions

$$
\begin{equation*}
\widetilde{\psi}\left(Y_{i}, X_{i}, \boldsymbol{\theta}\right)=\delta_{i} \psi\left(Y_{i}, X_{i}, \boldsymbol{\theta}\right)+\left(1-\delta_{i}\right) m_{0}\left(X_{i}, \boldsymbol{\theta}\right), \tag{3.1}
\end{equation*}
$$

where $m_{0}\left(x, \boldsymbol{\theta}_{0}\right)=E\left\{\psi\left(Y, X, \boldsymbol{\theta}_{0}\right) \mid X=x, \delta=0\right\}$ is the conditional expectation of $\psi\left(Y, X, \boldsymbol{\theta}_{0}\right)$ given $X=x$ and $\delta=0$ that can be expressed based on the observed data. Actually, the conditional distribution of the missing data given x can be written as

$$
\begin{equation*}
f(y \mid x, \delta=0)=f(y \mid x, \delta=1) \times \frac{\exp (\gamma y)}{E\{\exp (\gamma Y) \mid x, \delta=1\}} \tag{3.2}
\end{equation*}
$$

where $\gamma=-\alpha$, and it describes the deviation from the ignorable assumption. Equation (3.2) also shows that the density for the nonrespondents is an exponential tilting of the density for the respondents, which yields,

$$
\begin{aligned}
m_{0}(X, \boldsymbol{\theta}) & =E\left[\left.\psi(Y, X, \boldsymbol{\theta}) \times \frac{\exp (\gamma Y)}{E\{\exp (\gamma Y) \mid X, \delta=1\}} \right\rvert\, X, \delta=1\right] \\
& =\frac{E\{\psi(Y, X, \boldsymbol{\theta}) \exp (\gamma Y) \mid X, \delta=1\}}{E\{\exp (\gamma Y) \mid X, \delta=1\}}=\frac{E\{(1-\delta) \psi(Y, X, \boldsymbol{\theta}) \mid X\}}{E(1-\delta \mid X)} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
E\{\tilde{\psi}(Y, X, \boldsymbol{\theta})\} & =E\left\{\delta \psi(Y, X, \boldsymbol{\theta})+(1-\delta) m_{0}(X, \boldsymbol{\theta})\right\} \\
& =E\left[\delta \psi(Y, X, \boldsymbol{\theta})+(1-\delta) \frac{E\{(1-\delta) \psi(Y, X, \boldsymbol{\theta}) \mid X\}}{E(1-\delta \mid X)}\right]=0 .
\end{aligned}
$$

Hence, we can estimate $\boldsymbol{\theta}_{0}$ based on $\tilde{\psi}(Y, X, \boldsymbol{\theta})$ under the propensity model 2.2. However, $m_{0}(x, \boldsymbol{\theta})$ is always unknown in the presence of missing data and we need to estimate it consistently in advance.

Let $K(\cdot)$ be a d-variate kernel function satisfying $\int K(\mathbf{u}) d \mathbf{u}=1$. Assume that $K(\cdot)$ has a compact support with $\int u_{1}^{\alpha_{1}} \cdots u_{d}^{\alpha_{d}} K(\mathbf{u}) d \mathbf{u}=0$, for $0<\alpha_{1}+$ $\cdots+\alpha_{d}<m, m>d$. Let \mathbf{H} be a diagonal bandwidth matrix, then $K_{h}(\mathbf{u})=$ $|\mathbf{H}|^{-1} K\left(\mathbf{H}^{-1} \mathbf{u}\right)$. For simplicity, we take the same bandwidth for each component in \mathbf{H}. Thus, with a known tilting parameter $\gamma=\gamma_{0}$, we can estimate $m_{0}(x, \boldsymbol{\theta})$ through the kernel regression method,

$$
\begin{equation*}
\hat{m}_{0}(x, \boldsymbol{\theta})=\frac{\sum_{i=1}^{n} \delta_{i} \psi\left(Y_{i}, X_{i}, \boldsymbol{\theta}\right) \exp \left(\gamma_{0} Y_{i}\right) K_{h}\left(X_{i}, x\right)}{\sum_{i=1}^{n} \delta_{i} \exp \left(\gamma_{0} Y_{i}\right) K_{h}\left(X_{i}, x\right)}, \tag{3.3}
\end{equation*}
$$

where $K_{h}(u, x)=h^{-d} K\{(u-x) / h\}=h^{-d} K\left\{\left(u_{1}-x_{1}\right) / h, \ldots,\left(u_{d}-x_{d}\right) / h\right\}$. According to the consistency of the nonparametric kernel estimator, $\hat{m}_{0}(X, \boldsymbol{\theta})$ is a consistent estimator of $m_{0}(X, \boldsymbol{\theta})$. By substituting $\hat{m}_{0}\left(X_{i}, \boldsymbol{\theta}\right)$ for $m_{0}\left(X_{i}, \boldsymbol{\theta}\right)$ in (3.1), we obtain the estimating functions,

$$
\hat{\psi}\left(Y_{i}, X_{i}, \boldsymbol{\theta}\right)=\delta_{i} \psi\left(Y_{i}, X_{i}, \boldsymbol{\theta}\right)+\left(1-\delta_{i}\right) \hat{m}_{0}\left(X_{i}, \boldsymbol{\theta}\right) .
$$

It can be shown that $\hat{\psi}\left(Y_{i}, X_{i}, \boldsymbol{\theta}\right)$ is asymptotically unbiased and we can estimate $\boldsymbol{\theta}_{0}$ by minimizing

$$
A_{1}(\boldsymbol{\theta})=\left\{\frac{1}{n} \sum_{i=1}^{n} \hat{\psi}\left(Y_{i}, X_{i}, \boldsymbol{\theta}\right)\right\}^{\tau} W_{1}\left\{\frac{1}{n} \sum_{i=1}^{n} \hat{\psi}\left(Y_{i}, X_{i}, \boldsymbol{\theta}\right)\right\}
$$

where W_{1} is a positive-definite matrix. We denote the minimizer by $\hat{\boldsymbol{\theta}}_{g 1}$, termed a GMM estimator. Under some mild regularity conditions, $\hat{\boldsymbol{\theta}}_{g 1}$ is a consistent estimator of $\boldsymbol{\theta}_{0}$.

Here $\hat{m}_{0}(x, \boldsymbol{\theta})$ depends on γ_{0}, which is unknown in practice, and thus $\hat{\boldsymbol{\theta}}_{g 1}$ also depends on the unknown quantity. To estimate γ_{0}, one approach is based on an independent survey or a validation sample which can be a subsample of the nonrespondents (Kim and $\mathrm{Yu}(2011))$. This is costly and even infeasible in many cases, because the nonrespondents may still be reluctant to answer questions. Another approach is based on the method proposed by Shao and Wang (2016), applying the generalized method of moments by profiling the nonparametric component with a kernel-type estimator. Then the population parameters
can be estimated using the inverse probability weighting (IPW) approach. Here, we provide an alternative way to estimate $\boldsymbol{\theta}_{0}$ and γ_{0}. Now $A_{1}(\boldsymbol{\theta})$ can be regarded as a function of $\boldsymbol{\theta}_{0}$ and γ_{0} without involving the nonparametric component $g(\cdot)$, which makes it possible to estimate $\boldsymbol{\theta}_{0}$ and γ_{0} simultaneously.

Let $\boldsymbol{\beta}=\left(\boldsymbol{\theta}^{\tau}, \gamma\right)^{\tau}$ and write $m_{0}(x, \boldsymbol{\beta})$ to stress the parameters in $m_{0}(x, \boldsymbol{\theta})$. The estimating functions for $\boldsymbol{\theta}_{0}$ and γ_{0} can be expressed as,

$$
\hat{\psi}\left(Y_{i}, X_{i}, \boldsymbol{\beta}\right)=\delta_{i} \psi\left(Y_{i}, X_{i}, \boldsymbol{\theta}\right)+\left(1-\delta_{i}\right) \hat{m}_{0}\left(X_{i}, \boldsymbol{\beta}\right),
$$

where $\hat{m}_{0}(X, \boldsymbol{\beta})$ is the same estimate as 3.3), except that the tilting parameter γ_{0} is treated as an unknown parameter just like the population parameter $\boldsymbol{\theta}$. Since $q \geq(p+1)$ and $p+1$ is the dimension of $\boldsymbol{\beta}$, we can still use the idea of generalized method of moments to estimate $\boldsymbol{\beta}_{0}=\left(\boldsymbol{\theta}_{0}^{\tau}, \gamma_{0}\right)^{\tau}$. The valid objective function can be organized as

$$
\begin{equation*}
A_{2}(\boldsymbol{\beta})=\left\{\frac{1}{n} \sum_{i=1}^{n} \hat{\psi}\left(Y_{i}, X_{i}, \boldsymbol{\beta}\right)\right\}^{\tau} W_{2}\left\{\frac{1}{n} \sum_{i=1}^{n} \hat{\psi}\left(Y_{i}, X_{i}, \boldsymbol{\beta}\right)\right\} \tag{3.4}
\end{equation*}
$$

where W_{2} is a positive-definite symmetric weight matrix. We denote the minimizer by $\hat{\boldsymbol{\beta}}_{g 2}=\left(\hat{\boldsymbol{\theta}}_{g 2}^{\tau}, \hat{\gamma}_{g 2}\right)^{\tau}$.

4. Theoretical Results and Asymptotic Variance Estimation

In this section, we study the theoretical properties of estimators $\hat{\boldsymbol{\theta}}_{g 1}$ and $\hat{\boldsymbol{\beta}}_{g 2}$, corresponding to the cases with known and unknown tilting parameter, and give the choice of optimal matrices.

Theorem 2. Suppose that γ_{0} is known and there is a unique value $\boldsymbol{\theta}_{0}$ such that $E\left\{\psi\left(Y, X, \boldsymbol{\theta}_{0}\right)\right\}=0$. Then under the conditions in Theorem 1 and the conditions (A1)-(A7) stated in the Appendix, as $n \rightarrow \infty, \hat{\boldsymbol{\theta}}_{g 1} \rightarrow \boldsymbol{\theta}_{0}$ in probability. Moreover, $\sqrt{n}\left(\hat{\boldsymbol{\theta}}_{g 1}-\boldsymbol{\theta}_{0}\right) \xrightarrow{D} N\left(0, \Sigma_{g_{2}}\right)$, where $\Sigma_{g_{1}}=\left(\Gamma_{\theta}^{\tau} W_{1} \Gamma_{\theta}\right)^{-1} \Gamma_{\theta}^{\tau} W_{1} D W_{1} \Gamma_{\theta}\left(\Gamma_{\theta}^{\tau} W_{1} \Gamma_{\theta}\right)^{-1}$. Here $\Gamma_{\theta}=\Gamma\left(\boldsymbol{\theta}_{0}\right)=E\left\{\partial \widetilde{\psi}\left(Y, X, \boldsymbol{\theta}_{0}\right) / \partial \boldsymbol{\theta}\right\}$ and $D=D\left(\boldsymbol{\theta}_{0}\right)=E\left\{\psi\left(Y, X, \boldsymbol{\theta}_{0}\right)^{\otimes 2}\right\}+$ $E\left[\{1 / \pi(U, Y)-1\}\left\{\psi\left(Y, X, \boldsymbol{\theta}_{0}\right)-m_{0}\left(X, \boldsymbol{\theta}_{0}\right)\right\}^{\otimes 2}\right]$, where for a vector $\mathbf{a}, \mathbf{a}^{\otimes 2}=\mathbf{a} \mathbf{a}^{\tau}$.

For the asymptotic covariance matrix $\Sigma_{g_{1}}$, the optimal weight matrix is $W_{1}=$ D^{-1}. With this choice of W_{1}, the asymptotic covariance matrix $\Sigma_{g_{1}}$ reduces to $\left(\Gamma_{\theta}^{\tau} D^{-1} \Gamma_{\theta}\right)^{-1}$ and $\Sigma_{g_{1}}-\left(\Gamma_{\theta}^{\tau} D^{-1} \Gamma_{\theta}\right)^{-1}$ is a nonnegative definite matrix.

Theorem 3. Assume that the conditions in Theorem 2 are satisfied. Let γ_{0} be the underlying value of the tilting parameter γ. Then, as $n \rightarrow \infty$, we have that the GMM estimators in (3.4) satisfy $\hat{\boldsymbol{\theta}}_{g 2} \rightarrow \boldsymbol{\theta}_{0}$ and $\hat{\gamma}_{g 2} \rightarrow \gamma_{0}$ in probability. Moreover, the estimators are asymptotically normal with $\sqrt{n}\left(\hat{\boldsymbol{\beta}}_{g 2}-\right.$
$\left.\boldsymbol{\beta}_{0}\right) \xrightarrow{D} N\left(0, \Omega_{g_{2}}\right)$, where $\Omega_{g_{2}}=\left(\Gamma_{\beta}^{\tau} W_{2} \Gamma_{\beta}\right)^{-1} \Gamma_{\beta}^{\tau} W_{2} D W_{2} \Gamma_{\beta}\left(\Gamma_{\beta}^{\tau} W_{2} \Gamma_{\beta}\right)^{-1}$. Here $\Gamma_{\beta}=\Gamma\left(\boldsymbol{\beta}_{0}\right)=E\left\{\partial \widetilde{\psi}\left(Y, X, \boldsymbol{\beta}_{0}\right) / \partial \boldsymbol{\beta}\right\}$ and $D=D\left(\boldsymbol{\beta}_{0}\right)$ is essentially identical with $D\left(\boldsymbol{\theta}_{0}\right)$ in Theorem 2.

For the asymptotic covariance matrix $\Omega_{g_{2}}$, the optimal weight matrix is $W_{2}=D^{-1}$. With this choice of $W_{2}, \Omega_{g_{2}}$ reduces to $\left(\Gamma_{\beta}^{\tau} D^{-1} \Gamma_{\beta}\right)^{-1}$ and $\Omega_{g_{2}}-$ $\left(\Gamma_{\beta}^{\tau} D^{-1} \Gamma_{\beta}\right)^{-1}$ is a nonnegative definite matrix.

From Theorems 2 and 3, we can see that the GMM estimators $\hat{\boldsymbol{\theta}}_{g 1}$ and $\hat{\boldsymbol{\beta}}_{g 2}$ share the same optimal weight matrix in theory. In practice, we usually use the identity matrix in the first step to obtain a GMM estimator and, based on the first-step GMM estimator, we obtain an estimated optimal matrix, which is the matrix we utilize to get the final GMM estimator. If we write $\Gamma_{\gamma}=\Gamma\left(\gamma_{0}\right)=$ $E\left\{\partial \widetilde{\psi}\left(Y, X, \boldsymbol{\beta}_{0}\right) / \partial \gamma\right\}$, we have

$$
\Gamma_{\beta}^{\tau} D^{-1} \Gamma_{\beta}=\binom{\Gamma_{\theta}^{\tau} D^{-1} \Gamma_{\theta}^{\tau} \Gamma_{\theta}^{\tau} D^{-1} \Gamma_{\gamma}}{\Gamma_{\gamma}^{\tau} D^{-1} \Gamma_{\theta} \Gamma_{\gamma}^{\tau} D^{-1} \Gamma_{\gamma}} .
$$

Thus with the optimal weight matrix, the asymptotic normality for $\hat{\boldsymbol{\theta}}_{g 2}$ and $\hat{\gamma}_{g 2}$ can be expressed separately as

$$
\sqrt{n}\left(\hat{\boldsymbol{\theta}}_{g 2}-\boldsymbol{\theta}_{0}\right) \xrightarrow{D} N\left(0, \Sigma_{g_{2}}\right), \quad \sqrt{n}\left(\hat{\gamma}_{g 2}-\gamma_{0}\right) \xrightarrow{D} N\left(0, \sigma_{g_{2}}\right),
$$

where $\Sigma_{g 2}=\left\{\Gamma_{\theta}^{\tau} D^{-1} \Gamma_{\theta}-\Gamma_{\theta}^{\tau} D^{-1} \Gamma_{\gamma}\left(\Gamma_{\gamma}^{\tau} D^{-1} \Gamma_{\gamma}\right)^{-1} \Gamma_{\gamma}^{\tau} D^{-1} \Gamma_{\theta}\right\}^{-1}, \sigma_{g 2}=\left\{\Gamma_{\gamma}^{\tau} D^{-1} \Gamma_{\gamma}-\right.$ $\left.\Gamma_{\gamma}^{\tau} D^{-1} \Gamma_{\theta}\left(\Gamma_{\theta}^{\tau} D^{-1} \Gamma_{\theta}\right)^{-1} \Gamma_{\theta}^{\tau} D^{-1} \Gamma_{\gamma}\right\}^{-1}$. An appealing feature of this result is that our method does not require a validation sample for estimating γ, but only at the cost of a larger variance of the estimator for $\boldsymbol{\theta}$. We treat the larger variance $\Sigma_{g 2}$ as the price we pay for estimating the unknown tilting parameter, which is quite acceptable for practical problems.

Take the estimation of mean function for example, the interesting parameter is $\theta_{0}=E(Y)$. With a known γ_{0}, the observed likelihood is identifiable under (2.1). We can estimate θ_{0} using the estimating function $\psi_{1}(y, \theta)=y-\theta$ and it can be shown from Theorem 2 that $\sqrt{n}\left(\hat{\theta}-\theta_{0}\right) \xrightarrow{D} N\left(0, \sigma_{1}^{2}\right)$, where $\sigma_{1}^{2}=E\{(Y-$ $\left.\left.\theta_{0}\right)^{2}\right\}+E\left[\{1 / \pi(X, Y)-1\}\left\{Y-m_{0}(X)\right\}^{2}\right]$, and $m_{0}(x)=E(Y \mid X=x, \delta=0)$. That is the result of Theorem 1 in Kim and Yu (2011). If $\pi(X, Y)$ does not depend on Y, σ_{1}^{2} reduces to the asymptotic variance in Cheng (1994). If γ_{0} is unknown, the estimation function $\psi_{1}(y, \theta)$ is not enough to estimate θ and γ_{0} simultaneously. Under this case, we suppose that the distribution of Y is symmetric and construct another estimating function, $\psi_{2}(y, \theta)=(y-\theta)^{3}$. In principle, other higher odd moments can also be used. Then we can use the proposed method to estimate $\boldsymbol{\beta}_{0}=\left(\theta_{0}, \gamma_{0}\right)^{\tau}$ by minimizing $A_{2}(\boldsymbol{\beta})$ in (3.4). By Theorem 3, we have that both
$\hat{\theta}_{g 2}$ and $\hat{\gamma}_{g 2}$ are asymptotically normal.
The results for nonignorable missing data are also applied to the ignorable case where $\gamma_{0}=0$. In this case, the observed likelihood is identifiable and the propensity may depends on the whole $X, \pi(X, Y)=\pi(X)$, which can be regarded as a nonparametric model because $\gamma_{0}=0$. Then our results are consistent with those of Zhou, Wan and Wang (2008).

The asymptotic normality results provide a basis for estimating the variances of the proposed estimators. Based on our results, it suffices to estimate D, Γ_{θ}, and Γ_{β}. First, we can consistently estimate Γ_{θ} and Γ_{β} by

$$
\hat{\Gamma}_{\theta}=\left.\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \hat{\psi}\left(Y_{i}, X_{i}, \boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}}\right|_{\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}_{g_{1}}}, \quad \hat{\Gamma}_{\beta}=\left.\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \hat{\psi}\left(Y_{i}, X_{i}, \boldsymbol{\beta}\right)}{\partial \boldsymbol{\beta}}\right|_{\boldsymbol{\beta}=\hat{\boldsymbol{\beta}}_{g_{2}}}
$$

respectively. The consistent estimators for $D\left(\boldsymbol{\theta}_{0}\right)$ and $D\left(\boldsymbol{\beta}_{0}\right)$ are $\hat{D}\left(\hat{\boldsymbol{\theta}}_{g 1}\right)=(1 / n)$ $\sum_{i=1}^{n} \hat{\eta}_{i} \hat{\eta}_{i}^{\tau}$ and $\hat{D}\left(\hat{\boldsymbol{\beta}}_{g 2}\right)=(1 / n) \sum_{i=1}^{n} \widetilde{\eta}_{i} \widetilde{\eta}_{i}^{\tau}$, respectively, where

$$
\begin{aligned}
& \hat{\eta}_{i}=\hat{m}_{0}\left(X_{i}, \hat{\boldsymbol{\theta}}_{g 1}\right)+\frac{\delta_{i}}{\hat{\pi}\left(U_{i}, Y_{i}\right)}\left\{\psi\left(Y_{i}, X_{i}, \hat{\boldsymbol{\theta}}_{g 1}\right)-\hat{m}_{0}\left(X_{i}, \hat{\boldsymbol{\theta}}_{g 1}\right)\right\}, \\
& \widetilde{\eta}_{i}=\hat{m}_{0}\left(X_{i}, \hat{\boldsymbol{\beta}}_{g 2}\right)+\frac{\delta_{i}}{\widetilde{\pi}\left(U_{i}, Y_{i}\right)}\left\{\psi\left(Y_{i}, X_{i}, \hat{\boldsymbol{\theta}}_{g 2}\right)-\hat{m}_{0}\left(X_{i}, \hat{\boldsymbol{\beta}}_{g 2}\right)\right\} .
\end{aligned}
$$

Hence, we need to estimate the propensity $\pi(U, Y)$, which involves estimating $g(U)$. For any given γ, let $\zeta(U, \gamma)=\exp (-g(U))$, which can be estimated by its kernel regression estimator:

$$
\hat{\zeta}(U, \gamma)=\frac{\sum_{j=1}^{n}\left(1-\delta_{j}\right) K_{h}\left(U, U_{j}\right)}{\sum_{j=1}^{n} \delta_{j} \exp \left(\gamma Y_{j}\right) K_{h}\left(U, U_{j}\right)}
$$

If we use $\hat{\zeta}\left(U, \gamma_{0}\right)$ and $\hat{\zeta}\left(U, \hat{\gamma}_{g 2}\right)$ to distinguish between γ_{0} is known and unknown, we can estimate the propensity $\pi(U, Y)$ with

$$
\hat{\pi}\left(U_{i}, Y_{i}\right)=\frac{1}{1+\hat{\zeta}\left(U_{i}, \gamma_{0}\right) \exp \left(\gamma_{0} Y_{i}\right)}, \quad \widetilde{\pi}\left(U_{i}, Y_{i}\right)=\frac{1}{1+\hat{\zeta}\left(U_{i}, \hat{\gamma}_{g 2}\right) \exp \left(\hat{\gamma}_{g 2} Y_{i}\right)},
$$

respectively. The asymptotic variances of the GMM estimators can be estimated consistently by $\hat{\Sigma}_{g_{1}}=\left(\hat{\Gamma}_{\theta}^{\tau} W_{1} \hat{\Gamma}_{\theta}\right)^{-1} \hat{\Gamma}_{\theta}^{\tau} W_{1} \hat{D}\left(\hat{\boldsymbol{\theta}}_{g 1}\right) W_{1} \hat{\Gamma}_{\theta}\left(\hat{\Gamma}_{\theta}^{\tau} W_{1} \hat{\Gamma}_{\theta}\right)^{-1}$, and $\hat{\Omega}_{g_{2}}=\left(\hat{\Gamma}_{\beta}^{\tau} W_{2} \hat{\Gamma}_{\beta}\right)^{-1} \hat{\Gamma}_{\beta}^{\tau} W_{2} \hat{D}\left(\hat{\boldsymbol{\beta}}_{g 2}\right) W_{2} \hat{\Gamma}_{\beta}\left(\hat{\Gamma}_{\beta}^{\tau} W_{2} \hat{\Gamma}_{\beta}\right)^{-1}$.

5. Simulation Studies

In this section, we report on simulation studies to evaluate the finite sample performance of the proposed estimators.

Experiment 1. We considered a simple case where the only covariate was the instrumental variable, $X=Z$, and the propensity model was given by $\pi\left(Y_{i}\right)=$

Table 1. Simulation results for Experiment 1.

	$\gamma_{0}=0.7, M R=26.06 \%$				$\gamma=0.5, M R=30.62 \%$			
	Bias	SE	SD	CP(\%)	Bias	SE	SD	CP(\%)
$\hat{\theta}_{g 1}$	0.0009	0.0202	0.0199	94.70	0.0003	0.0202	0.0203	94.80
	γ_{0} unknown, $M R=26.06 \%$				γ_{0} unknown, $M R=30.62 \%$			
	Bias	SE	SD	CP(\%)	Bias	SE	SD	CP(\%)
$\hat{\theta}_{g 2}$	0.0016	0.0280	0.0272	94.60	0.0048	0.0302	0.0300	94.70
$\hat{\gamma}_{g 2}$	-0.0021	0.3456	0.3377	96.70	0.0528	0.2937	0.2916	96.00

$\exp \left(\alpha_{0} Y_{i}\right) /\left\{1+\exp \left(\alpha_{0} Y_{i}\right)\right\}$, while $\gamma_{0}=-\alpha_{0}$ was used to control the missing rate. We generated data from the model

$$
Y=\theta Z+\theta(Z-1)^{2}+\varepsilon
$$

where the true value of θ was $\theta_{0}=1$ and the Z were generated from $N(1,1)$ and $\varepsilon \sim N(0,1)$. Similar to Zhou, Wan and Wang (2008), the estimating functions are given by

$$
\psi(Y, Z, \theta)=\binom{\psi_{1}(Y, Z, \theta)}{\psi_{2}(Y, Z, \theta)}=\binom{Y^{2}-2 \theta^{2}-2 \theta^{2} Z(Z-1)-\theta^{2}(Z-1)^{4}-1}{Y-\theta Z-\theta}
$$

We carried out 1,000 replications with sample size $n=1,000$ and used the proposed methods to estimate θ and γ. In estimation, the Gaussian kernel $K(u)=\exp \left(-u^{2} / 2\right) / \sqrt{2 \pi}$ was adopted. The selected bandwidth for estimating $\hat{m}_{0}(Z, \theta)$ was $h=c \hat{\sigma}_{Z} n^{-1 / 3}$, where $\hat{\sigma}_{Z}$ is the standard deviation of Z_{i} in the sample and c is a constant. We used the optimal Gaussian kernel bandwidth $h=1.06 \hat{\sigma}_{Z} n^{-1 / 5}$ to estimate $\hat{\pi}\left(Y_{i}\right)$. The results are summarized in Table 1.

In Table 1, Bias and SE are the bias, estimated standard error based on the asymptotic normality results, averaged over 1,000 replications. SD is the standard deviation calculated using the estimated values from 1,000 replications. CP is the coverage probability of the nominal 95% confidence interval. The estimator $\hat{\theta}_{g 1}$ was based on the kernel-assisted estimating equation imputation scheme when γ_{0} was known. The estimators $\hat{\theta}_{g 2}$ and $\hat{\gamma}_{g 2}$ were obtained based on the proposed method when γ_{0} was unknown. From Table 1, we see that the bias, SE and SD of $\hat{\theta}_{g 1}$ are smaller than that of $\hat{\theta}_{g 2}$ under two settings with different missing rates. When γ_{0} is unknown, the estimate $\hat{\gamma}_{g 2}$ is also unbiased. Comparing across the results, we see that the proposed estimates are unbiased and the estimated variances are close to the true sampling variation. Overall, this provides empirical evidence for the asymptotic properties of the proposed
estimators.
Experiment 2. Here we added another covariate $U, X=(Z, U)$, and assessed the performance of the proposed estimators under several missingness mechanisms. First, we generated Z from a binomial distribution with success probability 0.5. Given $Z, U \sim N(Z, 1)$. We standardized U and Z, and generated Y from the model $Y=\theta_{1} U+\theta_{2} Z+\epsilon$, where $\epsilon \sim N(0,1)$, the true value of $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}\right)$ was $\boldsymbol{\theta}_{0}=(-1,1)$. The estimating functions are given by

$$
\psi(Y, X, \theta)=\left(\begin{array}{l}
\psi_{1}(Y, X, \boldsymbol{\theta}) \\
\psi_{2}(Y, X, \boldsymbol{\theta}) \\
\psi_{3}(Y, X, \boldsymbol{\theta})
\end{array}\right)=\left(\begin{array}{c}
Y-\theta_{1} U-\theta_{2} Z \\
U Y-\theta_{1} U^{2}-\theta_{2} U Z \\
Z Y-\theta_{1} U Z-\theta_{2} Z^{2}
\end{array}\right)
$$

The missing indicator δ was generated from the Bernoulli distribution with probability $\pi(U, Y)$. We considered two response probability models similar to Kim and Yu (2011),

M1. (Linear Ignorable): $\pi\left(U_{i}, Y_{i}\right)=\exp \left(\phi_{0}+\phi_{1} U_{i}\right) /\left\{1+\exp \left(\phi_{0}+\phi_{1} U_{i}\right)\right\}$, where $\left(\phi_{0}, \phi_{1}\right)=(1.2,0.1)$ for missing rate about $23 \%,\left(\phi_{0}, \phi_{1}\right)=(0.4,0.3)$ for missing rate about 40%.

M2. (Nonlinear Nonignorable): $\pi\left(U_{i}, Y_{i}\right)=\exp \left(\phi_{0}+\phi_{1} U_{i}+\phi_{2} U_{i}^{2}+\phi_{3} Y_{i}\right) /\{1+$ $\left.\exp \left(\phi_{0}+\phi_{1} U_{i}+\phi_{2} U_{i}+\phi_{3} Y_{i}\right)\right\}$, where $\left(\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}\right)=(1,0.5,0.2,0.1)$ for missing rate about $24 \%,\left(\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}\right)=(0.3,0.5,0.2,0.1)$ for missing rate about 40%.

For each missing case, we carried out 1,000 replications with sample size $n=1,000$ and used our methods to estimate $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}\right)$ and γ_{0}. The Gaussian kernel was adopted in all cases, and we used the selection method described in Experiment 1 to choose the bandwidth. The results for missing mechanisms M1 and M2 are presented in Tables 2 and 3, respectively. From these tables, the estimates derived when γ_{0} is unknown are comparable with the results when γ_{0} is known. Under a high missing rate, our methods still give reliable results. The bias are all negligible, SEs and SDs are close, and CP are all around 95%, thus the asymptotic approximations work well for these approaches.

Experiment 3. We conducted simulations to compare our methods with two estimators: (1) the benchmark estimator that uses the complete data; (2) the naive method that uses the observed data and ignores the missing part. First, we generated data based on the logistic regression model

$$
P(Y=1 \mid Z, U)=\frac{\exp \left(\theta_{1} Z+\theta_{2} U\right)}{1+\exp \left(\theta_{1} Z+\theta_{2} U\right)}
$$

Table 2. Simulation results for M1.

	$\gamma_{0}=0, M R=23.20 \%$				$\gamma_{0}=0, M R=40.35 \%$			
	Bias	SE	SD	CP(\%)	Bias	SE	SD	CP(\%)
$\hat{\boldsymbol{\theta}}_{g 1}$	-0.0010	0.0394	0.0408	96.20	-0.0008	0.0458	0.0468	94.80
	0.0017	0.0405	0.0403	94.40	-0.0012	0.0460	0.0456	94.50
	γ_{0} unknown, $M R=23.20 \%$				γ_{0} unknown, $M R=40.29 \%$			
	Bias	SE	SD	CP(\%)	Bias	SE	SD	CP(\%)
$\hat{\boldsymbol{\theta}}_{g 2}$	-0.0011	0.0418	0.0409	93.90	0.0002	0.0481	0.0468	94.70
	0.0003	0.0399	0.0403	94.70	0.0015	0.0457	0.0456	94.80
$\hat{\gamma}_{g 2}$	-0.0002	0.1622	0.1582	94.30	-0.0006	0.1055	0.1033	94.40

Table 3. Simulation results for M2.

	$\gamma_{0}=-0.1, M R=24.43 \%$				$\gamma_{0}=-0.1, M R=40.00 \%$			
	Bias	SE	SD	CP(\%)	Bias	SE	SD	CP(\%)
$\hat{\boldsymbol{\theta}}_{g 1}$	-0.0003	0.0399	0.0407	94.50	-0.0005	0.0430	0.0451	95.90
	-0.0014	0.0413	0.0409	94.20	-0.0019	0.0469	0.0457	94.10
	γ_{0} unknown, $M R=24.49 \%$				γ_{0} unknown, $M R=40.00 \%$			
	Bias	SE	SD	CP(\%)	Bias	SE	SD	CP(\%)
$\hat{\boldsymbol{\theta}}_{g 2}$	-0.0009	0.0407	0.0410	95.70	-0.0015	0.0438	0.0453	95.80
	0.0003	0.0398	0.0411	96.70	-0.0000	0.0462	0.0458	95.00
$\hat{\gamma}_{g 2}$	-0.0059	0.1624	0.1520	95.20	0.0004	0.1120	0.1072	93.80

where $Z \sim U[0,2], U \sim N(0,1)$. The true values of θ_{1} and θ_{2} were $\theta_{1}=1$ and $\theta_{2}=-1$. The estimating functions were

$$
\psi\left(Y, Z, U, \theta_{1}, \theta_{2}\right)=(1, Z, U)^{T}\left\{Y-\frac{\exp \left(\theta_{1} Z+\theta_{2} U\right)}{1+\exp \left(\theta_{1} Z+\theta_{2} U\right)}\right\}
$$

To generate the missing indicator, we considered
M3. (Linear Nonignorable): $\pi\left(U_{i}, Y_{i}\right)=\exp \left(\phi_{0}+\phi_{1} U_{i}+\phi_{2} Y_{i}\right) /\left\{1+\exp \left(\phi_{0}+\right.\right.$ $\left.\left.\phi_{1} U_{i}+\phi_{2} Y_{i}\right)\right\}$, where $\left(\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}\right)=(0.7,0.45,0.5,0.2)$ for the missing rate about 23% and $\left(\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}\right)=(0.45,0.1,-0.15,-0.2)$ for the missing rate 40%.

We conducted 1,000 replications with $n=1,000$, and adopted the Gaussian kernel and the same method to select bandwidth. The results are summarized in Table 4. The benchmark and the naive estimator are denoted by $\hat{\boldsymbol{\theta}}_{b}$ and $\hat{\boldsymbol{\theta}}_{n}$, respectively. Table 4 shows that the naive estimator performs the worst. The other three estimators are comparable in terms of bias, but the SE and SD increase in the order $\hat{\boldsymbol{\theta}}_{b}, \hat{\boldsymbol{\theta}}_{g 1}$, and $\hat{\boldsymbol{\theta}}_{g 2}$. The coverage probabilities of the three estimators are all close to 95%. Overall, the results indicate that our method

Table 4. Simulation results for M3.

	$M R=25 \%$				$M R=45 \%$			
	Bias	SE	SD	$\mathrm{CP}(\%)$	Bias	SE	SD	CP(\%)
$\hat{\boldsymbol{\theta}}_{b}$	0.0071	0.0777	0.0764	94.70	0.0073	0.0755	0.0764	95.80
	-0.0062	0.0944	0.0902	93.70	-0.0079	0.0941	0.0902	94.20
$\hat{\boldsymbol{\theta}}_{n}$	0.0712	0.0921	0.0916	89.80	-0.0609	0.1014	0.1020	89.80
	-0.0429	0.1110	0.1066	92.60	-0.0139	0.1237	0.1214	95.20
$\hat{\boldsymbol{\theta}}_{g 1}$	0.0042	0.0945	0.0888	93.60	0.0086	0.1031	0.0999	94.40
	-0.0088	0.1108	0.1046	93.30	-0.0115	0.1190	0.1188	95.40
$\hat{\boldsymbol{\theta}}_{g 2}$	-0.0047	0.1670	0.1632	93.30	0.0015	0.1753	0.1801	95.10
	0.0004	0.1294	0.1277	95.40	-0.0033	0.1257	0.1192	94.10
$\hat{\gamma}_{g 2}$	0.0106	0.7553	0.7596	95.80	0.0069	0.4357	0.4438	96.10

can give close estimators to the no missing data estimators and are reliable and effective.

6. Data Example

We applied the method to the Baseball data described in Michael (1991). A total of 322 baseball players' information were collected, including the annual salary on opening day (in USD 1,000) in 1987, experience as measured by years in the major leagues, and players' division, as well as some performance metrics such as times at Bat, hits, the number of runs scored by a player (Runs), Runs Batted In (RBI), and so on. Some studies indicate that the baseball players are paid based on their on-the-field performance (Hoaglin and Velleman (1995); Magel and Hoffman (2015)). Here we are interested in estimating the players' annual salaries using the players' performance statistics: the response variable Y is the \log of annual salary and its missing rate is about 18.3%. As indicated by Stone and Pantuosco (2008), years in the major leagues and players' division are significant predictors for the baseball players' salaries. Our initial analysis confirms this finding. In addition to the players' experiences, performance in the field is a primary variable. As among all performance metrics, hits is highly correlated with other variables, hits is the only incorporated measure of players' ability in our model. We considered the linear regression model

$$
Y=\theta_{0}+\theta_{1} X_{1}+\theta_{2} X_{2}+\theta_{3} X_{3}+\epsilon
$$

where X_{1}, X_{2}, X_{3} stand for years in the major leagues, players' division, and hits, respectively. We assumed that $E\left(\epsilon \mid X_{1}, X_{2}, X_{3}\right)=0$ and $E\left(\epsilon^{2} \mid X_{1}, X_{2}, X_{3}\right)=\sigma^{2}$. To estimate the parameters, we used the estimating functions

Table 5. Result for baseball data.

	Estimates	SE	Confidence interval			Estimates	SE	Confidence interval
θ_{0}	4.0252	0.1303	[3.7698	4.2807]	θ_{2}	0.2084	0.0685	[0.0741, 0.3427]
θ_{1}	0.0963	0.0069	[0.0829	0.1098]	θ_{3}	0.0095	0.0010	[0.0076, 0.0114]
γ	-3.1300	0.0094	[-3.1484	3.1117]				

$$
\psi(Y, Z, \theta)=\left(\begin{array}{c}
\psi_{1}(Y, X, \theta) \\
\psi_{2}(Y, Z, \theta) \\
\psi_{3}(Y, X, \theta) \\
\psi_{4}(Y, X, \theta) \\
\psi_{5}(Y, X, \theta)
\end{array}\right)=\left(\begin{array}{c}
Y-\theta_{0}-\theta_{1} X_{1}-\theta_{2} X_{2}-\theta_{3} X_{3} \\
X_{1}\left(Y-\theta_{0}-\theta_{1} X_{1}-\theta_{2} X_{2}-\theta_{3} X_{3}\right) \\
X_{2}\left(Y-\theta_{0}-\theta_{1} X_{1}-\theta_{2} X_{2}-\theta_{3} X_{3}\right) \\
X_{3}\left(Y-\theta_{0}-\theta_{1} X_{1}-\theta_{2} X_{2}-\theta_{3} X_{3}\right) \\
X_{1} X_{2}\left(Y-\theta_{0}-\theta_{1} X_{1}-\theta_{2} X_{2}-\theta_{3} X_{3}\right)
\end{array}\right)
$$

The nonignorable missing assumption appears reasonable here, as the players with high income tend not to report their salaries. To apply the method, we need to determine which covariate can be used as the instrumental variable Z. We considered the estimates with all possible instrument subsets to investigate the effect of invalid instrumental variables, and found that the estimates of the regression coefficients are not sensitive to this choice. Here, we only include the result with years in the major leagues $\left(X_{1}\right)$ serving as the instrumental variable. For other scenarios with different instrumental variables, the results are reported in the supplementary material. From the results in Table 5, the players with longer time in the major leagues tend to have higher salaries, while the players' division is also an important factor. High hits, as a measure of player's on-field ability, can increase the salary to a certain extent. The estimate of γ indicates that the nonignorable missing assumption holds for the response variable.

7. Discussion

This study provides an alternative method to handle nonignorable missing data in the framework of GMM. To apply the method, we need more unbiased estimating equations than the population parameters to account for the tilting parameter. We use a nonresponse instrument that is related to the response but can be excluded from the propensity, to avoid the identifiability issue. Similar to Shao and Wang (2016), we select an instrument using the criterion D

$$
D=\left\|\frac{1}{n} \sum_{i=1}^{n} \frac{\delta_{i} X_{i}}{\tilde{\pi}\left(U_{i}, Y_{i}\right)}-\frac{1}{n} \sum_{i=1}^{n} X_{i}\right\|
$$

that converges to zero if and only if Z is an instrument and $\pi(U, Y)$ is a correct model, consistently estimated by $\tilde{\pi}\left(U_{i}, Y_{i}\right)$. Hence, we can select an instrument
by minimizing D over a group of candidate variables. Further discussions and simulation studies about the instrumental variable and the performance of D are included in the supplementary material.

In this study, we focused on the situation where only the response is subject to missingness; for the case with missing observations in both response and covariates, identifiability needs a more thorough discussion. The idea of the proposed method can be applied to other types of data with a more complex structure, including longitudinal data and censored survival data. With these types of data, the model and missing mechanism can be more complicated. The identifiability of model as well as theoretical analysis and computational implementation would also be more difficult. These are interesting and important problems that require further work.

Supplementary Materials

Supplementary material contains some proofs and further numerical studies.

Acknowledgment

We thank an associate editor and two referees for their helpful comments. Zhang's work was supported by National Natural Science Foundation of China (NSFC) (11601424), Youth Foundation of the Ministry of Education of China (15YJC910009), Science Foundation of Northwest University (14NW31), China Postdoctoral Science Foundation Funded Project (2015M580867; 2016T90940). Lin's work was supported by National Natural Science Foundation of China (NSFC)(11701561) and the MOE Project of Key Research Institute of Humanities and Social Sciences at Universities (16JJD910002). Zhou's work was supported by the State Key Program of National Natural Science Foundation of China (71331006), the State Key Program in the Major Research Plan of National Natural Science Foundation of China (91546202), National Center for Mathematics and Interdisciplinary Sciences (NCMIS), Key Laboratory of RCSDS, AMSS, CAS (2008DP173182) and Innovative Research Team of Shanghai University of Finance and Economics (IRTSHUFE13122402).

Appendix

To prove the results of Theorems 2 and 3, we need some notation. Denote the Euclidean norm of a matrix B by $\|B\|$. Let $|\mathbf{a}|=\max _{1 \leq i \leq q}\left|a_{i}\right|$ for any vector $\mathbf{a}=\left(a_{1}, \ldots, a_{q}\right)^{\tau}$. Write $\mathbf{a}=O\left(b_{n}\right)$ if all elements a_{i} 's satisfying $a_{i}=O\left(b_{n}\right)$.

Define $\mathbf{a}^{\otimes 2}=\mathbf{a a}^{\tau}$. We need assumptions and regularity conditions, as in Newey and McFadden (1994) and Khan and Powell (2001).
(A1) The kernel function $K(\cdot)$ is a probability density function such that
(i) it is bounded and has compact support;
(ii) it is symmetric with $\mu_{l}=\int x^{l} K(x) d x$, and $\mu_{2}<\infty$;
(iii) $K(x) \geq c$ for some $c>0$ in some closed interval centered at zero.
(A2) The bandwidth h satisfies: $h \rightarrow 0, n h^{d} \rightarrow \infty, n h^{2 m} \rightarrow 0$, and $n^{1 / 2} h^{d} / \log n$ $\rightarrow \infty$ as $n \rightarrow \infty$.
(A3) The probability density function of X is $f(\cdot)$, which is bounded away from ∞ in the support of X , and the second derivatives of $f(x)$ is continuous and bounded.
(A4) (i) $E\left\{\exp \left(2 \gamma_{0} y\right)\right\}$ is finite;
(ii) $\pi(x, y)>c_{2}>0$ and $p(x)=E\{\pi(x, y) \mid x\} \neq 1$ almost surely.
(A5) $\psi(\cdot, \boldsymbol{\theta})$ is twice continuously differentiable in the neighborhood of $\boldsymbol{\theta}_{0}$, and $m_{0}(x, \boldsymbol{\beta})$ is twice continuously differentiable in the neighborhood of $\boldsymbol{\beta}_{0}$.
(A6) (i) $0<E\left|\psi\left(Y, X, \boldsymbol{\theta}_{0}\right)\right|^{2}<\infty$;
(ii) $0<E\left|a^{\tau} \psi^{\prime}\left(Y, X, \boldsymbol{\theta}_{0}\right)\right|^{2}<\infty$ for any constant vector a.
(A7) $\psi^{\prime}(\cdot, \boldsymbol{\theta})$ and $\psi^{(3)}(\cdot, \boldsymbol{\theta})$ are bounded by some integrable function $M(x)$ in the neighborhood of $\boldsymbol{\theta}_{0}$.

These are assumptions commonly used in the literature on nonparametric kernel estimation and estimating equations. We sketch the proofs of Thms 2 and 3 and leave the details to the supplementary material. By the definition of $\hat{\psi}\left(Y_{i}, X_{i}, \boldsymbol{\theta}\right)$, we have the decomposition

$$
\frac{1}{n} \sum_{i=1}^{n} \hat{\psi}\left(Y_{i}, X_{i}, \boldsymbol{\theta}\right)=I_{1}+I_{2}+I_{3}
$$

where $I_{1}=(1 / n) \sum_{i=1}^{n}\left[\delta_{i}\left\{\psi\left(Y_{i}, X_{i}, \boldsymbol{\theta}\right)-m_{1}\left(X_{i}, \boldsymbol{\theta}\right)\right\}\right], I_{2}=(1 / n) \sum_{i=1}^{n}\left\{\delta_{i} m_{1}\left(X_{i}\right.\right.$, $\left.\boldsymbol{\theta})+\left(1-\delta_{i}\right) m_{0}\left(X_{i}, \boldsymbol{\theta}\right)\right\}$ and $I_{3}=(1 / n) \sum_{i=1}^{n}\left(1-\delta_{i}\right)\left\{\hat{m}_{0}\left(X_{i}, \boldsymbol{\theta}\right)-m_{0}\left(X_{i}, \boldsymbol{\theta}\right)\right\} ;$ here $m_{1}\left(X_{i}, \boldsymbol{\theta}\right)=E\left\{\psi\left(Y_{i}, X_{i}, \boldsymbol{\theta}\right) \mid X_{i}, \delta_{i}=1\right\}$. The terms I_{1} and I_{2} are sums of independent random variables. For I_{3}, We have the following,

Lemma 1. Under (A1)-(A7), we have $\sqrt{n}\left(I_{3}-I_{3}^{* *}\right)=o_{p}(1)$, where $I_{3}^{* *}=$ $(1 / n) \sum_{i=1}^{n} \delta_{i}\left\{1 / \pi\left(U_{i}, Y_{i}\right)-1\right\}\left\{\psi\left(Y_{i}, X_{i}, \boldsymbol{\theta}_{0}\right)-m_{0}\left(X_{i}, \boldsymbol{\theta}_{0}\right)\right\}$.

Lemma 2. Under (A1)-(A7), we have $(1 / \sqrt{n}) \sum_{i=1}^{n} \hat{\psi}\left(Y_{i}, X_{i}, \boldsymbol{\theta}_{0}\right) \xrightarrow{D} N\left(0, D_{1}\left(\boldsymbol{\theta}_{0}\right)\right)$ and $(1 / \sqrt{n}) \sum_{i=1}^{n} \hat{\psi}\left(Y_{i}, X_{i}, \boldsymbol{\beta}_{0}\right) \xrightarrow{D} N\left(0, D_{1}\left(\boldsymbol{\beta}_{0}\right)\right)$, where $D_{1}(\boldsymbol{\theta})=E\left\{\psi\left(Y_{i}, X_{i}\right.\right.$, $\left.\boldsymbol{\theta})^{\otimes 2}\right\}+E\left[\left(1 / \pi\left(U_{i}, Y_{i}\right)-1\right)\left\{\psi\left(Y_{i}, X_{i}, \boldsymbol{\theta}\right)-m_{0}\left(X_{i}, \boldsymbol{\theta}\right)\right\}^{\otimes 2}\right], \boldsymbol{\beta}_{0}=\left(\boldsymbol{\theta}_{0}, \gamma_{0}\right)$.

Proof of Theorem 2. If $\psi_{n}(\boldsymbol{\theta})=(1 / n) \sum_{i=1}^{n} \hat{\psi}\left(Y_{i}, X_{i}, \boldsymbol{\theta}\right), \quad \Gamma_{n}(\boldsymbol{\theta})=\nabla_{\boldsymbol{\theta}} \psi_{n}(\boldsymbol{\theta})$, we have $\Gamma_{n}^{\tau}\left(\hat{\boldsymbol{\theta}}_{g}\right) W_{1} \psi_{n}\left(\hat{\boldsymbol{\theta}}_{g}\right)=0$. Applying Taylor's expansion to $\psi_{n}\left(\hat{\boldsymbol{\theta}}_{g}\right)$ at $\boldsymbol{\theta}_{0}$, we have $\psi_{n}\left(\hat{\boldsymbol{\theta}}_{g}\right)=\psi_{n}\left(\boldsymbol{\theta}_{0}\right)+\Gamma_{n}\left(\boldsymbol{\theta}^{*}\right)\left(\hat{\boldsymbol{\theta}}_{g}-\boldsymbol{\theta}_{0}\right)+o_{p}\left(\left\|\hat{\boldsymbol{\theta}}_{g}-\boldsymbol{\theta}_{0}\right\|\right)$, where $\boldsymbol{\theta}^{*}$ lies between $\hat{\boldsymbol{\theta}}_{g}$ and $\boldsymbol{\theta}_{0}$. Then
$0=\Gamma_{n}^{\tau}\left(\hat{\boldsymbol{\theta}}_{g}\right) W_{1} \psi_{n}\left(\hat{\boldsymbol{\theta}}_{g}\right)=\Gamma_{n}^{\tau}\left(\hat{\boldsymbol{\theta}}_{g}\right) W_{1} \psi_{n}\left(\boldsymbol{\theta}_{0}\right)+\Gamma_{n}^{\tau}\left(\hat{\boldsymbol{\theta}}_{g}\right) W_{1} \Gamma_{n}\left(\boldsymbol{\theta}^{*}\right)\left(\hat{\boldsymbol{\theta}}_{g}-\boldsymbol{\theta}_{0}\right)+o_{p}\left(\left\|\hat{\boldsymbol{\theta}}_{g}-\boldsymbol{\theta}_{0}\right\|\right)$, and $\left\|\hat{\boldsymbol{\theta}}_{g}-\boldsymbol{\theta}_{0}\right\|=O_{p}\left(n^{-1 / 2}\right)$, and thus

$$
\sqrt{n}\left(\hat{\boldsymbol{\theta}}_{g}-\boldsymbol{\theta}_{0}\right)=-\left\{\Gamma_{n}^{\tau}\left(\hat{\boldsymbol{\theta}}_{g}\right) W_{1} \Gamma_{n}\left(\boldsymbol{\theta}^{*}\right)\right\}^{-1} \Gamma_{n}^{\tau}\left(\hat{\boldsymbol{\theta}}_{g}\right) W_{1} \sqrt{n} \psi_{n}\left(\boldsymbol{\theta}_{0}\right)+o_{p}(1) .
$$

Since $-\left\{\Gamma_{n}^{\tau}\left(\hat{\boldsymbol{\theta}}_{g}\right) W_{1} \Gamma_{n}\left(\boldsymbol{\theta}^{*}\right)\right\}^{-1} \Gamma_{n}^{\tau}\left(\hat{\boldsymbol{\theta}}_{g}\right) W_{1} \rightarrow^{\mathcal{P}}-\left(\Gamma^{\tau} W_{1} \Gamma\right)^{-1} \Gamma^{\tau} W_{1}$, where $\Gamma=\Gamma\left(\boldsymbol{\theta}_{0}\right)$ $=E\left\{\partial \widetilde{\psi}\left(Y, X, \boldsymbol{\theta}_{0}\right) / \partial \boldsymbol{\theta}\right\}$, with Lemma 1 and Slutsky's theorem, we complete the proof.
Proof of Theorem 3. The proof is similar to that of Theorem 2, we omit the details.

References

Baker, S. G. and Laird, N. M. (1988). Regression analysis for categorical variables with outcome subject to nonignorable nonresponse. J. Amer. Statist. Assoc. 83, 62-69.
Cheng, P. E. (1994). Nonparametric estimation of mean functionals with data missing at random. J. Amer. Statist. Assoc. 89, 81-87.
Greenlees, W. S., Reece, J. S. and Zieschang, K. D. (1982). Imputation of missing values when the probability of response depends on the variable being imputed. J. Amer. Statist. Assoc. 77, 251-261.
Hoaglin, D. C. and Velleman, P. F. (1995). A critical look at some analyses of major league baseball salaries. Amer. Statist. 49, 277-285.
Khan, S. and Powell, J. L. (2001). Two-step estimation of semiparametric censored regression models. J. Econometrics 103, 73-110.
Kim, J. K. and Yu, C. L. (2011). A semiparametric estimation of mean functionals with nonignorable missing data, J. Amer. Statist. Assoc. 106, 157-165.
Kott, P. S. and Chang, T. (2010). Using calibration weighting to adjust for nonignorable unit nonresponse. J. Amer. Statist. Assoc. 105, 1265-1275.
Little, R. J. A. and Rubin, D. B. (1987). Statistical Analysis With Missing Data (2nd Edition), Wiley, New York.
Magel, R. and Hoffman, M. (2015). Predicting salaries of major league baseball players, Int. J. Sports Sci. 5, 51-58.
Michael, F. (1991). SAS System for Statistical Graphics, First Edition (SAS Series in Statistical Applications), SAS Institute.

Niu, C., Guo, X., Xu, W. and Zhu, L. (2014). Empirical likelihood inference in linear regression with nonignorable missing response. Comput. Statist. Data Anal. 79, 91-112.
Newey, W. K. and McFadden, D. (1994). Large sample estimation and hypothesis testing. In Handbook of Econometrics 4 (Edited by R. F. Engle and D. L. McFadden), 2111-2245. Elsevier, Amsterdam.
Qin, J., Leung, D. and Shao, J. (2002). Estimation with survey data under nonignorable nonresponse or informative sampling, J. Amer. Statist. Assoc. 97, 193-200.
Robins, J. M. and Ritov, Y. (1997). Toward a curse of dimensionality appropriate (CODA) asymptotic theory for semi-parametric models. Stat. Med. 16, 285-319.
Shao, J. and Wang, L. (2016). Semiparametric inverse propensity weighting for nonignorable missing data. Biometrika 103, 175-187.
Stone, G. and Pantuosco, L. J. (2008). Estimating baseball salary equations from 1961-2005: A look at changes in major league compensation. Int. J. Sports Sci. 3, 228-238.
Tang, G., Little, R. and Raghunathan, T. (2003). Analysis of multivariate missing data with nonignorable nonresponse. Biometrka 90, 747-764.
Tang, N., Zhao, P. and Zhu, H. (2014). Empirical likelihood for estimating equations with nonignorably missing data. Statist. Sinica 24, 723-747.
Wang, S., Shao, J. and Kim, J. (2014). An instrumental variable approach for identification and estimation with nonignorable nonresponse. Statist. Sinica 24, 1097-1116.
Zhao, J. W. and Shao, J. (2015). Semiparametric pseudo-likelihoods in generalized linear models with nonignorable missing data. J. Amer. Statist. Assoc. 110, 1577-1590.
Zhao, H., Zhao, P. and Tang, N. (2013). Empirical likelihood inference for mean functionals with nonignorably missing response data. Comput. Statist. Data Anal. 66, 101-116.
Zhou, Y., Wan, A. and Wang, X. (2008). Estimating equations inference with missing data. J. Amer. Statist. Assoc. 103, 1187-1198.

School of Economics and Management, Northwest University, Xian, China.
Center for Western China Economic Development Research, Northwest University, Xian, China.
E-mail: lizhang05@163.com
Center for Applied Statistics of Renmin University of China, Beijing, China.
School of Statistics, Renmin University of China, Beijing, China.
E-mail: lincunjie@ruc.edu.cn
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China. School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, China.
E-mail: yzhou@amss.ac.cn
(Received July 2016; accepted October 2017)

