Supplemental Appendix Semiparametric inference under a discrete choice model for nonmonotone missing not at random data Eric J. Tchetgen Tchetgen, Linbo Wang, BaoLuo Sun
 Department of Biostatistics, Harvard University

1 Sensitivity analysis for CCMV

Identification conditions such as CCMV are not generally empirically testable and therefore, it is important that inferences in a given analysis are assessed for sensitivity to violation of such assumptions. Specifically, a violation of the CCMV assumption can occur if for some r,

$$
R \not \Perp L_{(-r)} \mid L_{(r)}, R \in\{1, r\},
$$

which can be encoded by specifying the degree of departure from the identifying assumption, on the odds ratio scale using the selection bias function:

$$
\theta_{r}\left(L_{(-r)}, L_{(r)}\right)=\frac{\pi_{r}\left(L_{(r)}, L_{(-r)}\right) \pi_{1}\left(L_{(r)}, L_{(-r)}=0\right)}{\pi_{1}\left(L_{(r)}, L_{(-r)}\right) \pi_{r}\left(L_{(r)}, L_{(-r)}=0\right)}
$$

CCMV corresponds to the null $\theta_{r}\left(L_{(-r)}, L_{(r)}\right)=1$ for all r, and $\theta_{r}\left(L_{(-r)}, L_{(r)}\right) \neq 1$ for some r indicates violation of the assumption. The function $\theta_{r}(\cdot, \cdot)$ is not nonparametrically identified from the observed data. Therefore we propose that one may specify a functional form for $\theta_{r}(\cdot, \cdot)$ for use in a sensitivity analysis in the spirit of Robins et al (1999). Hereafter, suppose that one has specified functions $\theta=\left\{\theta_{r}: r\right\}$. For such specification, we describe IPW, PM and DR estimation incorporating a non-null θ_{r}.

For IPW estimation, we propose to modify W_{r} of Section 5 as follows. Let $W_{r}\left(G_{r} ; \alpha, \theta_{r}\right)=G_{r} \times$ $\left[1\{R=r\}-1\{R=1\} \theta_{r}(L) \Pi_{r}(\alpha) / \Pi_{1}(\alpha)\right]$, and denote by $\widehat{\alpha}(\theta)$ the solution to $\mathbb{P}_{n} W_{r}\left(G_{r} ; \widehat{\alpha}(\theta), \theta_{r}\right)=$ 0 , then a consistent IPW estimator $\widehat{\beta}_{i p w}(\theta)$ solves equation (10) in the main text with Π_{1} replaced
by $\Pi_{1}^{*}(\widehat{\alpha}(\theta))=\left\{1+\sum_{r \neq 1} \theta_{r}(L) \Pi_{r}(\widehat{\alpha}(\theta)) / \Pi_{1}(\widehat{\alpha}(\theta))\right\}^{-1}$
Likewise, PM estimation hinges on the following expression

$$
\begin{aligned}
& E\left\{U(L ; \beta) \mid R=r, L_{(r)} ; \widetilde{\eta}, \theta\right\} \\
& =\frac{\int \theta_{r}\left(L_{(-r)}, L_{(r)}\right) U\left(l_{(-r)}, L_{(r))} ; \beta\right) f\left(l_{(-r)}, L_{(r))} \mid R=1 ; \eta\right) d \mu\left(l_{(-r)}\right)}{\int \theta_{r}\left(L_{(-r)}, L_{(r)}\right) f\left(l_{(-r)}, L_{(r))} \mid R=1 ; \eta\right) d \mu\left(l_{(-r)}\right)}
\end{aligned}
$$

which may be used in place of $E\left\{U(L ; \beta) \mid R=1, L_{(r)} ; \widetilde{\eta}\right\}$ in equation (12), which in turn may be used to obtain the PM estimator $\hat{\beta}_{p m}(\theta)$. Finally, for a given value of θ, the DR estimator $\hat{\beta}_{d r}(\theta)$ solves equation (14) with $V\left(\widehat{\beta}_{d r}, \widetilde{\alpha}, \widetilde{\eta}\right)$ replaced by

$$
\begin{aligned}
V(\beta, \widehat{\alpha}(\theta), \widetilde{\eta} ; \theta) & =\left\{\frac{1(R=1)}{\Pi_{1}^{*}(\widehat{\alpha}(\theta))} U(L ; \beta)\right\} \\
& -\frac{1(R=1)}{\Pi_{1}^{*}(\widehat{\alpha}(\theta))} \sum_{r \pm 1} \Pi_{r}^{*}(\widehat{\alpha}(\theta)) E\left[U(L ; \beta) \mid L_{(r)}, R=r ; \widetilde{\eta}, \theta\right] \\
& +\sum_{r \pm 1} I(R=r) E\left[U(L ; \beta) \mid L_{(r)}, R=r ; \widetilde{\eta}, \theta\right]
\end{aligned}
$$

where

$$
\Pi_{r}^{*}(\widehat{\alpha}(\theta))=\frac{\theta_{r}(L) \Pi_{r}(\widehat{\alpha}(\theta)) / \Pi_{1}(\widehat{\alpha}(\theta))}{\left\{1+\sum_{r^{\prime} \neq 1} \theta_{r^{\prime}}(L) \Pi_{r^{\prime}}(\widehat{\alpha}(\theta)) / \Pi_{1}(\widehat{\alpha}(\theta))\right\}},
$$

A sensitivity analysis then entails reporting $\hat{\beta}_{i p w}(\theta), \hat{\beta}_{p m}(\theta)$ or $\hat{\beta}_{d r}(\theta)$ for a range of values of θ.

2 Proof of Lemmas

Proof of Lemma 1: The result follows from the following generalized odds ratio representation of the joint likelihood of $f(R, L)$ (see Chen, 2007 and Tchetgen Tchetgen et al, 2010)

$$
f(R, L)=\frac{f(R \mid L=0) f(L \mid R=1) \mathrm{OR}(R, L)}{\iint f\left(r^{*} \mid L=0\right) f\left(l^{*} \mid R=1\right) \mathrm{OR}\left(r^{*}, l^{*}\right) d \mu\left(r^{*}, l^{*}\right)},
$$

provided that $\iint f\left(r^{*} \mid L=0\right) f\left(l^{*} \mid R=1\right) \mathrm{OR}\left(r^{*}, l^{*}\right) d \mu\left(r^{*}, l^{*}\right)<\infty$, where the generalized odds ratio function $\mathrm{OR}(R, L)$ is defined as

$$
\mathrm{OR}(R, L)=\frac{f(R, L) f(R=1, L=0)}{f(R=1, L) f(R, L=0)}
$$

Then

$$
\begin{aligned}
& \frac{f(R \mid L=0) f(L \mid R=1) \mathrm{OR}(R, L)}{\iint f\left(r^{*} \mid L=0\right) f\left(l^{*} \mid R=1\right) \operatorname{OR}\left(r^{*}, l^{*}\right) d \mu\left(r^{*}, l^{*}\right)} \\
& =\frac{\frac{f(R \mid L=0)}{f(R=1 \mid L=0)} \operatorname{OR}(R, L) f(L \mid R=1)}{\iint \frac{f\left(r^{*} \mid L=0\right)}{f(R=1 \mid L=0)} \operatorname{OR}\left(r^{*}, l^{*}\right) f\left(l^{*} \mid R=1\right) d \mu\left(r^{*}, l^{*}\right)} \\
& =\frac{\prod_{r \neq 1} \operatorname{Odds}_{r}(L)^{I(R=r)} f(L \mid R=1) f(L \mid R=1)}{\iint \prod_{r \neq 1} \operatorname{Odds}_{r}\left(l^{*}\right)^{I\left(r^{*}=r\right)} f\left(l^{*} \mid R=1\right) d \mu\left(r^{*}, l^{*}\right)}
\end{aligned}
$$

proving the result.
Proof of Lemma 2: The complete-case joint distribution $f(L \mid R=1)$ is nonparametrically just-identified under assumption (1). Furthermore, pairwise MAR implies that $\operatorname{Odds}_{r}(L)=$ $\operatorname{Odds}_{r}\left(L_{(r)}\right)$ is nonparametrically just-identified from data $\left\{\left(R, L_{(R)}\right): R \in\{1, r\}\right\}$, because $L_{(-r)}$ is MAR conditional on $L_{(R)}$ and $R \in\{1, r\}$. Specifically,

$$
\begin{aligned}
& \operatorname{Pr}\{R=r \mid L, R \in\{1, r\}\} \\
& =\frac{\operatorname{Pr}\{R=r, L\}}{\operatorname{Pr}\{L, R \in\{1, r\}\}} \\
& =\frac{\operatorname{Odds}_{r}\left(L_{(r)}\right) f(L \mid R=1) f(L \mid R=1)}{\operatorname{Odds}_{r}\left(L_{(r)}\right) f(L \mid R=1) f(L \mid R=1)+f(L \mid R=1) f(L \mid R=1)} \\
& =\frac{\operatorname{Odds}_{r}\left(L_{(r)}\right)}{\operatorname{Odds}_{r}\left(L_{(r)}\right)+1},
\end{aligned}
$$

proving the result.
Proof of Theorem 3: The result essentially follows from the following DR property of $V(\beta, \alpha, \eta)$.
Let $V\left(\beta, \alpha^{*}, \eta_{0}\right)$ denote the estimating function evaluated at the incorrect Π_{r} and true $E\left[U(L ; \beta) \mid L_{(r)}, R=\right.$

1] for all r. Likewise let $V\left(\beta, \alpha_{0}, \eta^{*}\right)$ for the opposite setting. DR property holds if $E\left\{V\left(\beta_{0}, \alpha^{*}, \eta_{0}\right)\right\}=$ $E\left\{V\left(\beta_{0}, \alpha_{0}, \eta^{*}\right)\right\}=0$. First, note that under $\mathcal{M}_{R}, \widetilde{\alpha} \rightarrow \alpha_{0}$ and $\widetilde{\eta} \rightarrow \eta^{*}$ in probability, then $\mathbb{P}_{n} V\left(\beta_{0}, \widetilde{\alpha}, \widetilde{\eta}\right) \rightarrow E\left\{V\left(\beta_{0}, \alpha_{0}, \eta^{*}\right)\right\}$ in probability by Continuous Mapping Theorem and the Law of Large Numbers. We also have that

$$
\begin{aligned}
E\left(V\left(\beta, \alpha_{0}, \eta^{*}\right)\right) & =E\left\{\frac{1(R=1)}{\Pi_{1}\left(\alpha_{0}\right)} U\left(L ; \beta_{0}\right)\right. \\
& \left.-\sum_{r \neq 1}\left(\frac{1(R=1) \Pi_{r}\left(\alpha_{0}\right)}{\Pi_{1}(\alpha)}-1(R=r)\right) E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta^{*}\right]\right\} \\
& =E\left\{\frac{E\{1(R=1) \mid L\}}{\Pi_{1}\left(\alpha_{0}\right)} U\left(L ; \beta_{0}\right)\right. \\
& -\sum_{r \neq 1} \underbrace{\left(\frac{E\{1(R=1) \mid L\} \Pi_{r}\left(\alpha_{0}\right)}{\Pi_{1}(\alpha)}-E\{1(R=r) \mid L\}\right)}_{=0} E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta^{*}\right] \\
& =E\left[U\left(L ; \beta_{0}\right)\right]=0
\end{aligned}
$$

By the same token, under $\mathcal{M}_{L}, \widetilde{\alpha} \rightarrow \alpha^{*}$ and $\widetilde{\eta} \rightarrow \eta_{0}$ in probability, then $\mathbb{P}_{n} V\left(\beta_{0}, \widetilde{\alpha}, \widetilde{\eta}\right) \rightarrow$ $E\left\{V\left(\beta_{0}, \alpha^{*}, \eta_{0}\right)\right\}$. Next we show that $E\left\{V\left(\beta_{0}, \alpha^{*}, \eta_{0}\right)\right\}=0$. Note that for all α

$$
\begin{aligned}
\frac{1}{\Pi_{1}(\alpha)} & =1+\sum_{r \neq 1} \frac{\Pi_{r}(\alpha)}{\Pi_{1}(\alpha)} \\
& =1+\sum_{r \neq 1} \operatorname{Odds}_{r}\left(L_{(r)} ; \alpha\right)
\end{aligned}
$$

Then we have that

$$
\begin{aligned}
E\left(V\left(\beta, \alpha_{0}, \eta^{*}\right)\right) & =E\left\{\frac{1(R=1)}{\Pi_{1}\left(\alpha^{*}\right)}\left\{U\left(L ; \beta_{0}\right)-\sum_{r \neq 1} \Pi_{r}\left(\alpha^{*}\right) E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta_{0}\right]\right\}\right. \\
& \left.+\sum_{r \neq 1} 1(R=r) E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta_{0}\right]\right\} \\
& =E\left\{1(R=1)\left\{\frac{U\left(L ; \beta_{0}\right)}{\Pi_{1}\left(\alpha^{*}\right)}-\sum_{r \neq 1} \frac{\Pi_{r}\left(\alpha^{*}\right)}{\Pi_{1}\left(\alpha^{*}\right)} E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta_{0}\right]\right\}\right. \\
& \left.+\sum_{r \neq 1} 1(R=r) E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta_{0}\right]\right\} \\
& =E\{\underbrace{\left.\sum_{r \neq 1} \operatorname{Odds}_{r}\left(L_{(r)} ; \alpha^{*}\right)\left(E\left[U\left(L ; \beta_{0}\right) \mid R=1, L_{(r)}\right]-E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta_{0}\right]\right)\right\}}_{=0}\} \\
& \left.1(R=1) U\left(L ; \beta_{0}\right)+\sum_{r \neq 1} 1(R=r) E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta_{0}\right]\right\} \\
& =E\left\{1(R=1) U\left(L ; \beta_{0}\right)+\sum_{r \neq 1} 1(R=r) E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta_{0}\right]\right\} \\
& =E\left\{1(R=1) U\left(L ; \beta_{0}\right)+\sum_{r \neq 1} 1(R=r) E\left[U(L ; \beta) \mid L_{(r)}, R=r\right]\right\} \\
& =E\left\{1(R=1) E\left[U\left(L ; \beta_{0}\right) \mid R=1\right]+\sum_{r \neq 1} 1(R=r) E[U(L ; \beta) \mid R=r]\right\} \\
& =E\left[U\left(L ; \beta_{0}\right)\right]=0
\end{aligned}
$$

proving the result.

Proof of Corollary 4: $E(V(\beta, \alpha, \eta))$ can be written

$$
\begin{aligned}
& E(V(\beta, \alpha, \eta)) \\
& =E\left\{\sum_{r \neq 1} \frac{1(R=1) \Pi_{r}(\alpha)}{\Pi_{1}(\alpha)} U\left(L ; \beta_{0}\right)-\sum_{r \neq 1} \frac{1(R=1) \Pi_{r}(\alpha)}{\Pi_{1}(\alpha)} E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta\right]\right. \\
& \left.+\sum_{r \neq 1} 1(R=r) E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta\right]+1(R=1) U\left(L ; \beta_{0}\right)\right\} \\
& =E\left\{\sum_{r \neq 1} \frac{1(R=1) \Pi_{r}(\alpha)}{\Pi_{1}(\alpha)} U\left(L ; \beta_{0}\right)-\sum_{r \neq 1} \frac{1(R=1) \Pi_{r}(\alpha)}{\Pi_{1}(\alpha)} E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta\right]\right. \\
& \left.+\sum_{r \neq 1} 1(R=r)\left\{E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta\right]-U\left(L ; \beta_{0}\right)\right\}+U\left(L ; \beta_{0}\right)\right\} \\
& =E\left[\sum_{r \neq 1}\left\{1(R=1) \operatorname{Odds}_{r}\left(L_{(r)} ; \alpha\right)-1(R=r)\right\}\left\{U\left(L ; \beta_{0}\right)-E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta\right]\right\}\right]
\end{aligned}
$$

Under $\mathcal{M}_{R}(r)$, we have that $\operatorname{Odds}_{r}\left(L_{(r)} ; \widetilde{\alpha}\right) \rightarrow \operatorname{Odds}_{r}\left(L_{(r)} ; \alpha_{0}\right)$ in probability, and

$$
\begin{aligned}
& E\left[\left\{1(R=1) \operatorname{Odds}_{r}\left(L_{(r)} ; \alpha_{0}\right)-1(R=r)\right\}\left\{U\left(L ; \beta_{0}\right)-E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta^{*}\right]\right\}\right] \\
& =E\left[\left\{1(R=1) \frac{\Pi_{r}}{\Pi_{1}}-1(R=r)\right\}\left\{U\left(L ; \beta_{0}\right)-E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta^{*}\right]\right\}\right] \\
& =E\left[\left\{\Pi_{r}-E[1(R=r) \mid L]\right\}\left\{U\left(L ; \beta_{0}\right)-E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta^{*}\right]\right\}\right] \\
& =0
\end{aligned}
$$

Likewise, under $\mathcal{M}_{L}(r)$, we have that $E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \widetilde{\eta}\right] \rightarrow E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta_{0}\right]$ in probability, and

$$
\begin{aligned}
& E\left[\left\{1(R=1) \operatorname{Odds}_{r}\left(L_{(r)} ; \alpha^{*}\right)-1(R=r)\right\}\left\{U\left(L ; \beta_{0}\right)-E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta_{0}\right]\right\}\right] \\
& =E\left[1(R=1) \operatorname{Odds}_{r}\left(L_{(r)} ; \alpha^{*}\right)\left\{E\left\{U\left(L ; \beta_{0}\right) \mid R=1, L_{(r)}\right\}-E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta_{0}\right]\right\}\right] \\
& -E\left[\{1(R=r)\}\left\{E\left\{U\left(L ; \beta_{0}\right) \mid R=r, L_{(r)}\right\}-E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta_{0}\right]\right\}\right] \\
& =-E\left[\{1(R=r)\}\left\{E\left\{U\left(L ; \beta_{0}\right) \mid R=1, L_{(r)}\right\}-E\left[U(L ; \beta) \mid L_{(r)}, R=1 ; \eta_{0}\right]\right\}\right] \\
& =0
\end{aligned}
$$

proving the result.

Table S1: Monte Carlo results of the IPW, PM and DR estimators: bias, standard error and root mean squared error. The true value of β is 0.634 , and the sample size is 2000 .

	bth *	nrm	ccm	bad
Bias(SE)				
IPW	$-0.004(0.002)$	$-0.004(0.002)$	$-0.641(0.012)$	$-0.641(0.012)$
PM	$-0.002(0.001)$	$-0.367(0.002)$	$-0.002(0.001)$	$-0.367(0.002)$
DR	$-0.002(0.002)$	$-0.006(0.002)$	$-0.002(0.002)$	$-0.371(0.003)$
RMSE				
IPW	0.072	0.072	0.748	0.748
PM	0.046	0.373	0.046	0.373
DR	0.048	0.057	0.057	0.385

*: bth: both models correct; nrm: nonresponse model correct; ccm: complete-case model correct; bad: both models incorrect.

3 Additional Simulation Results

Table S1 shows Monte Carlo results comparing the proposed large sample estimator of standard deviation (and corresponding coverage probabilities of Wald 95% confidence intervals) of IPW, PM and DR estimators of β to corresponding Monte Carlo standard deviations .

References

[1] Chen, H. Y. (2007). A semiparametric odds ratio model for measuring association. Biometrics 63, 413-421.
[2] Robins JM, Rotnitzky A, Scharfstein D. (1999). Sensitivity Analysis for Selection Bias and Unmeasured Confounding in Missing Data and Causal Inference Models. In: Statistical Models in Epidemiology: The Environment and Clinical Trials. Halloran, M.E. and Berry, D., eds. IMA Volume 116, NY: Springer-Verlag, pp. 1-92.
[3] Tchetgen Tchetgen, E. J., Robins, J. M., \& Rotnitzky, A. (2010). On doubly robust estimation in a semiparametric odds ratio model. Biometrika 97, 171-180.

