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Abstract: Nonmonotone missing data arise routinely in empirical studies of the

social and health sciences and, when ignored, can induce selection bias and loss

of efficiency. It is common to account for nonresponse under a missing-at-random

assumption which, although convenient, is rarely appropriate when nonresponse is

nonmonotone. Likelihood and Bayesian missing data methodologies often require

specification of a parametric model for the full data law, thus a priori ruling out

any prospect for semiparametric inference. In this paper, we propose an all-purpose

approach which delivers semiparametric inferences when missing data are nonmono-

tone and not at random. The approach is based on a discrete choice model (DCM)

as a means to generate a large class of nonmonotone nonresponse mechanisms that

are nonignorable. Sufficient conditions for nonparametric identification are given,

and a general framework for fully parametric and semiparametric inference under

an arbitrary DCM is proposed. Special consideration is given to the case of logit

discrete choice nonresponse model (LDCM) for which we describe generalizations

of inverse-probability weighting, pattern-mixture estimation, doubly robust estima-

tion, and multiply robust estimation.

Key words and phrases: Doubly robust, inverse-probability-weighting, missing not

at random, nonmonotone missing data, pattern mixture.

1. Introduction

Missing data are a common occurence in empirical research in the health and

social sciences, and often affect one’s ability to draw reliable inferences whether

from an experimental or nonexperimental study. Non-response can occur in sam-

ple surveys, due to dropout or non-compliance in clinical trials, or due to data

excision by error or in order to protect confidentiality. In many situations, there

may be no nested pattern of missingness such that observing variable Xk im-

plies that variable Xj is also observed, for any j < k. Nonmonotone missing

data patterns may occur, for instance, when individuals who dropped out of a

longitudinal study re-enter at later time points; likewise, in regression analysis
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nonmonotone nonresponse may occur if the outcome or any of the regressors

may be unobserved for a subset of the sample in an arbitrary pattern. Missing

data are said to be completely-at-random (MCAR) if the nonresponse process

is independent of both observed and unobserved variables in the full data, and

missing-at-random (MAR) if, conditional on observed variables under a nonre-

sponse pattern, the probability of observing the pattern does not depend on

unobserved variables under the pattern (Rubin (1976); Little and Rubin (2002),

Robins, Rotnitzky and Zhao (1994)). A nonresponse process which is neither

MCAR nor MAR is said to be missing-not-at-random (MNAR).

While complete-case analysis is perhaps the most widely-used method to han-

dle missing data, the approach is generally not recommended as it can give biased

inferences when nonresponse is not MCAR. Formal methods to appropriately

account for incomplete data include fully parametric likelihood and Bayesian

approaches (Little and Rubin (2002); Horton and Laird (1999); Ibrahim and

Chen (2000); Ibrahim, Chen and Lipsitz (2002); Ibrahim et al. (2005)) which

are most commonly implemented under MAR using the EM algorithm or via

multiple imputation (MI) (Dempster, Laird and Rubin (1977), Rubin (1977);

Schafer (1997)). Inverse probability weighting (IPW) is another approach to ac-

counting for selection bias due to missing data (Horvitz and Thompson (1952);

Robins, Rotnitzky and Zhao (1994); Tsiatis (2006)). While IPW estimation

avoids specification of a full-data likelihood, the approach does require a model

for the nonresponse process. However, the development of general coherent mod-

els for nonmonotone nonresponse has proved to be particularly challenging, even

under the MAR assumption; see Robins and Gill (1997) and Sun and Tchetgen

Tchetgen (2016) for two concrete proposals and further discussion.

Despite recent progress in development of MAR methodology, as argued by

Robins and Gill (1997), Robins (1997) and Little and Rubin (2002), the assump-

tion is generally hard to justify on substantive grounds when nonresponse is

nonmonotone. Instead, allowing for MNAR data seems particularly befitting in

the context of nonmonotone nonresponse and has received substantial attention,

particularly in the context of fully parametric models (Deltour, Richardson and

Le Hesran (1999), Albert (2000), Ibrahim, Chen and Lipsitz (2001), Fairclough

et al. (1998), Troxel, Harrington and Lipsitz (1998), Troxel, Lipsitz and Har-

rington (1998)). MNAR approaches which do not necessarily rely on parametric

assumptions have also been developed in recent years. Notable examples include

the group permutation model (GPM) of Robins (1997) and the block conditional

MAR (BCMAR) model of Zhou, Little and Kalbfleisch (2010). These approaches
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allow for non-ignorable missing data in the sense that the nonresponse process of

a given variable may depend on values of other missing variables. However, nei-

ther BCMAR nor GPM allows the missingness probability of a given variable to

depend on the value of the variable. Based on subject matter considerations, it is

often desirable to consider non-ignorable processes where the missingness prob-

ability of a variable depends on the possibly unobserved value of the variable,

therefore, methods for non-ignorable missing data mechanisms beyond BCMAR

and GPM are of interest.

In this paper, we propose a large class of non-ignorable nonmonotone non-

response models that unlike BCMAR and GPM, do not a priori rule out the

possibility that the probability of observing a given variable depends on the

unobserved value of the variable. Our approach is based on so-called discrete

choice models (DCM). DCMs were first introduced and predominantly used, in

economics and other social sciences, as a principled approach for generating a

large class of multinomial models to describe discrete choice decision making un-

der rational utility maximization. Here DCMs are used as a means to generate

a large class of nonmonotone nonresponse mechanisms which are nonignorable.

Sufficient conditions for nonparametric identification are given, and a general

framework for semiparametric inference under an arbitrary DCM is proposed.

Special consideration is given to the case of logit discrete choice nonresponse

model (LDCM). Our identification condition in the case of the LDCM, states that

the conditional distribution of unobserved variables given observed variables for

any nonresponse pattern, matches the corresponding conditional distribution in

complete-cases. This assumption is equivalent to the well-known complete-case

missing value (CCMV) restriction in the pattern mixture (PM) literature that

has previously been developed for fully likelihood-based inference (Little (1993)).

Therefore, our approach provides a comprehensive treatment of semiparametric

inference for MNAR nonresponse under Little’s CCMV restriction. In addition

to reviewing Little’s PM likelihood approach, we describe a generalization of

inverse-probability weighting (IPW), and both doubly robust (DR) and multiply

robust (MR) estimation, that are the nonmonotone MNAR analogues of exist-

ing results for monotone MAR nonresponse (Tsiatis (2006)). We establish that

whenever J nonresponse patterns are observed, the proposed LDCM DR esti-

mators can be made 2J -robust in the sense that, for each nonresponse pattern,

valid inferences can be obtained if one of two pattern-specific models is correctly

specified but not necessarily both. As far as we know, our paper represents the

first instance of a doubly (2J -) robust estimator obtained for a general nonmono-
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tone nonignorable missing data model that is identified from the observed data

alone. Our proposed inferences under the LDCM are quite attractive as a generic

nonignorable approach for arbitrary nonmonotone patterns, mainly because they

are somewhat easy to implement, have good robustness properties, and appear

to have good finite sample performance as we illustrate via simulation studies

and an HIV data application. In closing, we briefly consider IPW inference for

DCMs outside of the LDCM, which can generally be used to account for non-

monotone nonignorable missing data even when Little’s CCMV condition fails

and therefore the LDCM may not be appropriate.

2. Notation and Definitions

Suppose full data consist of n i.i.d. realizations of a random K-vector L =

(L1, . . . , LK)′. Let R denote the scalar random variable encoding missing data

patterns, and J denote the total number of observed patterns. For missing

data pattern R = r, where 1 ≤ r ≤ J ≤ 2K , we use L(r) and L(−r) to denote

observed and unobserved components of L, respectively so that L = (L(r), L(−r)).

We reserve r = 1 to denote complete cases. Throughout, write Pr (R = r|L) =

πr(L) = Πr for all r. For each realization, we observe
(
R,L(R)

)
. For instance,

if the full data L is a bivariate binary vector (L1, L2) and J = 3 nonmonotone

nonresponse patterns are observed in the sample: R = 1, L(1) = L;R = 2, L(2) =

L1; and R = 3, L(3) = L2.

Throughout, we make the positivity assumption,

Π1 > σ > 0 a.s., (2.1)

for a fixed positive constant σ. Assumption (2.1) is needed for nonparametric

identification of the full data distribution, and its smooth functionals as well as

finite asymptotic variance of IPW estimators (Robins, Rotnitzky and Scharfstein

(1999)). As discussed in Section 2.3, complete-case IPW relies on obtaining a

consistent estimator of π1(L) = 1−
∑

r 6=1 πr(L) which in turn requires estimating

the nonresponse process {πr(L) : r}. The nonresponse process clearly fails to be

nonparametrically identified under (2.1) alone. In the next section, we describe

a set of sufficient conditions to identify a model for the complete-case probability

π1(L) under the discrete choice framework when missingness is nonmonotone and

not at random.

Our first result provides a generic nonparametric representation of the joint

law of f(R,L) that will be used throughout. The result adapts the generalized

odds ratio parametrization of a joint distribution due to Chen (2010) to the
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missing data context; see also Tchetgen Tchetgen, Robins and Rotnitzky (2010).

Let Oddsr (L) = πr (L) /π1 (L).

Lemma 1. We have that

f(R,L) =

∏
r 6=1Oddsr (L)I(R=r) f (L|R = 1)∫∫∏

r 6=1Oddsr (l∗)I(r
∗=r) f (l∗|R = 1) dµ (r∗, l∗)

,

provided
∫∫∏

r 6=1Oddsr (l∗)I(r
∗=r) f (l∗|R = 1) dµ (r∗, l∗) <∞, with µ a dominat-

ing measure of the CDF of (R,L).

Lemma 1 clarifies what the identification task entails: under (2.1), f(L|R=1)

is just-identified, and therefore f(R,L) is nonparametrically just-identified only if

one can just-identify Oddsr (L) for all r. Below we describe a sufficient condition

for identification under the discrete choice model of the nonresponse process.

3. Identification

3.1. The discrete choice nonresponse model

The DCM associates with each realized nonresponse pattern r = 1, . . . ,J ≤
2K an underlying utility function Ur = µr (L) + εr, where {εr : r} are i.i.d. with

cumulative distribution function Fε, and µr (L) encodes the dependence of a

person’s utility on L (McFadden (1984), Train (2009)). Some common choices

of Fε include the extreme value distribution (further discussed below) and the

normal distribution, although in principle any CDF could be specified. It is

then assumed that a person’s observed response pattern maximizes her utility,

R = arg maxr {Ur : r} . Together, these assumptions imply that for each r,

Πr = πr (L) = Pr(R = r|L) =

∫ ∏
s 6=r

Fε (∆µrs (L) + ε) dFε (ε) , (3.1)

where ∆µrs (L) = µr (L)−µs (L) captures the dependence on L of a difference in

utility in comparing a person’s choice between nonresponse patterns r and s, see

Train (2009). The integral in (3.1) is generally not available in closed form for

most choices of Fε (with the notable exception of the extreme value distribution,

see Section 2.2), but can easily be evaluated by numerical integration using, say,

Gaussian quadrature. Although not immediately apparent from the expression

in the display, (3.1) gives rise to a proper probability mass function, that is∑
r πr (l) = 1 for all values of l and for any choice of Fε. This remarkable result is

a direct consequence of utility maximization as a formal principle for generating

multinomial probabilities {πr : r} . Another observation is that only differences
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in utility matter in determining the choice probabilities; in other words, the

absolute level of a person’s utility for a given nonresponse pattern is irrelevant

and only relative utility drives the choice of a nonresponse pattern over another.

Clearly, model (3.1) is not identifiable without an additional assumption, even

given knowledge of Fε.

For the purpose of identification, we consider the assumption that the rel-

ative utility ∆µ1r (L) of any nonresponse pattern r 6= 1 compared with that of

complete-case pattern r = 1, only depends on data observed under both patterns,

∆µ1r (L) = ∆µ1r
(
L(r)

)
for all r almost surely. (3.2)

The assumption essentially states that when faced with the choice between nonre-

sponse pattern r 6= 1 versus providing complete data, the excess utility a subject

would experience choosing one over the other only depends on data observed

under both choices. Under this assumption, one may write

Πr =

∫ ∏
s 6=r

Fε
(
∆µ1s

(
L(s)

)
−∆µ1r

(
L(r)

)
+ ε
)
dFε (ε) (3.3)

Even under (3.2), Πr generally depends on unobserved variables for all r, and

therefore, data are missing not at random, and the corresponding observed data

likelihood is nonignorable. Nevertheless, as we show in Section 5, given any

continuous Fε, equation (3.1) is nonparametrically identified for each r provided

(2.1) holds. We leave the detailed discussion of inference under user-specified Fε
to Section 5, instead, to fix ideas, we further discuss identification and inference

under the logit DCM.

3.2. The logit discrete choice model

When Fε is the extreme value distribution, the integral in (3.1) is avail-

able in closed-form, and gives the following logit DCM (Train (2009)): πr (L) =

Oddsr (L) /{1 +
∑

s 6=1Oddss (L)}, where Oddsr (L) = exp (∆µ1r (L)) for all r.

Under (3.2), Oddsr (L) = Oddsr
(
L(r)

)
, and therefore

Πr =
Oddsr

(
L(r)

)
1 +

∑
s 6=1Oddss

(
L(s)

) , for all r 6= 1. (3.4)

To illustrate (5), consider an example with L = (L1, L2, L3). Suppose that there

are four nonresponse patterns, L(1) = L,L(2) = (L1, L2), L(3) = L3, L(4) = ∅.

Then, by (3) Odds2 (L) = Odds2
(
L(2)

)
; Odds3 (L) = Odds3

(
L(3)

)
; Odds4 (L) =

Odds4
(
L(4)

)
= Odds4 is a constant. Furthermore, according to (5) Π2 =

Odds2
(
L(2)

)
/c(L); Π3 = Odds3

(
L(3)

)
/c(L); Π4 = Odds4/c(L), where c (L) =
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{1 +
∑

s6=1 Oddss(L(s))}. Therefore, by virtue of c(L), the nonresponse proba-

bilities Πj , j = 2, 3, 4 are each a function of L̃ =
⋃
j=2,3,4 L(j), the union set

of observed variables across all the nonresponse patterns. Since the variable set

L̃ \ L(j) is not observed for each of the missing data patterns j = 2, 3, 4, the

nonresponse process is clearly MNAR. In particular, Π4 is a function of L̃ even

though no variable is observed in the fourth missing data pattern.

An equivalent characterization of (3.4) is

L(−r)|R = r, L(r) ∼ L(−r)|R = 1, L(r) for all r 6= 1, (3.5)

the conditional distribution of unobserved variables L(−r) given observed vari-

ables L(r) for nonresponse pattern r matches the corresponding conditional dis-

tribution among complete-cases. Although the LDCM is derived as a partic-

ular DCM, one could in principle take (3.5) as primitive identifying condition

without necessarily making reference to a DCM and the existence of its associ-

ated variables {εr : r} .This amounts to nonparametric identification under the

complete-case missing value restriction of Little (1993). As shown in Section 5,

adoption of the more general DCM framework is advantageous as it gives rise to

a richer class of nonresponse models and facilitates identification; in fact, a differ-

ent choice for the distribution Fε corresponds to a nonmonotone not at random

nonresponse model which does not generally satisfy Little’s CCMV restriction

but is nevertheless just-identified under (2.1) and (3.2).

It is instructive to compare (3.5) to standard MAR, which states that

L(−r)|R = r, L(r) ∼ L(−r)|L(r) for all r 6= 1. (3.6)

Clearly, (3.5) and (3.6) have fundamentally different implications for inference.

Specifically, when the nonresponse process and the full data distribution de-

pend on separate parameters, the MAR assumption implies that the part of the

observed data likelihood which depends on the full data parameter factorizes

from the nonresponse process. The missing data mechanism is then said to be

“ignorable” (Little and Rubin (2002)) because it is possible to learn about the

full data law without necessarily estimating the missing data process or, equiv-

alently, it is possible to learn about the missing data process without modeling

the full data law (Sun and Tchetgen Tchetgen (2016)). No such factorization is

in general available under CCMV as the missing data process is nonignorable. In

spite of possible challenges due to lack of factorization, we show that estimation

of nonmonotone non-response mechanisms under (3.5) is nevertheless relatively

straightforward. Furthermore, assumption (3.5) is invariant to the number and

nature of other nonresponse patterns potentially realized in the observed data.
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In contrast, MAR does not enjoy a similar invariance property because addition

or deletion of a nonresponse pattern from the observed sample changes the inter-

pretation of (3.6) as it implies marginalizing over a different set of nonresponse

patterns to obtain its right-hand side. Finally, (3.5) and (3.6) only coincide when

there is a single nonresponse pattern, J = 2.

Remark 1. Sun and Tchetgen Tchetgen (2016) proposed an approach tailored

specifically to model a nonmonotone nonresponse process under (3.7), but did

not consider (3.3). As (3.3) and (3.7) differ, their approach cannot be used under

(3.3).

Lemma 2. If assumptions (2.1) and (3.1) hold with Fε the extreme value dis-

tribution, and if (3.2) holds, the joint distribution f(R,L) is nonparametrically

just-identified from the observed data (LR, R) , with

f(R,L) =

∏
r 6=1Oddsr

(
L(r)

)I(R=r)
f (L|R = 1)∫∫∏

r 6=1Oddsr(l∗(r))
I(r∗=r)f(l∗|R = 1)dµ (r∗, l∗)

, (3.7)

where µ is a dominating measure of the CDF of (R,L) .

This explicit expression for f(R,L) appears to be new, and can be used

to compute the full data density f(L) =
∑

r f(r, L). Equation (8) can also be

used for maximum likelihood estimation. Specifically, let f (L|R = 1; η) denote

a parametric model for f (L|R = 1) with unknown parameter η, and consider

a parametric model for nonresponse process Πr (α) = Oddsr
(
L(r);αr

)
/ {1+∑

s 6=1 Oddss
(
L(s);αs

)}
with unknown parameter α = {αr : r}, where αr indexes

a parametric model for Oddsr
(
L(r);αr

)
. Let f(R,L; θ) denote the corresponding

model for f(R,L), where θ = (η, α) . The maximum likelihood estimator (MLE)

θ̂mle maximizes the observed data log-likelihood Pn log
∫
f(R,L; θ)dµ

(
L(−R)

)
,

where Pn (·) = n−1
∑

i (·)i . The full data likelihood f(L; θ̂mle) =
∫
f(r, L; θ̂mle)

dµ(r) can then be used to make inferences about a given full data functional of

interest according to the plug-in principle. By standard likelihood theory, the

MLE is asymptotically efficient in the model Mlik corresponding to the set of

laws {f(R,L; θ) : θ}. A major drawback of maximum likelihood inference is its

lack of robustness to model mis-specification, because θ̂mle is likely inconsistent

if either Πr (α) or f (L|R = 1; η) is incorrectly specified. Below, we consider

four semiparametric estimators which are potentially more robust than direct

likelihood maximization.



DISCRETE CHOICE MODELS FOR MISSING DATA 2077

4. Semiparametric Inference

4.1. Inverse-probability weighting estimation

Suppose the parameter of interest, β0, is the unique solution to the full data

population estimating equation E {U(L;β0)} = 0, where the expectation is taken

over the distribution of the complete data L. In principle, no further restriction

on the distribution of L is strictly required; in fact, estimation is possible under

certain weak regularity conditions (van der Vaart (1998)) as long as a full data

unbiased estimating function exists. In the presence of missing data, the esti-

mating function can only be evaluated for complete-cases that might be highly

selected even under MAR. This motivates the use of IPW estimating functions

of complete-cases to form the complete-case population estimating equation

E

{
1 (R = 1)

Π1
U(L;β0)

}
= 0, (4.1)

which holds by straightforward iterated expectations. The IPW estimator β̂ipw
that solves the empirical version of this equation will in general be inefficient es-

pecially when the fraction of complete-cases is relatively small, since incomplete

cases are discarded (except when estimating Π1). In the next section we will de-

scribe a strategy to recover information from incomplete-cases by augmenting the

estimating function shown in (4.1) to gain efficiency and, potentially, robustness.

The IPW estimating equations framework encompasses a large variety of settings

under which investigators may wish to account for non-monotone missing data.

These include IPW of the full data score equation, where the score function is

such an unbiased estimating function, given a model f(L;β0) for the law of the

full data, in which case (4.1) reduces to E{1(R = 1)∂ log f(L;β)/∂β|β0
/Π1} = 0

We now describe a straightforward approach to obtain a consistent esti-

mator of Π1 in the semiparametric model which specifies a parametric LCDM

{Πr (α) : r}, but allows f (L|R = 1) to remain unrestricted. We denote this model

by MR. The approach follows as (3.4) implies that

Pr (R = r|L,R ∈ {1, r}) = Πr,c =
Oddsr

(
L(r)

)
1 + Oddsr

(
L(r)

) , for all r.

This also gives the equivalent representation of the CCMV restriction

R ⊥⊥ L(−r)|R ∈ {r, 1} ,L(r) for each r.

Here L(r) is fully observed for observations R ∈ {1, r}. Thus, to estimate the

parametric model {Πr,c (α) : r} , for each nonresponse pattern r one can fit the

logistic regression Πr,c (αr) = Oddsr
(
L(r);αr

)
/
{

1 + Oddsr
(
L(r);αr

)}
by maxi-
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mum likelihood estimation, restricted to the subset of data containing complete-

cases and incomplete-cases of pattern r only. We define the restricted MLE

α̃r = arg max
αr

Pnllikr,c (αr)

= arg max
αr

Pn (I (R = r) log Πr,c (αr) + I (R = 1) log (1−Πr,c (αr))) .

Under assumption (2.1), the restricted MLE α̃ is consistent and asymptotically

normal under model MR. The resulting estimator of the complete-case proba-

bility Π1 under MR is

Π1 (α̃) =
1

1 +
∑

s6=1 Oddss
(
L(s); α̃s

) ,
which, in turn, provides the IPW estimator β̂ipw of β that solves

Pn
(
Uipw(L(R), R; β̂ipw, α̃)

)
= 0, (4.2)

where Uipw(L(R), R; β̂ipw, α̃) = 1 (R = 1)U(L; β̂ipw)/Π1 (α̃). Under standard reg-

ularity conditions, one can show that, under MR, the IPW estimator β̂ipw is,

in large samples, approximately normal with mean β0 and asymptotic variance

Γ̂−1ipwΩ̂ipwΓ̂−1ipw, where

Γ̂−1ipw = − ∂

∂βT
Pn
(
Uipw(L(R), R;β, α̃)

)∣∣∣∣
β̂ipw

;

Ω̂ipw = n−1Pn

({
Uipw(L(R), R; β̂ipw, α̃)

+
∂

∂αT
Pn
(
Uipw(L(R), R; β̂ipw, α)

)∣∣∣∣
α̃

ÎFα

}⊗2)
;

ÎFα = −

 ∂2

∂α∂αT
Pn

∑
r 6=1

llikr,c (αr)

∣∣∣∣∣∣
α̃


−1

∂

∂α

∑
r 6=1

llikr,c (αr)


∣∣∣∣∣∣
α̃

.

For inference about a component of β0, one can report the corresponding Wald-

type 95% confidence interval.

4.2. Pattern-mixture LDCM estimation

In this section, we consider an alternative approach for obtaining inferences

about the full data parameter β0 defined in the previous one. The approach is

a slight generalization of the pattern-mixture approach due to Little (1993). To

proceed, note that

E {U(L;β0)} = E
[
E
{
U(L;β0)|R,L(R)

}]
,
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= E
[
E
{
U(L;β0)|R = 1, L(R)

}]
= E

[∑
r

I(R = r)E
{
U(L;β0)|R = 1, L(r)

}]
(4.3)

= 0,

where the second equality follows from (3.5). Now, consider the semiparamet-

ric model ML that posits a parametric model f (L|R = 1; η) while allowing the

nonresponse process {Πr : r} to remain unrestricted. Let η̃ denote the restricted

MLE of η inML obtained using only complete-case data, η̃ = arg maxηPnllikl,c (η)

= arg maxηPnI (R = 1) log f (L|R = 1; η) . An empirical version of (4.3) can then

be used to obtain a pattern mixture estimator β̂pm of β0,

0 = Pn
(
Upm(L(R), R; β̂pm, η̃)

)
, (4.4)

where

Upm(L(R), R; β̂pm, η̃) =
∑
r

I(R = r)E
{
U(L; β̂pm)|R = 1, L(r); η̃

}
, (4.5)

and E{U(L; β̂pm)|R = 1, L(r); η̃} =
∫
U(l(−r), L(r); β̂pm)f

(
l(−r)|L(r)|R = 1; η̃

)
dµ
(
l(−r)

)
. To ensure that models

{
f
(
l(−r)|L(r)|R = 1; η̃

)
, r 6= 1

}
are compati-

ble, one may need to specify a model for f (L|R = 1) ; this is effectively the

approach followed by Little (1993). In the pattern mixture approach, the model

for f(L), which is of primary scientific interest, is indirectly specified via mod-

els for the various conditional densities
{
f
(
l(−r)|L(r)|R = 1

)
, r 6= 1

}
and the

marginal densities
{
f
(
L(r)|R = r

)
, r 6= 1

}
according to the mixture f(L) =∑

r f
(
l(−r)|L(r)|R = 1

)
f
(
l(r)|R = r

)
Pr(R = r) (Little (1993)). Under stan-

dard regularity conditions, one can show that, in large samples, β̂pm is approxi-

mately normal with mean β0 and asymptotic variance consistently estimated by

Γ̂−1pmΩ̂pmΓ̂−1pm where

Γ̂−1pm = − ∂

∂βT
Pn
(
Upm(L(R), R;β, η̃)

)∣∣∣∣
β̂pm

;

Ω̂pm = n−1Pn

{
Upm(L(R), R; β̂pm, η̃) +

∂

∂ηT
PnUpm(L(R), R; β̂pm, η)

∣∣∣∣
η̃

ÎF η

}⊗2
;

ÎF η = −

{
∂2

∂η∂ηT
Pn (llikl,c (η))

∣∣∣∣
η̃

}−1
∂

∂η

∑
r 6=1

llikl,c (η)


∣∣∣∣∣∣
η̃

.

4.3. Doubly robust and multiply robust LDCM estimation

We have now described two separate approaches for estimating the full data
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functional β0 under the LDCM, IPW, and PM estimation, each of which depends

on variation independent parameter of the joint distribution of f (R,L) given

in Lemma 2. Validity of IPW estimation relies on correct specification of the

nonresponse model MR, while PM estimation relies for consistency on correct

specification of ML. When L is sufficiently high dimensional, one cannot be

confident that either, if any, model is correctly specified, it is of interest to develop

a doubly robust estimation approach that is guaranteed to deliver valid inferences

about β0 provided either MR or ML is correctly specified, but not necessarily

both. We aim to develop a consistent estimator of β0 in the semiparametric

union model MDR =MR ∪ML.

To describe the DR approach, let

V (β, α, η) ≡ v
(
L(R), R;β, α, η

)
=

{
1(R=1)

Π1 (α)
U(L;β)

}
− 1(R=1)

Π1 (α)

∑
r 6=1

Πr (α)E
{
U(L;β)|L(r), R=1; η

}
+
∑
r 6=1

I (R = r)E
{
U(L;β)|L(r), R = 1; η

}
and let β̂dr be the solution to

0 = PnV
(
β̂dr, α̃, η̃

)
. (4.6)

Theorem 1. If assumptions (2.1) and (3.1) hold with Fε the extreme value

distribution, then, under standard regularity conditions, β̂dr is consistent and

asymptotically normal in the union model MDR with asymptotic variance con-

sistently estimated by Γ̂−1dr Ω̂drΓ̂
−1
dr , where

Γ̂−1dr = − ∂

∂βT
Pn (V (β, α̃,η̃))

∣∣∣∣
β̂dr

;

Ω̂dr = n−1Pn
(
V
(
β̂dr, α̃,η̃

)
+

∂

∂ηT
Pn
(
V
(
β̂dr, α̃, η

))∣∣∣∣
η̃

ÎF η +
∂

∂αT
Pn
(
V
(
β̂dr, α,η̃

))∣∣∣∣
α̃

ÎFα

)⊗2
.

This formally establishes the DR property of β̂dr. Instead of these estima-

tors of asymptotic variance, one can use the nonparametric bootstrap to obtain

inferences based on either β̂dr, β̂ipw, or β̂pm.

Remark 2. Equation (3.7) of Lemma 2 implies that f (R = 1|l) (which only

depends on
{

Oddsr
(
l(r)
)

: r
}

) and f(l|R = 1) are variation independent under

the CCMV restriction. This variation independence is important as double ro-
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bustness is meaningful only if it is possible a priori for both of the nuisance

models to be correctly specified, see Robins and Rotnitzky (2001) and (Richard-

son, Robins and Wang, 2016, Remark 3.1). However, in general, f(l|r) and f(r|l)
are variation dependent even under CCMV.

It is possible to make the estimator β̂dr even more robust by a modifi-

cation to estimation of the nuisance parameter η. Specifically, suppose that

for each r, the conditional density f
(
L(−r)|L(r), r; η

)
= f

(
L(−r)|L(r), r; ηr

)
=

f
(
L(−r)|L(r), R = 1; ηr

)
only depends on the subset of parameter ηr ⊂ η, where

there may be parameter overlap across patterns ηr ∩ ηr′ 6= ∅ for distinct pat-

terns r and r′. Let ML(r) be the semiparametric model that only specifies

f
(
L(−r)|L(r), R = 1; ηr

)
, allowing the density of f(L(r)|R = 1) and the missing

data process to remain unspecified. Here ML ⊆
⋂
r 6=1ML(r). Let ηr denote the

complete-case MLE underML(r) : ηr = arg maxηrPnI (R = 1) f(L(−r)|L(r), R =

1; ηr). Likewise, let MR(r) denote the semiparametric model that specifies

the nonresponse model Πr,c (αr) , and is otherwise unspecified. Then MR =⋂
r 6=1MR(r). Consider the pattern-specific union model MDR(r) = MR(r) ∪
ML(r), which is the set of laws with either MR(r) or ML(r) correctly speci-

fied. The intersection submodel of these laws MMR =
⋂
r 6=1MDR(r) =

⋂
r 6=1

{MR(r) ∪ML(r)} is the set of laws such that the union model for each r holds.

Then MDR ⊆ MMR since the first union model requires that either the entire

nonresponse process is correctly specified, or the joint complete-case distribution

of L is correctly specified; in contrast,MMR requires only correct specification of

one of the two models for each pattern. An estimator of β0 that is consistent in

modelMMR is said to be multiply-robust, or 2J -robust (Vansteelandt, Rotnitsky

and Robins (2007)) for a J non-monotone missing data patterns.

Corollary 1. If assumptions (2.1) and (3.1) hold with Fε the extreme value

distribution, then, under standard regularity conditions, β̂mr is consistent and

asymptotically normal in the union model MMR, where β̂mr is defined as β̂dr
with ηr used to estimate ηr.

This result describes an estimator with the MR property which states that

given J nonresponse patterns, the analyst would in principle have (under our

identifying assumptions) 2J opportunities to obtain valid inferences about β0.

This is to be contrasted with the single chance to valid inferences offered by IPW

or PM approaches, or the two chances offered by the DR estimator. For inference,

one can readily adapt the large sample variance estimator given in Theorem 1,

or alternatively use the nonparametric bootstrap.
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4.4. Simulation study

We performed a simulation study to investigate the performance of the var-

ious estimators as described in finite samples. We generated 1,000 samples

of size n = 2,000. We took independent and identically distributed (Y,X)

generated from a normal mixture models: (Y,X) ∼
∑3

k=1 πkN(µk,Σ), where

π1 = 1/2, π2 = e/(2 + 2e), π3 = 1/(2 + 2e), µ1 = (0, 0)T , µ2 = (1, 1)T , µ3 = (1, 2)T

and Σ = (σij), where σ11 = σ12 = 1, σ22 = 2. We considered four missing

data patterns L(R): L(1) = L, L(2) = X, L(3) = Y, L(4) = ∅. Conditional on

the generated full data, the missing data pattern was then generated under the

mechanism

P (R = 1|X,Y ) =
1

1 + exp(X) + exp(2Y ) + exp(−1)
,

P (R = 2|X,Y ) =
exp(X)

1 + exp(X) + exp(2Y ) + exp(−1)
,

P (R = 3|X,Y ) =
exp(2Y )

1 + exp(X) + exp(2Y ) + exp(−1)
,

P (R = 4|X,Y ) =
exp(−1)

1 + exp(X) + exp(2Y ) + exp(−1)
.

Since, for each missing data pattern r, P (R = r|X,Y ) depends on the full

data (X,Y ), the missing data mechanism is MNAR. The identifiability of nor-

mal mixture models in the MNAR setting has previously been considered in

Miao, Ding and Geng (2016). The full data target parameter of interest is

β = E (Y ) =
∑

r prE (Y |R = r) = {2 + exp(1)}/{2 + 2 exp(1)}, with full data

estimating equation U (β) = Y − β.
We implemented Little’s PM approach as well as our IPW and DR estima-

tors. In doing so, correct specification of the nonresponse process entailed match-

ing the data-generating mechanism described above, Odds2
(
L(2)

)
= α20 +α21X,

Odds3
(
L(3)

)
= α30 + α31Y, Odds4

(
L(4)

)
= α40. Misspecification of these mod-

els occured by instead fitting Odds2
(
L(2)

)
= α20 + α21X

2 and Odds3
(
L(3)

)
=

α30 + α31Y
2. Likewise, correct specification for the PM approach entailed defin-

ing E (Y |R = 2, X) = E (Y |R = 1, X) = γ20 + γ21X, while the incorrect model

E (Y |R = 1, X) = γ20 + γ21X
2 was used to assess the impact of model mis-

specification of the complete-case distribution. As U (β) does not depend on

X,E
{
U (β) |R = 3, L(3)

}
= U (β) . We explored four scenarios corresponding to

(1) correct f (R|L) and f(L|R = 1), (2) correct f (R|L) but incorrect f(L|R = 1);

(3) correct f(L|R = 1) but incorrect f (R|L); (4) incorrect f (R|L) and f(L|R =

1).
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Table 1. Monte Carlo results of the IPW, PM and DR estimators: accuracy of standard
deviation estimator and coverage probabilities. The sample size is 2,000.

bth∗ nrm ccm bad

Estimated SD/Monte Carlo SD

IPW 0.951 0.951 0.438 0.438
PM 0.993 0.979 0.993 0.979
DR 0.995 0.995 0.886 0.725

Estimated SD/Bootstrapped SD

IPW 0.994 0.994 0.932 0.932
PM 1.000 1.002 1.000 1.002
DR 0.999 0.990 0.973 0.951

Coverage**
IPW 0.938 0.938 0.080 0.080
PM 0.954 0.001 0.954 0.001
DR 0.948 0.947 0.953 0.030

*: bth: both models correct; nrm: nonresponse model
correct; ccm: complete-case model correct; bad: both
models incorrect. **: Nominal level = 95%.

Results in Table 1 confirm our theoretical results, and show that, as ex-

pected, IPW has small bias in scenarios (1) and (2) only, PM has small bias in

scenarios (1) and (3), and DR has small bias in scenarios (1)–(3). In scenario

(4) where all models are incorrect, as expected all estimators are significantly

biased. When, as in the first scenario, model misspecification is absent, IPW

has larger root mean squared error (RMSE) than PM, but DR is comparable to

PM, at least in this simulation setting. The RMSE of DR follows closely that

of PM in scenarios (1) and (3), suggesting that the potential efficiency loss in-

curred to obtain DR inference relative to PM inference may not be substantial in

practice. Table 1 of the Supplemental Appendix summarizes simulation results

assessing the performance of our estimators of asymptotic variance and cover-

age of Wald confidence intervals using estimated standard errors for the three

estimators under consideration. The results largely indicate that our standard

error estimators are consistent in all scenarios where the point estimators are also

consistent, including under partial model misspecification for the DR estimator

(see the comparison to Monte Carlo standard errors in Table 1 of the Supplemen-

tal Appendix). However, our standard error estimators appear to break down

severely whenever model mis-specification induces bias in parameter estimates.

The performance of the nonparametric bootstrap closely follows that of our es-

timators in all instances, and also appears to break down under bias inducing

model misspecification. We do not view this as a serious limitation given that in-
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Table 2. Data analysis: tabulation of missing data patterns. The total sample size is
9,711. Missing variables are coded by 0. The first row represents the complete case.

Pattern (R) Preterm Delivery Low CD4 Count Cont. HAART percentage
1 1 1 1 10.5%
2 0 1 1 0.7%
3 1 0 1 18.3%
4 0 0 1 1.6%
5 1 1 0 33.9%
6 0 1 0 1.5%
7 1 0 0 30.6%
8 0 0 0 2.9%

ferences are in such cases unreliable, even with a consistent estimator of standard

error.

4.5. A data application

The empirical application concerns a study of the association between mater-

nal exposure to highly active antiretroviral therapy (HAART) during pregnancy

and birth outcomes among HIV-infected women in Botswana. A detailed descrip-

tion of the study cohort is in Chen et al. (2012). The entire study cohort consists

of 33,148 obstetrical records abstracted from 6 sites in Botswana for 24 months.

Our current analysis focuses on the subset of women who were known to be HIV

positive (n = 9,711). The birth outcome of interest is preterm delivery, defined

as delivery < 37 weeks gestation. 6.7% of the outcomes were not observed. The

data also contain the risk factors of interest that are also subject to missingness

(Table 2): whether CD4+ cell count is less than 200 cells/µL, and whether a

woman continued HAART from before pregnancy or not.

Our goal is to correlate these factors with preterm delivery using a logistic

regression: the parameter of interest is the vector of coefficients of the correspond-

ing logistic regression. We implemented the complete-case (CC) analysis, in addi-

tion to the LDCM IPW, PM and DR estimators. Estimation of the nonresponse

process used the fairly generic specification log Oddsr
(
L(r);αr

)
= α′rqr

(
L(r)

)
,

where qr
(
L(r)

)
included all main effects and two-way interactions of components

of L(r) while PM specified the log-linear model Pr(L|R = 1) ∝ exp (η′L) .

Table 3 summarizes results for the complete analysis (CC), together with

Little’s PM analysis and our two semiparametric estimators (IPW and DR). The

results suggest that the association between CD4 count and preterm delivery

may be subject to selection bias to a greater extent than that of HAART and

preterm delivery. The estimated odds ratio for CD4 count is about 20% larger
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Table 3. Data analysis: estimated odds ratios of preterm delivery associated with various
risk factors. The 95% confidence intervals are estimated based on bootstrap samples.

Low CD4 Count Cont HAART
CC 0.782 (0.531,1.135) 1.142 (0.810,1.620)

IPW 0.924 (0.631,1.338) 1.180 (0.847,1.638)
PM 0.963 (0.704,1.318) 1.175 (0.881,1.598)
DR 1.020 (0.742,1.397) 1.158 (0.869,1.560)

for IPW, PM, and DR compared to the CC odds ratio, whereas the odds ratio for

HAART is quite similar for all four estimators. Although PM generally appears

less variable, there are no notable differences between inferences obtained using

IPW, PM or DR, providing no evidence that either IPW or PM, might be subject

to misspecification bias.

5. Inference for General DCM

Consider a DCM with user-specified Fε, a well-defined continuous CDF. Lo-

cal identification under assumption (3.2) is best understood with discrete data.

In this vein, suppose that L(r) takes on Mr levels, so ∆µ1r
(
L(r)

)
depends on

at most Mr unknown parameters, but for user-supplied Mr-dimensional func-

tion Gr = gr
(
L(r)

)
. Let Wr (Gr) = Gr × [1 {R = r} − 1 {R = 1}Πr/Π1] . It is

straightforward to verify that

E {Wr (Gr)} = 0 for r = 2, . . . (5.1)

yielding the Mr restrictions needed to identify each ∆µ1r. Naturally, components

of Gr should be chosen appropriately to avoid redundancy and linear dependence.

A similar argument could in principle be crafted to establish local identification

if L contains continuous components. This is not further pursued in this pa-

per. Equation (5.1) motivates a simple approach for estimating Πr in practice.

Suppose that one posits a parametric model ∆µ1r
(
L(r);αr

)
for ∆µ1r

(
L(r)

)
with

finite dimensional unknown parameter αr, for all r. Then, the empirical version

of (5.1) would in principle deliver an estimator α̂ = {α̂r : r} of α = {αr : r} ,

Pn
(
Wr

(
Ĝr; α̂

))
= 0 for r = 2, . . . ,

where Wr

(
Ĝr; α̂

)
= Ĝr × [1 {R = r} − 1 {R = 1}Πr (α̂) /Π1 (α̂)] . A convenient

choice for Ĝr = ∂∆µ1r
(
L(r); α̂r

)
/∂α̂r. Under mild regularity conditions, α̂ is con-

sistent and asymptotically normal provided ∆µ1r
(
L(r);αr

)
is correctly specified

for all r.

Given a consistent estimator of Π1, IPW inferences about β0 can be obtained
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as previously described. Likewise, maximum likelihood estimation is straightfor-

ward by maximizing the model for the likelihood given in Lemma 1. Unfortu-

nately, outside of the LDCM, to the best of our knowledge, it does not appear

possible to obtain DR and MR inferences for DCMs.

This analysis requires evaluation of the integral defining Πr. Thus, let

Qr (ε) =
∏
s 6=r

Fε
(
∆µ1s

(
L(s)

)
−∆µ1r

(
L(r)

)
+ ε
)
.

A reliable approximation of Πr =
∫
Qr (ε) fε (ε) dε can be achieved numerically

by Gauss-Hermite Quadrature (Liu and Pierce (1994)). For instance, if fε is

standard normal, then the approximate Gaussian Discrete Choice Model is given

by Πr ≈
∑M

m=1Qr (εm)wm, where the nodes εm are the zeroes of the mth or-

der Hermite polynomial and the wm are suitably defined weights (Davis and

Rabinowitz (1975)).

6. Conclusion

In this paper, we have described the DCM as an all-purpose, flexible, and

easy-to-implement general class of models for nonmonotone nonignorable nonre-

sponse. The LDCM has several advantages including giving rise to four distinct

strategies for inference: IPW, PM, DR, and MR estimation. Simulation studies

and an application suggest good finite sample performance of IPW, PM, and DR

estimation; although not directly evaluated, we expect the same to apply to MR

estimation.

Identification conditions such as CCMV are not empirically testable and

therefore, it is important that inferences are assessed for sensitivity to violation

of such assumptions. Such an approach for sensitivity analysis for violation of

CCMV restriction is outlined in the Supplemental Appendix.

Supplementary Materials

The supplementary materials include an outline of sensitivity analysis for

CCMV, proof of Lemmas as well as additional simulation results.
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