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Abstract: We consider the estimation of unknown parameters in a generalized linear

model when some covariates have nonignorable missing values. When an instru-

ment, a covariate that helps identifying parameters under nonignorable missingness,

is appropriately specified, a pseudo likelihood approach similar to that in Tang, Lit-

tle and Raghunathan (2003) or Zhao and Shao (2015) can be applied. However,

this approach does not work well when the instrument is a weak predictor of the

response given other covariates. We show that the asymptotic variances of the

pseudo likelihood estimators for the regression coefficients of covariates other than

the instrument diverge to infinity as the regression coefficient of the instrument goes

to 0. By an imputation-based adjustment for the score equations, we propose a new

estimator for the regression coefficients of the covariates other than the instrument.

This works well even if the instrument is a weak predictor. It is semiparametric

since the propensity of missing covariate data is completely unspecified. To solve

the adjusted score equation, we develop an iterative algorithm that can be applied

by using standard softwares at each iteration. We establish some theoretical results

on the convergence of the proposed iterative algorithm and asymptotic normality

of the resulting estimators. A variance estimation formula is also derived. Some

simulation results and a data example are presented for illustration.

Key words and phrases: Adjusted likelihood, identifiability, instruments, nonignor-

able missing covariate data, pseudo-likelihood, semiparametric.

1. Introduction

Missing covariate data commonly exist in such health and biomedical related

studies as clinical trials, observational data, environmental studies, and health

surveys. We consider the estimation of θ, an unknown parameter vector of in-

terest in a generalized linear model (GLM) on the conditional density p(Y |X, θ),
where Y is a response variable always observed, and X is a covariate vector that

may have missing data. Covariate values are missing at random (MAR) when
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the probability of whether covariate values are missing, conditioned on (Y,X),

does not depend on any unobserved value. Under MAR, statistical approaches

for handling missing covariate data are well-developed, e.g., see Little (1992),

Little and Rubin (2002), Robins, Rotnitzky and Zhao (1994), Robins, Hsieh and

Newey (1995), Lipsitz, Ibrahim and Zhao (1999), Ibrahim et al. (2005), Tsiatis

(2006), and Qin, Zhang and Leung (2009). In many biomedical and health re-

lated studies, however, missing covariate data are not MAR and are referred to

as nonignorable, because the occurrence of a missing covariate is related to the

covariate value itself even after conditioning on all observed data (Lipsitz et al.

(1999)). For example, in a health survey of drug use with income as a covari-

ate, a missing income value may be directly related to the income value after

conditioning on drug use and other covariates; in an obesity study for children,

adolescents with overweight conditions may hide their weight values, regardless

of whether obesity and other covariates are observed.

We focus on nonignorable missing covariate data. This is challenging be-

cause, when missing data are nonignorable, there is a model identifiability issue

(Robins and Ritov (1997)) and valid parameter estimators can be derived only

under some model assumptions that may be hard to verify. To describe our

approach, we first introduce two main assumptions. We assume that X can be

decomposed into sub-vectors U and Z such that U may have missing values and

Z is a fully observed covariate vector that is related to U but unrelated with the

propensity of missing data once (Y,U) is conditioned,

P (R = 1|Y,U, Z) = P (R = 1|Y,U), (1.1)

where R = 1 if U is fully observed and R = 0 otherwise. For nonignorable

missing response Y data, Tang, Little and Raghunathan (2003) and Wang, Shao

and Kim (2014) considered an assumption similar to (1.1). It is reasonable since

it is typical in practice that not all covariates are related to the propensity of

missing data, given other observed and unobserved covariates and the response.

Wang, Shao and Kim (2014) showed that the existence of a covariate Z that is

unrelated with the propensity of missing data is almost necessary for identifying

parameters. Following Wang, Shao and Kim (2014), we call Z a nonresponse

instrument or an instrument for short. Some discussion about how to choose an

instrument can be found in Section 5.

With nonignorable missing data, Robins and Ritov (1997) showed that, in

order to identify all unknown parameters, either the propensity of missing data or

the original data distribution must have a parametric component. For covariate
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missing data under (1.1), this means that either P (R = 1|Y,U) or the density

of U |Z (U given Z) needs to have a parametric component. There exist some

methods assuming both P (R = 1|Y,U) and the density of U |Z are parametric,

using either maximum likelihood or Bayesian approaches, see, e.g., Lipsitz et al.

(1999), Ibrahim, Lipsitz and Chen (1999), Herring and Ibrahim (2002), Stubben-

dick and Ibrahim (2003, 2006), Huang, Chen and Ibrahim (2005), and Ibrahim

and Molenberghs (2009). Our second assumption is a parametric model p(U |Z, γ)

for U |Z with an unknown parameter vector γ. Our approach is semiparametric

since the propensity P (R = 1|Y, U) in (1.1) is unspecified. To the best of our

knowledge, semiparametric methods for handling nonignorable missing covariate

data are limited.

By (1.1) and Bayes formula,

p(Z|Y, U,R = 1) = p(Z|Y, U) =
p(Y |U,Z, θ)p(U |Z, γ)p(Z)∫
p(Y |U, z, θ)p(U |z, γ)p(z)dz

, (1.2)

where p(Z) is the density of Z. Having N sampled subjects with realizations

(yi, ui, zi, ri), i = 1, ..., N , independent and identically distributed as (Y,U, Z,R),

where ui is fully observed if and only if ri = 1, we may estimate θ and γ by

maximizing the pseudo-likelihood function

L(θ′, γ′) =
∏
i:ri=1

p(yi|ui, zi, θ′)p(ui|zi, γ′)∑N
j=1 p(yi|ui, zj , θ′)p(ui|zj , γ′)

. (1.3)

That is based on (1.2) with p(Z) estimated by the empirical distribution of Z

and the true value (θ, γ) replaced by a parameter value (θ′, γ′) of the likelihood

function. This pseudo-likelihood approach is an extension of the approach in

Tang, Little and Raghunathan (2003) and Zhao and Shao (2015) to covariate

missing data.

If Z is a weak predictor of Y when U is conditioned (e.g., Z is a surrogate

of U), the pseudo-likelihood estimator for θ does not work well. To be more

specific, denote the conditional density of Y |(U,Z) as

p(yi|ui, zi, θ) = exp(yiηi − b(ηi) + c(yi)), (1.4)

where b and c are known functions, ηi = η(αc+ατuui+βτzi), αu and β are p- and

q-dimensional, the superscript τ denotes transpose, η is a known one-to-one and

continuously differentiable function, and θ = (α, β) with α = (αc, αu) denotes

the true but unknown parameter vector of interest. Without loss of generality,

we assume throughout that there is no dispersion parameter or the dispersion

parameter is known. When β = 0, p(Y |U,Z, θ) and p(Y |U, z, θ) in (1.2) do

not depend on Z or z so that the right hand side of (1.2) does not involve θ.
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Consequently, when Z is a weak predictor of Y given U , β is close to 0 and

the estimator of α obtained by maximizing (1.3) that is based on (1.2) cannot

work well. We show in Section 2.1 that the asymptotic variance of the pseudo

likelihood estimator for α diverges to infinity when β goes to 0.

This paper aims to develop an efficient estimation method for α regardless

of whether the dependence of p(Y |U,Z, θ) on Z is weak or not. Our proposed

method consists of two parts: in the first we estimate β and γ by maximizing

(1.3); in the second we estimate α. Instead of using (1.3) which can lead to an

inefficient α estimator, we propose a score equation adjusted for missing covariate

values using the estimated β and γ in the first part. When p(Y |U,Z, θ) depends

on Z but the dependence is weak, the new estimator of α is much more efficient

than the pseudo-likelihood estimator. This is illustrated in simulation results. In

the special case where we know β = 0, the pseudo-likelihood cannot consistently

estimate α while our proposed method can. Our approach utilizes all observed

data, whereas (1.3) does not use the partially observed covariate data and yi for

any subject with ri = 0.

Computation is often an issue in the presence of nonignorable missing data.

Under a pure parametric framework, some Monte Carlo algorithms are devel-

oped in Lipsitz et al. (1999), Ibrahim, Lipsitz and Chen (1999), Herring and

Ibrahim (2002), Huang, Chen and Ibrahim (2005), among others. For maximiz-

ing a semiparametric likelihood similar to (1.3), some algorithms were developed

in Tang, Little and Raghunathan (2003) and Zhao and Shao (2015), but con-

vergence of these algorithms has not been investigated. To solve the adjusted

score equation in our method, we propose an iterative algorithm. Any available

software packages for GLMs can be directly used in each iteration. We establish

the convergence of the algorithm.

Our proposed method is described in Section 2. Section 3 studies the conver-

gence of our algorithm and the asymptotic distributions of the proposed estima-

tors. Results of simulation studies and a data example are presented in Sections

4 and 5, respectively. Proofs are provided in an Appendix.

2. Methodology

2.1. Estimation of β and γ

Let ξ = (θ, γ) and ξ̃ = (θ̃, γ̃), with θ̃ = (α̃, β̃) the estimator of ξ obtained by

maximizing L(θ′, γ′) in (1.3), F the true distribution of Z, F ′ denote a distribu-



SCORE EQUATION ADJUSTED FOR MISSING COVARIATES 1681

tion, ξ′ = (θ′, γ′), and

Hi(ξ
′, F ′)=ri

{
logp(yi|ui, zi, θ′)p(ui|zi, γ′)−log

∫
p(yi|ui, z, θ′)p(ui|z, γ′)dF ′(z)

}
.

Then maximizing (1.3) is the same as maximizing
∑N

i=1Hi(ξ
′, F̂ ), where F̂ is

the empirical distribution of the Z-data. In what follows, we consider Hi(ξ
′, F ′)

as a random variable and H(ξ′, F ′) as Hi(ξ
′, F ′) with (yi, ui, zi, ri) replaced by

(Y,U, Z,R). Throughout, we use notation ∇ϕ to denote the first order derivative

with respect to ϕ and ∇2
ϕϑ to denote the second order derivative with respect to

ϕ and ϑ.

Proposition 1. Assume that

(a) E{H(ξ′, F̂ )−H(ξ′, F )} → 0 as N →∞, and there exists ε > 0 such that

lim
N→∞

sup
ξ′,‖F ′−F‖<ε

∣∣∣∣∣ 1

N

N∑
i=1

Hi(ξ
′, F ′)− E{H(ξ′, F ′)}

∣∣∣∣∣ = 0.

(b) H(ξ′, F ′) is continuously twice differentiable with respect to ξ′, the matrix

E{−∇2
ξξH(ξ, F )} is positive definite, and ∇2

ξ′ξ′H(ξ′, F ) is bounded by an

integrable function in a neighborhood of ξ.

When ξ is identifiable from (1.2),

(1) ξ̃ is consistent, asymptotically normal and

√
N(ξ̃ − ξ) =

−1√
N

N∑
i=1

[
E{∇2

ξξH(ξ, F )}
]−1

(
∇θHi(ξ, F ) + S1(zi, ξ, F )

∇γHi(ξ, F ) + T1(zi, ξ, F )

)
+ op(1),

where S1 and T1 are defined in (A.3) and (A.4), respectively, and op(1)

denotes a quantity converging to 0 in probability,

(2) if β → 0, then E{∇2
ααH(ξ, F )} → 0.

This result reveals a drawback of the pseudo-likelihood estimator based on

(1.3): if β is close to 0, α̃ can be very inefficient, although β̃ asymptotically works

well whether or not β is close to 0. This result motivates us to develop a method

to estimate α more efficiently.

Proposition 1 assumes that ξ is identifiable from (1.2), which holds under

some conditions similar to those in Zhao and Shao (2015). The details are omitted

here.
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2.2. Estimation of α by adjusted score equation

We now consider how to estimate α differently. When there is no missing

data, the parameter α under a GLM with a fixed regression coefficient β̃ for

covariate zi is typically estimated by solving the score equation

S(α′) =

N∑
i=1

∇α′ log(p(yi|ui, zi, θ′))
∣∣
β′=β̃

=

N∑
i=1

g(ui, zi, α
′)
{
yi−h(α′c + α′

τ

u ui + β̃τzi)
}

=0, (2.1)

where h(α′c+α
′τ
u ui+β̃

τzi)=∇ηb(ηi)=E(yi|ui, zi) and g(ui, zi, α
′)=∇α′h/∇2

ηηb(ηi)

with α in ηi replaced by a parameter value α′ = (α′c, α
′
u) and β replaced by β̃.

The score equation (2.1) is valid in the sense that it satisfies E{S(α)
∣∣
β̃=β
} = 0

which, together with some other regularity conditions, ensures that the solution

is a consistent estimator of α. The score equation (2.1) can be easily solved by

any existing software packages for GLMs with an option of “offset”.

When the ui’s have missing data, (2.1) cannot be solved. Since some com-

ponents of U may be always observed but are not part of the instrument Z, we

let U = (U1, U2), where U1 may have missing values and U2 is always observed,

and let ui = (ui1, ui2) be the realization of U for subject i. We consider score

equation which is (2.1) adjusted for missing covariate data:

N∑
i=1

g(u∗i1, ui2, zi, α
′){yi − h(α′c + α′

τ

u1u
∗
i1 + α′

τ

u2ui2 + β̃τzi)} = 0, (2.2)

where u∗i1 is a function of observed data. A popular candidate for u∗i1 is the

conditional expectation E(ui1|ui2, zi). However, when u∗i1 = E(ui1|ui2, zi), (2.2)

is not valid unless h is linear because

h(αc +ατu1u
∗
i1 +ατu2ui2 + β̃τzi)=E{h(αc +ατu1ui1 +ατu2ui2 + β̃τzi)|ui2, zi} (2.3)

holds only for linear h when u∗i1 = E(ui1|ui2, zi), where the expectation in (2.3)

is taken with respect to ui1.

To have a valid (2.2) we must find an imputed u∗i1 satisfying (2.3). For

nonlinear h, this can be achieved only when u∗i1 is a function of (ui2, zi, β̃) as

well as the unknown α. For multivariate ui1, the solution of u∗i1 to (2.3) is not

unique. Among all the solutions, we propose to choose u∗i1 so that (2.3) holds

and meanwhile is as close as possible to E(ui1|ui2, zi), i.e.,

u∗i1(α) = u
(0)
i1 +

αu1

‖αu1‖2
{
h−1(µi(α))− αc − ατu1u

(0)
i1 − α

τ
u2ui2 − β̃τzi

}
(2.4)
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where µi(α) denotes the quantity on the right hand side of (2.3), u
(0)
i1 = E(ui1|ui2,

zi), and ‖ · ‖ is the Euclidean norm. Formula (2.4) is also good for univariate ui1.

Using (2.4) in (2.2) leads to the valid score equation

N∑
i=1

g(u∗i1(α′), ui2, zi, α
′)
{
yi − h(α′c + α′

τ

u1u
∗
i1(α′) + α′

τ

u2ui2 + β̃τzi)
}

= 0. (2.5)

Since (2.5) may be hard to solve directly, we propose to solve it iteratively by

introducing another parameter value α′′:

S(α′|α′′)=

N∑
i=1

g(u∗i1(α′′), ui2, zi, α
′)
{
yi−h(α′c + α′

τ

u1u
∗
i1(α′′)+α′

τ

u2ui2+β̃τzi)
}

=0,

(2.6)

where u∗i1(α′′) is defined by (2.4) with α replaced by α′′. Score equation (2.5) is

the same as S(α′|α′) = 0, and E{S(α|α)
∣∣
β̃=β
} = 0. Having α̂(t) at the tth step in

an iteration, we can compute u∗i1(α̂(t)) using (2.4) and solve S(α′|α̂(t)) = 0 over

α′ to get α̂(t+1). Here is an algorithm for solving (2.5).

Algorithm:

0. For each subject i, generate a random sample {umi1,m = 1, . . . ,M} from

p(ui1|ui2, zi, γ̃), where the Monte Carlo sample size M is a preset large

positive integer, and γ̃ is the consistent estimator of γ obtained in Section

2.1.

1. Having α̂(t) at the tth iteration, compute u∗i1(α̂(t)) according to (2.4) with

α = α̂(t), u
(0)
i1 replaced by E(ui1|ui2, zi, γ̃), and µi(α̂

(t)) approximated by

µ
(t)
i (α̂(t)) =

1

M

M∑
m=1

h
(
α̂(t)
c + α̂

(t)τ

u1 umi1 + α̂
(t)τ

u2 ui2 + β̃τzi

)
.

2. Replace u∗i1(α′′) in (2.6) by u∗i1(α̂(t)) and compute α̂(t+1) by solving S(α′|α̂(t))

= 0, where α′ is a parameter value.

3. Execute 1-2 for t = 1, . . . , T until ‖α̂(T ) − α̂(T−1)‖ is smaller than a preset

small threshold value, and take the estimator for α to be α̂ = α̂(T ).

Although our procedure is iterative, the computational burden is minimum.

First, we only need to generate Monte Carlo samples in step 0 once for all itera-

tions. Second, at each iteration, once α′′ = α̂(t) is fixed, the estimating equation

S(α′|α̂(t)) = 0 is just a regular score equation for a GLM similar to (2.1), which

can be easily solved by any software packages for GLMs with an option of “offset”.
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Our final proposed estimator for θ is θ̂ = (α̂, β̃). The β estimator is the

pseudo-likelihood estimator and our main effort is to improve the estimation

efficiency of α. In some applications we know β = 0. Then the right hand side

of (1.2) does not relate to θ so that the pseudo-likelihood (1.3) should not be

used to estimate θ. However, γ can still be estimated by maximizing the reduced

pseudo-likelihood

L(γ′) =
∏
i:ri=1

p(ui|zi, γ′)∑N
j=1 p(ui|zj , γ′)

. (2.7)

Our proposed method for estimating α can still be applied with β̃ = 0 and γ̃ as

the maximizer of (2.7).

3. Theoretical Results

In this section, we study asymptotic properties of our proposed estimators.

These include the convergence property of the sequence {α̂(t), t = 1, 2, . . .} from

the proposed algorithm, the consistency, asymptotic normality, and variance es-

timation for θ̂ = (α̂, β̃).

3.1. Convergence of α̂(t)

For simplicity, we assume that β and γ are known and β̃ = β and γ̃ = γ in

this subsection. This does not affect the generality of our result on convergence

since β̃ and γ̃ are consistent as shown in Proposition 1. Let

Si(α
′|α′′) = g(u∗i1(α′′), ui2, zi, α

′)
{
yi − h(α′c + α′

τ

u1u
∗
i1(α′′) + α′

τ

u2ui2 + βτzi)
}

so that S(α′|α′′) in (2.6) is the sum of Si(α
′|α′′), i = 1, . . . , N . Take l(α′|α′′) =∑N

i=1 li(α
′|α′′), where li(α

′|α′′) = log(p(yi|u∗i1(α′′), ui2, zi, α
′, β)). Note that ∇α′ li

(α′|α′′) = Si(α
′|α′′).

Theorem 2. Assume the following:

(a) The parameter space of α (also of α′ and α′′) is an open subset of Rp+1

with the true value α as an interior point;

(b) l(α′|α) as a function of α′ is strictly concave in B, a compact and convex

neighborhood of α, and E{supα′,α′′∈B ‖∇α′′ li(α′|α′′)‖} <∞;

(c) the absolute values of the minimum and maximum eigenvalues of the matrix

I1(α)−1I2(α) are both less than 1, where I1(α) = E{−∇α′Si(α′|α)}α′=α,

and I2(α) = E{∇α′′Si(α|α′′)}α′′=α.
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If α̂(1) converges to α in probability, then there exists a sequence {α̂(t), t ≥ 1}
such that S(α̂(t+1)|α̂(t)) = 0 and

lim
N→∞

P
(
‖α̂(t) − α̂‖ ≥ ‖α̂(t+1) − α̂‖ for all t

)
= 1,

where α̂ = limt→∞ α̂
(t) is a consistent solution to S(α′|α′) = 0.

If we pick a consistent estimator α̂(1) as the starting point in our algorithm,

for large enough N there exists a sequence {α̂(t), t ≥ 1} that converges monoton-

ically to α̂ with probability approaching 1. We can use α̃ obtained in Section 2.1

as our initial α̂(1).

3.2. Asymptotic normality of θ̂ = (α̂, β̃) and variance estimation

We have shown the consistency and asymptotic normality of β̃ in Proposi-

tion 1. Since α̂ is a consistent solution to S(α′|α′) = 0 and E{S(α|α)
∣∣
β̃=β
} = 0,

we can show that α̂− α is asymptotically normal with mean 0 and some covari-

ance matrix, using a standard asymptotic analysis. For statistical inference, we

need to estimate the asymptotic covariance matrix of α̂ and the joint asymp-

totic covariance matrix of θ̂ = (α̂, β̃). Here S(α′|α′) depends on the estimated

β̃ as well as the estimated γ̃ since it is involved in the conditional expectation

E(ui1|ui2, zi, γ̃). The variations of β̃ and γ̃ have to be considered for variance

estimation. We rewrite Si(α
′|α′) as Si(α

′, β′, γ′) in the rest of this subsection.

In the proof of Proposition 1 in the Appendix, we show that

√
N(β̃ − β) =

1√
N

N∑
i=1

Di2 + op(1),

√
N(γ̃ − γ) =

1√
N

N∑
i=1

Di3 + op(1),

where Di2 and Di3 are defined in (A.5). Based on this, we have the asymptotic

representation of θ̂ = (α̂, β̃) with its explicit influence function.

Theorem 3. Assume the conditions in Proposition 1 and Theorem 2 hold. Also

assume Si(α
′, β′, γ′) is continuously differentiable with respect to ξ′ = (α′, β′, γ′),

∇ξ′Si(α′, β′, γ′) is bounded by an integrable function in a neighborhood of ξ, and

the matrix E{−∇αSi(α, β, γ)} is positive definite. Then

√
N(θ̂ − θ) =

1√
N

N∑
i=1

Ei + op(1)→d N(0,Σ),

where Ei = κ(wi, ξ, F,A,B1, B2, B3) is defined in (A.12) in the Appendix, wi =
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(yi, ui, zi, ri), A=E{∇2
ξξH(ξ, F )}, B1 =E{∇αSi(α, β, γ)}, B2 =E{∇βSi(α, β, γ)},

B3 =E{∇γSi(α, β, γ)}, and Σ=V ar(Ei).

Now we can obtain a consistent variance estimator Σ̂ of Σ using the substi-

tution technique.

Theorem 4. Let Σ̂ be the sample covariance matrix based on Êi = κ(wi, ξ̂, F̂ ,

Â, B̂1, B̂2, B̂3), i = 1, . . . , N , where F̂ is the empirical distribution of Z-data,

Â=
∑N

i=1∇2
ξξHi(ξ̂, F̂ )/N , B̂1 =

∑N
i=1∇αSi(ξ̂)/N , B̂2 =

∑N
i=1∇βSi(ξ̂)/N , B̂3 =∑N

i=1∇γSi(ξ̂)/N , and ξ̂ = (α̂, β̃, γ̃). Assume the conditions in Theorem 3 hold

and, for any c > 0,

sup
‖w‖≤c

‖κ(w, ξ̂, F̂ , Â, B̂1, B̂2, B̂3)− κ(w, ξ, F,A,B1, B2, B3)‖ = op(1) (3.1)

and there exist a constant c0 > 0 and an integrable function h(w) ≥ 0 such that

P (‖κ(w, ξ̂, F̂ , Â, B̂1, B̂2, B̂3)‖2 ≤ h(w) for all ‖w‖ ≥ c0)→ 1. (3.2)

Then ‖Σ̂− Σ‖ = op(1) as N →∞.

4. Simulation Studies

Some simulation studies were conducted to examine the finite sample per-

formance of the proposed estimator θ̂, especially α̂, and to compare it with some

other estimators. We considered univariate Y , U , and Z in thirteen cases, a

combination of continusous/discrete Y and U , and different values of β:

(A1) Y |U,Z ∼ N(−2 + U + 0.1Z, 1), U |Z ∼ N(2 − 4Z2, 1), Z ∼ U(0, 1), and

P (R = 1|Y, U, Z) = Φ(1−U + |Y |), where Φ is the cumulative distribution

function of the standard normal distribution.

(A2) the same as (A1) except that Y |U,Z ∼ N(−2 + U + Z, 1).

(A3) the same as (A1) except that Y |U,Z ∼ N(−2 + U + 2Z, 1).

(A4) the same as (A2) except that P (R = 1|Y, U, Z) = Φ(1 + |Y |), i.e., missing

is ignorable.

(B1) Y is binary with P (Y = 1|U,Z) = {1 + exp(−(−1−U + 0.1Z))}−1, U |Z ∼
N(−2 + 2Z2, 1), Z ∼ N(1, 1), and P (R = 1|Y,U, Z) = Φ(2 + U − Y ).

(B2) the same as (B1) except that P (Y =1|U,Z)={1 + exp(−(−1−U +Z))}−1.

(B3) the same as (B1) except that P (Y =1|U,Z)={1+exp(−(−1−U+2Z))}−1.
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(C1) Y |U,Z ∼ N(−1 + U + 0.1Z, 1), U is binary with P (U = 1|Z) = {1 +

exp(−(−2+4Z2))}−1, Z ∼ N(1, 1), and P (R = 1|Y,U, Z) = Φ(1.5−U+Y ).

(C2) the same as (C1) except that Y |U,Z ∼ N(−1 + U + Z, 1) and P (R =

1|Y, U, Z) = Φ(0.5− U + Y ).

(C3) the same as (C1) except that Y |U,Z ∼ N(−1 + U + 2Z, 1) and P (R =

1|Y, U, Z) = Φ(−U + Y ).

(D1) Y is binary with P (Y = 1|U,Z) = {1 + exp(−(−1 + U + 0.1Z))}−1, U is

binary with P (U = 1|Z) = {1 + exp(−(1 − 2Z2))}−1, Z ∼ N(1, 1), and

P (R = 1|Y,U, Z) = Φ(0.1 + Y + Y U).

(D2) the same as (D1) except that P (Y = 1|U,Z) = {1+exp(−(−1+U+Z))}−1

and P (R = 1|Y,U, Z) = Φ(−0.3 + Y + Y U).

(D3) the same as (D1) except that P (Y = 1|U,Z) = {1+exp(−(−1+U+2Z))}−1

and P (R = 1|Y,U, Z) = Φ(−0.5 + Y + Y U).

For each continuous/discrete combination of Y and U , we considered β = 0.1,

1, 2 and adjusted the propensity function to get similar percentages of complete

data, around 74% and 63% for the first six cases and the last six cases, respec-

tively. The sample size was N = 500. Four methods were compared: the full data

method (assume no missing data, which is not applicable in practice and was just

used as a standard), complete case analysis, the pseudo-likelihood method max-

imizing (1.3), and the proposed method. For the proposed method, the Monte

Carlo sample size was M = 10,000, and the threshold value for the algorithm

convergence was 0.001. In cases A1, A2, A3, and A4, we also considered the

maximum likelihood estimation assuming MAR.

Based on 1,000 simulation replications, Tables 1-4 report, for each method

under consideration, the simulation average of the relative bias in %, standard

deviation, standard error (the estimate of standard deviation), and empirical

coverage probability in % of approximate 95% confidence interval for θ based on

the normal approximation. The standard errors based on the full data method

and complete case analysis were obtained by the standard formulas in GLMs.

The standard error for the pseudo-likelihood estimator was estimated by the

asymptotic representation in (A.5). The standard error for the proposed method

was based on Σ̂ defined in Theorem 4.

The simulation results in Tables 1-4 can be summarized as follows. (1) The

complete case analysis has large bias and low coverage probability as expected.
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Table 1. Simulation results for normal Y and normal U .

Case (A1) Case (A2)
method αc = −2 αu = 1 β = 0.1 αc = −2 αu = 1 β = 1

relative full −0.2 −0.1 3.8 −0.3 0.1 1.0
bias % CC −3.8 4.2 97.4 −5.4 8.3 19.6

PL −1.7 −2.8 98.4 −3.3 −2.3 2.4
proposed −0.2 1.6 98.4 4.0 1.0 2.4
MLE-MAR 10.8 3.2 −198.1 10.1 4.2 −15.4

standard full 0.142 0.043 0.227 0.143 0.043 0.229
deviation CC 0.171 0.058 0.275 0.173 0.055 0.277

PL 3.663 1.675 0.351 2.281 1.003 0.276
proposed 0.361 0.103 0.351 0.487 0.120 0.276
MLE-MAR 0.165 0.052 0.261 0.163 0.050 0.255

standard full 0.146 0.043 0.232 0.146 0.043 0.232
error CC 0.176 0.056 0.281 0.176 0.055 0.282

PL 5.533 2.625 0.205 2.337 1.025 0.273
proposed 0.375 0.103 0.205 0.483 0.121 0.273
MLE-MAR 0.164 0.051 0.260 0.163 0.050 0.255

coverage full 95.4 95.2 95.0 95.4 95.0 95.4
probability CC 93.4 87.4 94.0 90.7 67.3 89.9
% PL 96.1 97.1 64.0 97.8 97.7 95.2

proposed 93.6 96.1 64.0 95.5 96.6 95.2
MLE-MAR 73.4 88.2 86.9 76.0 86.8 90.6

Case (A3) Case (A4), MAR
αc = −2 αu = 1 β = 2 αc = −2 αu = 1 β = 1

relative full 0.1 −0.1 −0.2 −0.5 0.3 1.5
bias % CC −5.4 11.0 12.4 −12.6 10.2 17.7

PL −1.7 −0.3 1.5 −3.2 −2.4 3.8
proposed 3.4 0.9 1.5 5.8 2.3 3.8
MLE-MAR 9.5 4.4 −7.1 −0.7 0.4 2.2

standard full 0.148 0.044 0.235 0.140 0.042 0.224
deviation CC 0.177 0.052 0.279 0.194 0.054 0.312

PL 1.093 0.473 0.315 2.659 0.980 0.313
proposed 0.511 0.128 0.315 0.635 0.151 0.313
MLE-MAR 0.165 0.050 0.262 0.163 0.047 0.258

standard full 0.146 0.043 0.232 0.145 0.043 0.232
error CC 0.174 0.053 0.277 0.200 0.056 0.322

PL 1.088 0.472 0.305 2.786 1.019 0.312
proposed 0.501 0.129 0.305 0.613 0.151 0.312
MLE-MAR 0.165 0.050 0.262 0.162 0.048 0.260

coverage full 94.9 94.7 94.6 95.9 95.6 95.8
probability % CC 89.9 44.9 84.8 75.8 55.5 92.1

PL 95.9 95.9 94.3 98.1 97.8 95.7
proposed 96.3 96.3 94.3 95.5 96.5 95.7
MLE-MAR 76.1 83.6 89.8 95.1 94.9 95.2

full: the estimator assuming no missing data
CC: the estimator using samples with no missing data
PL: the pseudo-likelihood estimator by maximizing (1.3)
proposed: our proposed estimator
MLE-MAR: maximum likelihood estimation assuming MAR
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Table 2. Simulation results for binary Y and normal U .

Case (B1) Case (B2) Case (B3)
method αc = −1 αu = −1 β = 0.1 αc = −1 αu = −1 β = 1 αc = −1 αu = −1 β = 2

relative full −2.5 −2.2 12.5 −3.9 −2.4 4.4 −2.3 −1.6 1.8
bias % CC −35.7 22.4 20.6 −44.0 13.4 12.7 −50.3 5.3 11.5

PL 17.0 −9.3 −6.3 −16.6 −35.6 7.3 −10.7 −12.3 4.0
proposed −3.2 −3.6 −6.3 −5.9 −4.4 7.3 −4.3 −3.3 4.0

standard full 0.226 0.121 0.242 0.225 0.113 0.262 0.244 0.105 0.308
deviation CC 0.266 0.141 0.303 0.295 0.128 0.337 0.349 0.124 0.412

PL 2.251 1.437 0.262 1.125 1.093 0.332 0.491 0.452 0.410
proposed 0.266 0.176 0.262 0.281 0.148 0.332 0.310 0.138 0.410

standard full 0.220 0.119 0.235 0.227 0.111 0.261 0.239 0.103 0.302
error CC 0.257 0.147 0.289 0.292 0.134 0.335 0.326 0.121 0.388

PL 2.751 1.642 0.157 0.930 1.002 0.329 0.471 0.377 0.394
proposed 0.234 0.165 0.157 0.279 0.147 0.329 0.300 0.133 0.394

coverage full 94.3 95.2 94.7 95.6 95.2 95.5 94.9 95.0 95.1
probability CC 76.9 62.0 94.6 72.7 78.6 95.1 70.4 90.0 92.6
% PL 91.0 79.3 61.8 96.3 91.2 94.0 95.6 93.9 94.4

proposed 94.0 95.1 61.8 94.1 94.1 94.0 94.5 94.6 94.4
full: the estimator assuming no missing data
CC: the estimator using samples with no missing data
PL: the pseudo-likelihood estimator by maximizing (1.3)
proposed: our proposed estimator

Table 3. Simulation results for normal Y and binary U .

Case (C1) Case (C2) Case (C3)
method αc = −1 αu = 1 β = 0.1 αc = −1 αu = 1 β=1 αc = −1 αu = 1 β = 2

relative full 0.1 0.2 −1.2 0.1 −0.2 −0.1 0.1 −0.5 0.1
bias % CC 41.2 0.3 −26.5 69.8 −5.3 −21.9 72.0 −20.1 −11.3

PL −21.0 4.6 22.6 −3.2 1.4 0.8 −4.7 2.9 0.4
proposed −0.4 −2.6 22.6 0.2 −1.8 0.8 −0.9 −0.8 0.4

standard full 0.082 0.118 0.053 0.083 0.116 0.056 0.083 0.115 0.055
deviation CC 0.084 0.120 0.055 0.108 0.147 0.070 0.120 0.158 0.080

PL 1.718 1.718 0.069 0.353 0.394 0.092 0.259 0.281 0.095
proposed 0.093 0.158 0.069 0.102 0.183 0.092 0.123 0.180 0.095

standard full 0.081 0.115 0.053 0.081 0.115 0.053 0.081 0.115 0.053
error CC 0.087 0.123 0.056 0.111 0.153 0.070 0.129 0.166 0.078

PL 2.243 2.342 0.072 0.334 0.373 0.091 0.253 0.283 0.096
proposed 0.094 0.167 0.072 0.100 0.182 0.091 0.120 0.183 0.096

coverage full 95.0 94.3 95.2 94.1 94.1 94.4 94.1 94.4 94.9
probability CC 0.3 94.9 92.9 0.0 94.9 12.0 0.0 77.9 20.4
% PL 96.6 98.6 88.5 94.6 94.2 94.1 94.4 94.5 94.2

proposed 95.6 94.9 88.5 95.1 94.8 94.1 95.6 95.5 94.2
full: the estimator assuming no missing data
CC: the estimator using samples with no missing data
PL: the pseudo-likelihood estimator by maximizing (1.3)
proposed: our proposed estimator

(2) When β is small, the standard error for the pseudo-likelihood estimator α̃

is large. (3) The proposed estimator α̂ works quite well in terms of bias, stan-

dard deviation, and coverage probability; compared with the pseudo-likelihood

method, the estimation efficiency for α improves a lot in terms of smaller stan-
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Table 4. Simulation results for binary Y and binary U .

Case (D1) Case (D2) Case (D3)
method αc = −1 αu = 1 β = 0.1 αc = −1 αu = 1 β=1 αc = −1 αu = 1 β = 2

relative full −0.8 −0.7 1.3 −1.6 1.9 1.3 −2.2 2.0 1.5
bias % CC 46.5 12.2 1.5 66.3 26.9 2.4 77.8 34.3 3.1

PL −548.8 135.1 −1.1 −3.0 −1.8 2.5 −5.4 1.4 3.2
proposed 0.4 1.3 −1.1 −3.2 7.0 2.5 −5.4 12.8 3.2

standard full 0.196 0.233 0.107 0.211 0.251 0.138 0.257 0.295 0.214
deviation CC 0.230 0.278 0.130 0.284 0.354 0.191 0.378 0.460 0.332

PL 8.190 9.063 0.111 0.423 1.003 0.190 0.518 0.771 0.329
proposed 0.208 0.350 0.111 0.312 0.481 0.190 0.457 0.708 0.329

standard full 0.193 0.235 0.113 0.212 0.250 0.136 0.256 0.292 0.212
error CC 0.226 0.278 0.132 0.283 0.347 0.190 0.373 0.451 0.324

PL 3.409 5.132 0.097 0.426 1.131 0.188 0.513 0.770 0.319
proposed 0.200 0.347 0.097 0.312 0.480 0.188 0.446 0.727 0.319

coverage full 95.2 94.7 96.4 95.5 95.0 95.0 95.3 95.1 95.3
probability CC 43.9 94.0 96.1 34.4 89.5 95.2 43.1 89.7 95.3
% PL 54.7 72.3 83.3 93.4 98.8 94.9 93.4 95.4 95.0

proposed 94.3 95.7 83.3 95.3 96.2 94.9 94.6 95.8 95.0
full: the estimator assuming no missing data
CC: the estimator using samples with no missing data
PL: the pseudo-likelihood estimator by maximizing (1.3)
proposed: our proposed estimator

dard error especially when β is small. (4) The pseudo likelihood estimator β̃

works well when β is not close to 0. When β = 0.1, β̃ could have large relative

bias and low coverage probability; when β is close to 0, however, the effect of

α dominates so that a not-so-accurate β̃ may not be a serious problem if α can

be estimated accurately. (5) The proposed estimator works well under MAR

in case A4, although it is less efficient than the maximum likelihood estimator

(MLE-MAR). The MLE-MAR, however, may have large relative biases and low

coverage probabilities when missing is nonignorable, in cases A1, A2, and A3.

To check the dependence of the pseudo-likelihood and our proposed methods

on assumption (1.1), we conducted some further simulations under cases A5 and

B4, which are A2 and B2 but with propensity functions P (R = 1|Y, U, Z) =

Φ(1−U + |Y |+Z) and P (R = 1|Y, U, Z) = Φ(2 +U −Y +Z), respectively. The

sample size was 500 and the simulation size was 1,000. Results with the format

as the previous simulations are given in Table 5.

The pseudo likelihood and proposed methods are not robust against the vio-

lation of assumption (1.1) although, under A5, the performance of our proposed

method is still good. When the propensity depends on Z, the pseudo likelihood

and proposed methods could have large relative bias and low coverage probabil-

ity, as case B4 shows. The selection of an instrument with nonignorable missing
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Table 5. Simulation results with violation of assumption (1.1).

Case (A5) Case (B4)
method αc = −2 αu = 1 β = 1 αc = −1 αu = −1 β = 1

relative full −0.3 0.1 1.0 −4.1 −2.2 4.7
bias % CC −4.3 7.4 16.8 −54.2 3.9 37.7

PL −1.2 −38.3 3.1 −11.6 −51.5 16.9
proposed 2.3 5.1 3.1 −13.0 −8.4 16.9

standard full 0.143 0.043 0.227 0.231 0.111 0.264
deviation CC 0.167 0.051 0.262 0.344 0.133 0.381

PL 2.196 0.961 0.268 2.712 1.933 0.601
proposed 0.483 0.113 0.268 0.440 0.237 0.601

standard full 0.146 0.043 0.232 0.227 0.111 0.262
error CC 0.169 0.051 0.268 0.328 0.133 0.364

PL 2.207 0.972 0.265 1.197 1.001 0.300
proposed 0.456 0.111 0.265 0.263 0.143 0.300

coverage full 95.4 95.6 95.5 94.8 95.6 95.2
probability % CC 92.1 69.8 90.9 66.3 92.7 86.1

PL 97.4 96.6 95.0 41.1 67.7 58.5
proposed 95.1 94.4 95.0 66.7 70.4 58.5

full: the estimator assuming no missing data
CC: the estimator using samples with no missing data
PL: the pseudo-likelihood estimator by maximizing (1.3)
proposed: our proposed estimator

covariates is an interesting and difficult research topic. It will be a part of the

authors’ future research.

5. An Example

For illustration, especially for a discussion about how to select the instrument

Z, we analyzed a data set from the National Health and Nutrition Examination

Survey (NHANES 2005), which was designed to assess the health and nutritional

status of adults and children in the United States. The data are available at

http://www.cdc.gov/nchs/nhanes.htm. We focused on how middle-aged and old

people’s hypertension is related to body fat, age and gender. Dual-energy x-ray

absorptiometry (dxa) has been accepted as the gold standard direct measurement

of body fat. However, some of the dxa data are missing. Typically, NHANES

data sets with missing data/variables are released without statistical adjustment

and, as officially pointed out by the United States Centers for Disease Control

and Prevention, examination of missing items in the dxa data files indicates that

there seems to be systematic, non-random patterns to the missing data in dxa.

Use of only the measured variables could lead to biased results.

http://www.cdc.gov/nchs/nhanes.htm
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In our analysis, the binary response variable Y equals 1 if the subject has hy-

pertension, i.e., the systolic blood pressure (the average of BPXSY1-4) is greater

than 140 or the diastolic blood pressure (the average of BPXDI1-4) is greater

than 90, and equals 0 otherwise. The covariate U1 that may have missing val-

ues is the body fat percentage measured by dxa (variable DXDTOPF). There

are N = 1,591 subjects and 393 (24.7%) of them have missing dxa. There

are other covariates fully observed: age (variable RIDAGEYR), gender (variable

RIAGENDR, 1 for male and 0 for female), and bmi (body mass index, logarithm

of variable BMXBMI). The bmi can be considered as a surrogate variable for dxa,

although it is less accurate than dxa, and hence the conditional independence as-

sumption is commonly made (Reilly and Pepe (1995); Bashir and Duffy (1997);

Horton and Laird (2001)): Y and bmi are conditionally independent given dxa,

age and gender. Thus, the GLM is

P (Y = 1|dxa, age, gender, bmi) =
exp(θ1 + θ2dxa+ θ3age+ θ4gender)

1 + exp(θ1 + θ2dxa+ θ3age+ θ4gender)
.

(5.1)

For estimating the parameter θ = (θ1, θ2, θ3, θ4), we considered the complete

case analysis, the maximum likelihood estimator assuming MAR, the pseudo

likelihood method, and the proposed method. For the latter two, an instru-

ment Z needs to be selected from age, gender, and bmi. Since the fewer com-

ponents Z has, the more likely condition (1.1) holds, we only considered uni-

variate instruments. As indicated in Zhao and Shao (2015), as an instrument,

a binary variable (gender) alone is not enough to identify θ. Thus we consid-

ered two options for instrument: Z = age and Z = bmi. Once Z was se-

lected, U2 contained components of (age, gender, bmi) that are not in Z. Except

for the complete case analysis, a parametric model for U |Z was also needed.

For this data set, age, gender and bmi are almost independent so that only

a parametric model for dxa|age, gender, bmi was needed. We assumed that

dxa|age, gender, bmi ∼ N(γ1 + γ2age+ γ3gender + γ4bmi, γ5).

When Z = bmi, (5.1) means β = 0. We could apply the proposed method

by setting β̃ = 0 and estimating γ with (2.7).

Table 6 reports the estimate, standard error and p-value for θ based on the

methods considered. When age is used as the instrument, as pointed out by

Zhao and Shao (2015), the hypothesis that the effect of age equals zero cannot

be tested, so the p-value for age is not available. The proposed method using dif-

ferent covariates as the instrument Z produces similar results. When Z = age,

in which both pseudo-likelihood and the proposed method are applicable, the
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Table 6. Analysis results of the NHANES data.

method effect estimate standard error p-value
complete case intercept −5.3175 0.7156 0.000

dxa 0.0076 0.0126 0.549
gender 0.0593 0.2094 0.777

age 0.0674 0.0100 0.000
MLE-MAR intercept −5.0807 0.6044 0.000

dxa 0.0223 0.0102 0.028
gender 0.1821 0.1780 0.306

age 0.0538 0.0080 0.000
proposed intercept −5.4514 0.5993 0.000
Z = bmi dxa 0.0313 0.0103 0.002

gender 0.2958 0.1712 0.084
age 0.0534 0.0080 0.000

proposed intercept −6.3600 0.7585 0.000
Z = age dxa 0.0293 0.0135 0.030

gender 0.2724 0.2042 0.182
age 0.0702 0.0099 n.a.

pseudo likeliood intercept −5.9139 5.1676 0.253
Z = age dxa 0.0003 0.0279 0.992

gender 0.3122 0.9007 0.729
age 0.0702 0.0099 n.a.

n.a.: not available

proposed estimators for intercept, dxa and gender have much smaller standard

errors than the pseudo likelihood estimators. The pseudo-likelihood method in-

dicates the effect of dxa is not significant, which is inconsistent to our common

knowledge. The reason might be that the variance of this estimator is too large.

The complete case analysis has comparable standard errors with the proposed

method but it also fails to detect the significant effect of dxa probably due to the

estimation bias for dxa. This supports the official statement made by the United

States Centers for Disease Control and Prevention. Although the maximum like-

lihood method assuming MAR produces smaller estimator of gender effect than

the proposed method, they are comparable in this example. This may be because

dxa and bmi are highly correlated so that a nonignorable propensity is close to

MAR, only one of dxa and bmi is needed in the propensity of missing data and it

seems more reasonable to include dxa in the propensity rather than its surrogate

bmi. It is important to try different methods under different assumptions and

to obtain robust results, especially because we cannot check the assumptions on

the propensity.

In this example we tried different choices of the instrument Z to check the



1694 FANG, ZHAO AND SHAO

robustness of the proposed estimator. Overall, our proposed method is more

flexible in choosing an instrument than the pseudo-likelihood method. Based on

the analysis results, Z = bmi may be preferred for several reasons: if we use

Z = age, the significance of the effect of age cannot be tested; since bmi can

be considered as a surrogate of dxa, after dxa is conditioned, the indicator R is

independent of bmi, which means assumption (1.1) holds; it seems common to

believe that the missingness of dxa is related to age, although we are not sure if

it is true after dxa is conditioned.
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Appendix: Proofs of Theorems

Proof of Proposition 1

(1) Under (a), we have

ξ̃ = arg max
ξ′

1

N

N∑
i=1

Hi(ξ
′, F̂ )

= arg max
ξ′

[{
1

N

N∑
i=1

Hi(ξ
′, F̂ )− EH(ξ′, F ′)|F ′=F̂

}
+ EH(ξ′, F ′)|F ′=F̂

]
= op(1) + arg max

ξ′
[{EH(ξ′, F ′)|F ′=F̂ − EH(ξ′, F )}+ EH(ξ′, F )]

= op(1) + arg max
ξ′

E{R log p(Z|Y, U, ξ′, F )−R log p(Z|F )}

= op(1) + ξ.

Let l(ξ′, F̂ ) = (1/N)
∑N

i=1Hi(ξ
′, F̂ ). Under (b) and by Taylor’s expansion, we

have

0 = ∇ξl(ξ̃, F̂ ) = ∇ξl(ξ, F̂ ) + E{∇2
ξξH(ξ, F )}(ξ̃ − ξ) + op(N

−1/2). (A.1)
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Using the theory of V-statistics and similar arguments to Zhao and Shao (2015),

we have

∇ξl(ξ, F̂ )−∇ξl(ξ, F ) =
1

N

N∑
i=1

(
S1(zi, ξ, F )

T1(zi, ξ, F )

)
+ op(N

−1/2), (A.2)

where

S1(zi, ξ, F ) = E

[
r
∫
∇θp(y|u, z, θ)p(u|z, γ)dF (z)p(y|u, zi, θ)p(u|zi, γ)

{
∫
p(y|u, z, θ)p(u|z, γ)dF (z)}2

− r∇θp(y|u, zi, θ)p(u|zi, γ)∫
p(y|u, z, θ)p(u|z, γ)dF (z)

]
, (A.3)

T1(zi, ξ, F ) = E

[
r
∫
p(y|u, z, θ)∇γp(u|z, γ)dF (z)p(y|u, zi, θ)p(u|zi, γ)

{
∫
p(y|u, z, θ)p(u|z, γ)dF (z)}2

− rp(y|u, zi, θ)∇γp(u|zi, γ)∫
p(y|u, z, θ)p(u|z, γ)dF (z)

]
, (A.4)

and the expectation is taken with respect to (r, y, u). Then by (A.1) and (A.2),

we have

√
N(ξ̃ − ξ) =

[
−E{∇2

ξξH(ξ, F )}
]−1 1√

N

N∑
i=1

(
∇θHi(ξ, F )+S1(zi, ξ, F )

∇γHi(ξ, F )+T1(zi, ξ, F )

)
+ op(1)

=
1√
N

N∑
i=1

Di + op(1)→d N(0,Λ),

where

Di =

Di1

Di2

Di3

 =
[
− E{∇2

ξξH(ξ, F )}
]−1

(
∇θHi(ξ, F ) + S1(zi, ξ, F )

∇γHi(ξ, F ) + T1(zi, ξ, F )

)
, (A.5)

Di1, Di2, and Di3 are the rows of Di corresponding to α̃, β̃ and γ̃ respectively,

and Λ = Var(Di).

(2) Direct calculation shows

E{∇2
ααH(ξ, F )} = E[E(r|y, u)E{∇2

αα log p(y|u, z, θ)− J |y, u}], (A.6)

where

J =

∫
∇2
ααp(y|u, z, θ)p(u|z, γ)dF (z)∫
p(y|u, z, θ)p(u|z, γ)dF (z)

−
∫
∇αp(y|u, z, θ)p(u|z, γ)dF (z)

∫
∇ατp(y|u, z, θ)p(u|z, γ)dF (z)

{
∫
p(y|u, z, θ)p(u|z, γ)dF (z)}2

.

As β → 0, we have p(y|u, z, θ) → exp(yη(αc + ατuu) − b ◦ η(αc + ατuu) + c(y)),
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which does not depend on z. Also,

∇α log p(y|u, z, θ) =
∇h

∇2
ηηb ◦ η

(αc + ατuu+ βτz){y − h(αc + ατuu+ βτz)}

(
1

u

)

→ ∇h
∇2
ηηb ◦ η

(αc + ατuu){y − h(αc + ατuu)}

(
1

u

)
,

∇2
αα log p(y|u, z, θ)

= ∇
(
∇h

∇2
ηηb ◦ η

)
(αc + ατuu+ βτz){y − h(αc + ατuu+ βτz)}

(
1 uτ

u uuτ

)

− ∇h
∇2
ηηb ◦ η

◦ ∇h(αc + ατuu+ βτz)

(
1 uτ

u uuτ

)

→ ∇
(
∇h

∇2
ηηb ◦ η

)
(αc + ατuu){y − h(αc + ατuu)}

(
1 uτ

u uuτ

)

− ∇h
∇2
ηηb ◦ η

◦ ∇h(αc + ατuu)

(
1 uτ

u uuτ

)
,

which do not depend on z. The definition of h is given in Section 2.2. So as

β → 0, ∇αp(y|u, z, θ) and ∇2
ααp(y|u, z, θ) do not depend on z, and

J → ∇
2
ααp(y|u, z, θ)
p(y|u, z, θ)

− ∇αp(y|u, z, θ)∇α
τp(y|u, z, θ)

p2(y|u, z, θ)
= ∇2

αα log p(y|u, z, θ)

which, together with (A.6), finishes the proof.

Proof of Theorem 2

For any ε > 0, take

AN =
{
ω ∈ Ω : N−1

∣∣l(α′|α′′1)− l(α′|α′′2)
∣∣ ≤ K‖α′′1 − α′′2‖, for any α′, α′′1, α

′′
2 ∈ B

}
,

where K = 2E{supα′,α′′∈B ‖∇α′′ li(α′|α′′)‖} and Ω is the sample space for the

random variables. There exist α∗ ∈ B between α′′1 and α′′2 such that

P
(
N−1

∣∣l(α′|α′′1)− l(α′|α′′2)
∣∣ ≤ K‖α′′1 − α′′2‖)

= P
(
N−1

∣∣∇α′′ l(α′|α∗)(α′′1 − α′′2)
∣∣ ≤ K‖α′′1 − α′′2‖)

≥ P

(
N−1

N∑
i=1

sup
α′,α′′∈B

‖∇α′′ li(α′|α′′)‖ ≤ K

)

≥ P

(∣∣N−1
N∑
i=1

sup
α′,α′′∈B

‖∇α′′ li(α′|α′′)‖−E sup
α′,α′′∈B

‖∇α′′ l1(α′|α′′)‖
∣∣≤K

2

)
→ 1.
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So we have P (AN )→ 1, as N →∞.

Since E{Si(α′|α)
∣∣
α′=α
} = 0, there exists ᾱ such that S(ᾱ|α) = 0 and ᾱ

converges to α in probability. Then for large enough N , ᾱ ∈ B with arbitrary

large probability. Since l(α′|α) is strictly concave in B and ∇α′ l(α′|α) = S(α′|α),

ᾱ is the unique maximizer of l(α′|α) in B. Let

τN = N−1

{
l(ᾱ|α)− sup

α′∈B,‖α′−ᾱ‖≥ε/2
l(α′|α)

}
,

BN = {ω ∈ Ω : τN (ω) ≥ τ/2} ,
τ = E{li(α|α)} − sup

α′∈B,‖α′−α‖≥ε/2
E{li(α′|α)}.

Since ᾱ converges to α in probability, τN converges to τ in probability as B

is compact. Additionally, τ is a positive constant, guaranteed by (b), and

E{li(α′|α)} is strictly concave in a neighborhood of α with∇α′E{li(α′|α)}|α′=α =

E{Si(α|α)} = 0, so P (BN )→ 1 as N →∞.

For any fixed t, if α̂(t) converges to α in probability, then for large enough

N , α̂(t) ∈ B with arbitrary large probability. For any ω ∈ AN
⋂
BN , once

‖α̂(t) − α‖ ≤ (τ/8)K, we have

N−1
∣∣l(α′|α̂(t))− l(α′|α)

∣∣ ≤ K‖α̂(t) − α‖ ≤ τ

8
for any α′ ∈ B. (A.7)

Hence, when α′ ∈ B and ‖α′ − ᾱ‖ ≥ ε/2, we have

N−1l(α′|α̂(t)) ≤ N−1l(α′|α) +
τ

8
(A.8)

≤ N−1 sup
α′∈B,‖α′−ᾱ‖≥ε/2

l(α′|α) +
τ

8

= N−1l(ᾱ|α)− τN (ω) +
τ

8

≤ N−1l(ᾱ|α)− τ

2
+
τ

8
(A.9)

≤ N−1l(ᾱ|α̂(t)) +
τ

8
− τ

2
+
τ

8
(A.10)

= N−1l(ᾱ|α̂(t))− τ

4
,

where (A.8) and (A.10) follow from (A.7), and (A.9) holds since ω ∈ BN . There-

fore, there exists a local maximizer of l(α′|α̂(t)), denoted as α̂(t+1), such that

S(α̂(t+1)|α̂(t)) = 0 and ‖α̂(t+1) − ᾱ‖ < ε/2 when ω ∈ AN
⋂
BN and ‖α̂(t) − α‖ ≤

τ/8K. Hence,

P
(
‖α̂(t+1) − α‖ < ε

)
≥ P

(
‖α̂(t+1) − ᾱ‖ < ε

2
, ‖ᾱ− α‖ < ε

2

)
≥ P

(
ω ∈ AN

⋂
BN , ‖α̂(t)−α‖≤ τ

8K
, ‖ᾱ− α‖< ε

2

)
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→1, (A.11)

where (A.11) holds since P (AN )→ 1, P (BN )→ 1, and both α̂(t) and ᾱ converge

to α in probability. So when α̂(1) converges to α in probability, there exists a

sequence {α̂(t), t ≥ 1} such that S(α̂(t+1)|α̂(t)) = 0 and α̂(t) converges to α in

probability as N goes to infinity.

Since E{Si(α|α)} = 0, as N goes to infinity, there exists a sequence {ᾱN}
such that P (S(ᾱN |ᾱN ) = 0)→ 1 and ᾱN converges to α in probability. We can

use Taylor’s expansion technique on S(α̂(t+1)|α̂(t)) around the point (ᾱN , ᾱN ):

0 = S(α̂(t+1)|α̂(t))

= S(ᾱN |ᾱN ) +∇α′S(α′
∗ |α′′∗)(α̂(t+1) − ᾱN ) +∇α′′S(α′

∗ |α′′∗)(α̂(t) − ᾱN ),

where α′
∗

is between α̂(t+1) and ᾱN , and α′′
∗

is between α̂(t) and ᾱN . Since both

α′
∗

and α′′
∗

converge to α in probability, we have

α̂(t+1) − ᾱN =
{
−N−1∇α′S(α′

∗ |α′′∗)
}−1{

N−1∇α′′S(α′
∗ |α′′∗)

}(
α̂(t)−ᾱN

)
∼=
{
−N−1∇α′S(α′|α)

∣∣
α′=α

}−1 {
N−1∇α′′S(α|α′′)

∣∣
α′′=α

}(
α̂(t)−ᾱN

)
,

where the notation CN ∼= DN means D−1
N CN = 1 + op(1). Therefore,

α̂(t) − ᾱN ∼=
{
I1(α)−1I2(α)

}t−1
(α̂(1) − ᾱN ),

which converges to 0 as t → ∞ with condition (c). This finishes the proof with

α̂ = ᾱN .

Proof of Theorem 3

Let S(α′, β′, γ′) =
∑N

i=1 Si(α
′, β′, γ′). Under the regularity conditions and

by Taylor’s expansion, we have

0 = S
(α̂, β̃, γ̃)

N
= S

(α, β, γ)

N
+B1(α̂− α) +B2(β̃ − β) +B3(γ̃ − γ) + op(N

−1/2).

Therefore

√
N(α̂− α) = (−B1)−1

{
1√
N

N∑
i=1

Si(α, β, γ) +B2
1√
N

N∑
i=1

Di2

+B3
1√
N

N∑
i=1

Di3

}
+ op(1),

√
N(θ̂ − θ)

=
√
N

(
α̂− α
β̃ − β

)
=

1√
N

N∑
i=1

Ei + op(1)→d N(0,Σ),

where
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Ei =

[
(−B1)−1{Si(α, β, γ) +B2Di2 +B3Di3}

Di2

]
, (A.12)

and Σ = Var(Ei).

Proof of Theorem 4

Let P (w) denote the true distribution of W = (Y, U, Z,R) and P̂ (w) its

empirical distribution based on data wi, i = 1, . . . , N . Then

Σ = Var(Ei) =

∫
κ(w, ξ, F,A,B1, B2, B3)κ(w, ξ, F,A,B1, B2, B3)τdP (w),

Σ̂ =

∫
κ(w, ξ̂, F̂ , Â, B̂1, B̂2, B̂3)κ(w, ξ̂, F̂ , Â, B̂1, B̂2, B̂3)τdP̂ (w).

Let

Qi = κ(w, ξ̂, F̂ , Â, B̂1, B̂2, B̂3)κ(w, ξ̂, F̂ , Â, B̂1, B̂2, B̂3)τ

−κ(w, ξ, F,A,B1, B2, B3)κ(w, ξ, F,A,B1, B2, B3)τ .

From the triangular inequality and law of large numbers,

‖Σ̂− Σ‖ ≤ 1

N
‖Qi‖+ op(1).

By (3.1), for any ε > 0,

1

N

N∑
i=1

‖Qi‖I[0,c](‖wi‖) <
ε

2

when N is sufficiently large.

For any ε̃ > 0, we can choose c such that E{h(w)I(c,∞)(‖w‖)} < εε̃/4. By

Chebyshev’s inequality and (3.2),

P

(
1

N

N∑
i=1

‖Qi‖I(c,∞)(‖wi‖) >
ε

2

)
< ε̃.

Therefore

P

(
1

N

N∑
i=1

‖Qi‖ > ε

)
→ 0,

which completes the proof.
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