# IDENTIFICATION AND INFERENCE WITH NONIGNORABLE MISSING COVARIATE DATA 

Wang Miao and Eric Tchetgen Tchetgen

Peking University and Harvard University


#### Abstract

We study identification of parametric and semiparametric models with missing covariate data. When covariate data are missing not at random, identification is not guaranteed even under fairly restrictive parametric assumptions, a fact that is illustrated with several examples. We propose a general approach to establish identification of parametric and semiparametric models when a covariate is missing not at random. Without auxiliary information about the missingness process, identification of parametric models is strongly dependent on model specification. However, in the presence of a fully observed shadow variable that is correlated with the missing covariate but otherwise independent of the missingness conditional on the covariate, identification is more broadly achievable, including in fairly large semiparametric models. Special consideration is given to the generalized linear models with the missingness process unrestricted. Under such a setting, the outcome model is identified for a number of familiar generalized linear models, and we provide counterexamples when identification fails. For estimation, we describe an inverse probability weighted estimator that incorporates the shadow variable to estimate the propensity score model, and we evaluate its performance via simulations. We further illustrate the shadow variable approach with a data example about home prices in China.


Key words and phrases: Identification, missing covariate data, missing not at random, shadow variable.

## 1. Introduction

Missing data are commonly encountered in socioeconomic and biomedical studies. Methods to account for missing outcome data in regression analysis figure prominently in the literature. Missing covariate data is also a longstanding problem in applied research. In the early history of missing data analysis, Glasser (1964), Afifi and Elashoff (1966), and Haitovsky (1968) studied the missing covariate problem in regression analysis; Edgett (1956), Anderson (1957), and Buck (1960) studied the problem in the context of multivariate analysis. Rubin (1976) formalized the concept of missing data mechanism as a separate process from
the full data law of primary scientific interest. The missing data mechanism is said missing at random, if it is independent of missing values after conditioning on the observed data, and it is said missing not at random otherwise. For analysis of data missing at random, there currently exist a variety of methods such as likelihood-based approaches (Dempster, Laird and Rubin (1977); Horton and Laird (2001); Ibrahim (1990)), imputation and multiple imputation (Rubin and Schenker (1986); Vach and Schumacher (1993); Rubin (1987)), and semiparametric methods Zhao, Lipsitz and Lew (1996); Robins, Rotnitzky and Zhao (1994)).

Missingness is often related to missing covariate values even after conditioning on the observed data. Most of the aforementioned methods have been adapted to deal with covariate data missing not at random. Comprehensive reviews of statistical research on this topic include Ibrahim, Lipsitz and Chen (1999), Little and Zhang (2011), and Ibrahim et al. (2005). Validity of existing estimation methods relies on first establishing identification. Identification means that the parameter of interest is uniquely determined by the observed data. Without identification, statistical inference is generally of limited interest and may often be misleading. Under missingness at random, the joint distribution of all variables of interest is identified without parametric assumptions (Little and Rubin (2002)), but under missingness not at random, identification is not always guaranteed. Fay (1986) and Ma, Geng and Hu (2003) used graphical models to represent missingness mechanisms, and they studied identification for longitudinal categorical variables that are missing not at random. In the context of missing outcome data, Tang, Little and Raghunathan (2003), Wang, Shao and $\operatorname{Kim}(2014)$, Zhao and Shao (2015), and Miao, Ding and Geng (2017) studied identification of several parametric and semiparametric models, and presented counterexamples when identification fails; Kott (2014), Wang, Shao and Kim (2014), and D'Haultfoeuille (2010) noted that a fully observed shadow variable can sometimes be used to improve identification under missingness not at random, and we have shown identification for a class of location-scale models with a shadow variable (Miao, Tchetgen Tchetgen and Geng (2015)). Such a variable is associated with the potentially unobserved variable conditional on the observed data, but independent of the missingness process conditional both on the observed data and missing variable (Kott (2014)).

Identification is challenging for covariate data missing not at random, but the literature on this topic is somewhat sparse. In this paper, we illustrate the difficulty of identification of nonginorable missing covariate data in Section 2. We
establish a general framework for studying identification with missing covariate data in Section 3 and we illustrate with several parametric models. In Section 4, we use a shadow variable for the missing covariate to improve identification in semiparametric models where the missingness process is unspecified, and we establish identification conditions of a large family of the generalized linear models. In Section 5, we describe an inverse probability weighted estimator that incorporates the shadow variable to estimate the nonignorable missingness process. We evaluate its performance via simulations in Section 6, and further illustrate it with an example about home prices in China. In Section 7 we include some discussions of the difference between the shadow variable and the instrumental variable.

## 2. Potential Difficulty for Identification

Throughout, we let $Y$ denote the fully observed outcome variable and $(X, Z)$ the vector of covariates with $Z$ fully observed and $X$ subject to missingness. We let $R$ denote the missing indicator of $X: R=1$ if $X$ is observed and $R=$ 0 otherwise. For notational convenience, we suppress $Z$ in this section. The observed data include $(Y, R)$ for all samples, and $X$ only for those with $R=$ 1. The goal of missing data analysis is to make inference about the full data distribution $\operatorname{pr}(x, y)$ and the missingness process (or propensity score) $\operatorname{pr}(r=$ $1 \mid x, y)$, based on the observed data distribution that is captured by $\operatorname{pr}(y, r=0)$ and $\operatorname{pr}(x, y, r=1)$. Recovery of the full data law and the missingness process from the observed data distribution is the fundamental identification challenge in missing data problems.

Definition 1. For a model $\operatorname{pr}(x, y, r ; \theta)$ indexed by $\theta$ that may have a finitedimensional component as well as nonparametric components, the parameter $\theta$ is said to be identified from the observed data if there exists a one-to-one mapping between the parameter space $\Theta=\{\theta\}$ and the space of observed data distribution $\{\operatorname{pr}(y, r=0 ; \theta), \operatorname{pr}(x, y, r=1 ; \theta) ; \theta \in \Theta\}$.

When data are missing at random, $R \Perp X \mid Y$, the joint distribution $\operatorname{pr}(x, y, r)$ is nonparametrically identified because $\operatorname{pr}(x, y, r=0)=\operatorname{pr}(x \mid y, r=0) \operatorname{pr}(y, r=$ $0)$ and $\operatorname{pr}(x \mid y, r=0)=\operatorname{pr}(x \mid y, r=1)$. When data are missing not at random, $\operatorname{pr}(x \mid y, r=0) \neq \operatorname{pr}(x \mid y, r=1)$, and thus one cannot ignore the missing data mechanism to make inference (Little and Rubin (2002); Ibrahim, Lipsitz and Chen (1999)). Even when fairly restrictive parametric models are correctly specified for $\operatorname{pr}(x, y, r)$, identification is not guaranteed, and selection bias due to
missing data cannot necessarily be eliminated.
Example 1. Consider a joint normal model, encoded in $\operatorname{pr}(x) \sim N(\gamma, \lambda)$ and $\operatorname{pr}(y \mid x) \sim N\left(\beta_{0}+\beta_{1} x, \phi\right)$, and a logistic propensity score model

$$
\text { logit } \operatorname{pr}(r=1 \mid x, y)=\alpha_{0}+\alpha_{1} x+\alpha_{2} y
$$

Letting $\left(\lambda, \phi, \beta_{1}\right)=(1.25,0.8,0.4)$, one can verify that $\left(\gamma, \beta_{0}, \alpha_{0}, \alpha_{1}, \alpha_{2}\right)=(0,0,2$, $-2,1)$ and $(2,-0.8,-2,2,-1)$ result in identical observed data distribution $\operatorname{pr}(y, r$ $=0)$ and $\operatorname{pr}(x, y, r=1)$. Therefore, $\left(\gamma, \beta_{0}, \alpha_{0}, \alpha_{1}, \alpha_{2}\right)$ are not identified from the observed data.

## 3. A General Framework for Identification

We consider a model $\operatorname{pr}(x, y, z, r ; \theta)$ indexed by $\theta$.
Assumption 1. There exists a one-to-one mapping between the parameter space $\Theta=\{\theta\}$ and the joint distribution space $\{\operatorname{pr}(x, y, z, r ; \theta) ; \theta \in \Theta\}$.

Condition 1. The parameter $\theta$ is identified if for any two candidate values $\theta_{1}$ and $\theta_{2}$ such that $\operatorname{pr}\left(z ; \theta_{1}\right)=\operatorname{pr}\left(z ; \theta_{2}\right)$ and $\operatorname{pr}\left(y \mid z ; \theta_{1}\right)=\operatorname{pr}\left(y \mid z ; \theta_{2}\right)$ almost surely, with a positive probability

$$
\begin{equation*}
\frac{\operatorname{pr}\left(x, y \mid z ; \theta_{1}\right)}{\operatorname{pr}\left(x, y \mid z ; \theta_{2}\right)} \neq \frac{\operatorname{pr}\left(r=1 \mid x, y, z ; \theta_{2}\right)}{\operatorname{pr}\left(r=1 \mid x, y, z ; \theta_{1}\right)} . \tag{3.1}
\end{equation*}
$$

Inequality (3.1) involves the missingness process, which provides a convenient approach to check identification for selection models when separate parametric/semiparametric models are specified for the propensity score $\operatorname{pr}(r=1 \mid x, y, z)$ and the full data distribution $\operatorname{pr}(x, y, z)$. In subsequent sections, we focus on identification under the selection model parametrization, and in the Supplementary Material we extend results to the pattern-mixture parametrization (Little (1993)). Here we provide several examples to illustrate how to apply Condition 1 in selection models. For notational convenience, we suppress $Z$ in these examples.
Example 2. We verify identification of the missingness at random mechanism, $R \Perp X \mid Y$, by checking Condition 1. Following the approach of Fay (1986), such a missingness mechanism can also be encoded in the directed acyclic graph model of Figure 1 (i), where the arrow between $X$ and $R$ is not present. It is plausible, in a retrospective study such as a case control study in which $X$ is ascertained only after $Y$ is determined, that $Y$ may directly influence whether or not $X$ is missing. For any two candidate models $\operatorname{pr}\left(x, y, r ; \theta_{1}\right)$ and $\operatorname{pr}\left(x, y, r ; \theta_{2}\right)$ such that $\operatorname{pr}\left(y ; \theta_{1}\right)=\operatorname{pr}\left(y ; \theta_{2}\right)$, the ratio of the propensity score models $\operatorname{pr}(r=$ $\left.1 \mid y ; \theta_{1}\right) / \operatorname{pr}\left(r=1 \mid y ; \theta_{2}\right)$ is a function only of $y$. However, $\operatorname{pr}\left(x, y ; \theta_{1}\right) / \operatorname{pr}\left(x, y ; \theta_{2}\right)$


Figure 1. Directed acyclic graph models for different missingness mechanisms for $x$.
must vary with $x$ and thus (3.1) holds. Therefore, $\theta$ is identified according to Condition 1.

Example 3. Bartlett et al. (2014) considered estimation under the missingness mechanism encoded in the graph model of Figure 1 (ii), where missingness is not at random. The graph depicts a prospective study in which $Y$ is ascertained only after $X$ is observed, and therefore, it is reasonable to assume that $Y$ cannot determine whether $X$ is missing, provided a participant is not able to anticipate her outcome at baseline. Considering an outcome model $\operatorname{pr}(y \mid x, \theta)$, for any $\theta_{1}, \theta_{2}$, the ratio $\left\{\operatorname{pr}\left(y \mid x ; \theta_{1}\right) \operatorname{pr}_{1}(x)\right\} /\left\{\operatorname{pr}\left(y \mid x ; \theta_{2}\right) \operatorname{pr}_{2}(x)\right\}$ must vary with $y$, and thus cannot equal the ratio of two propensity score models, a function only of $x$. Therefore, $\theta$ indexing the outcome model $\operatorname{pr}(y \mid x ; \theta)$ is identified, although, the covariate distribution $\operatorname{pr}(x)$ may not be.

When the missingness process depends on either the missing covariate $X$ (Example 3) or the fully observed outcome $Y$ (Example 2), identification is well established (Little and Rubin (2002)) ; we have confirmed this by verifying Condition 1. We provide several examples to illustrate cases in which missingness depends both on $X$ and $Y$.
Example 4. In empirical studies, the covariate and outcome of interest are often binary. Identification is not guaranteed for binary variables when the missingness depends both on $X$ and $Y$, the missingness mechanism encoded in Figure 1 (iii). Consider the logistic models for binary $X$ and $Y$ :

$$
\begin{aligned}
\operatorname{logit} \operatorname{pr}(y=1 \mid x ; \beta) & =\beta_{0}+\beta_{1} x \\
\text { logit } \operatorname{pr}(r=1 \mid x, y ; \alpha) & =\alpha_{0}+\alpha_{1} x+\alpha_{2} y
\end{aligned}
$$

One can verify that $\operatorname{pr}(y=1)$ and $\operatorname{pr}(r=1, x \mid y)$ are identical under the settings $\alpha=(-0.4,-0.4,0.2), \beta=(-0.359,0.6), \operatorname{pr}(x=1)=0.597$, and $\alpha^{\prime}=$ $(0.468,-1.64,0.338), \beta^{\prime}=(-0.361,0.488), \operatorname{pr}^{\prime}(x=1)=0.737$.

In the binary example, one can also follow the "parameter counting" approach to check identification (Baker and Laird (1988)). In Example 4, the model contains six unknown parameters: $(\alpha, \beta)$ and $\operatorname{pr}(x=1)$, but the observed
data distribution only has five degrees of freedom: $\operatorname{pr}(x, y, r=1)$ for $x, y=0$ or 1 and $\operatorname{pr}(y=1, r=0)$, which provides five estimating equations of the unknown parameters. For a continuous covariate or a semiparametric model, the number of unknown parameters and degrees of freedom of the observed data are difficult to characterize, and "parameter counting" does not often apply.
Example 5. Continuation of Example 1. The missingness mechanism can be encoded in the graph of Figure 1 (iii). The model for the joint distribution is indexed by $\theta=\left(\gamma, \lambda, \alpha_{0}, \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \phi\right)$. Considering the respective models indexed by $\theta$ and $\theta^{\prime}$, we have

$$
\begin{equation*}
\log \frac{\operatorname{pr}(x, y ; \theta)}{\operatorname{pr}\left(x, y ; \theta^{\prime}\right)}=-\frac{\left(y-\beta_{0}-\beta_{1} x\right)^{2}}{2 \phi}+\frac{\left(y-\beta_{0}^{\prime}-\beta_{1}^{\prime} x\right)^{2}}{2 \phi^{\prime}}-\frac{(x-\gamma)^{2}}{2 \lambda}+\frac{\left(x-\gamma^{\prime}\right)^{2}}{2 \lambda^{\prime}}, \tag{3.2}
\end{equation*}
$$

which is a linear combination of $y^{2}, y, x^{2}, x y$ and $x$; and we have

$$
\begin{equation*}
\log \frac{\operatorname{pr}\left(r=1 \mid y, x ; \theta^{\prime}\right)}{\operatorname{pr}(r=1 \mid y, x ; \theta)}=\alpha_{0}^{\prime}+\alpha_{1}^{\prime} x+\alpha_{2}^{\prime} y+\log \frac{1+\exp \left(-\alpha_{0}-\alpha_{1} x-\alpha_{2} y\right)}{1+\exp \left(\alpha_{0}^{\prime}+\alpha_{1}^{\prime} x+\alpha_{2}^{\prime} y\right)} . \tag{3.3}
\end{equation*}
$$

For $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)=-\left(\alpha_{0}^{\prime}, \alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right),(3.3)$ is a linear combination of $x$ and $y$. Thus, (3.2) and (3.3) can be equal for certain values of the parameters such as those given in Example 1. Thus, $\left(\gamma, \alpha_{0}, \alpha_{1}, \alpha_{2}, \beta_{0}\right)$ cannot be identified, but ( $\lambda, \phi, \beta_{1}$ ) can be identified by noting that when (3.2) equals (3.3), the coefficients of $y^{2}, x y$ and $x^{2}$ must be zero in (3.2).

Examples 1 and 5 show potential lack of identification for the normal model when the covariate is missing not at random. In this case, the slope of the outcome model is identified but the intercept is not.
Example 6. Consider a normal model for the covariate, $X \sim N\left(\mu, \sigma_{1}^{2}\right)$, an exponential regression model for the outcome variable, $Y \sim \eta(x) \exp \{-y \eta(x)\}$, with $\eta(x)=\exp \left(\beta_{0}+\beta_{1} x\right)$ and $\beta_{1} \neq 0$, and logit $\operatorname{pr}(r=1 \mid x, y)=\alpha_{0}+\alpha_{1} x+\alpha_{2} y$. Here all parameters are identified.

In a breast cancer study, Lipsitz et al. (1999) applied the Weibull regression $Y \sim \sigma_{2} y^{\sigma_{2}-1} \exp \left\{-y^{\sigma_{2}} \eta(x)+\log (\eta(x))\right\}$ to model the time to treatment failure, without formally establishing identification of the model. The Weibull regression model is more general than the exponential regression model. We show in the Appendix that identification does hold.

## 4. Identification with a Shadow Variable

In Examples 1-6, identification or lack thereof is determined by the specific parametric model being considered, and therefore, it is unclear whether a general


Figure 2. A directed acyclic graph model for the shadow variable.
identification framework is available without all of the restrictions on the models. However, when a shadow variable for the missing covariate is fully observed, identification is often possible even in fairly large semiparametric models. A shadow variable is associated with the potentially missing variable conditional on the observed data, but independent of the missingness process conditional both on the observe data and the potentially missing variable ( $\overline{\operatorname{Kott}}(\sqrt{2014})$ ).

Definition 2. A fully observed variable $Z$ is a shadow variable for $X$, if $Z \not \Perp X$ $\mid Y$ and $Z \Perp R \mid(Y, X)$.

Definition 2 formalizes the idea that the shadow variable affects the missingness only through its association with the missing covariate and the fully observed outcome. Figure 2 is a directed acyclic graph encoding the definition.

The shadow variable for a missing covariate may be available in empirical studies where a fully observed proxy or a mismeasured version of the missing covariate is available. For example, in a study of mental health of children in Connecticut (Zahner et al. (1992); Horton and Laird (2001)), researchers were interested in the correlation between children's mental health status and utilization of mental health service. The measure of psychopathology used in the study was based on the teacher's assessment that had $43 \%$ missing values, but a separate parental report was complete. The parental report is a proxy for the teacher's assessment, but it is unlikely to be related to the teacher's response rate conditional on other covariates and her assessment of the student; in this case the parental assessment constitutes a valid shadow variable. Such a variable introduces additional restrictions on the missingness process, and thus provides better opportunity for identification under missingness not at random. For example, non-identification of the binary case (Example 4) is completely resolved with a binary shadow variable.
Example 7. Continuation of Example 4. Suppose $Z$ is a valid shadow variable for $X$. Because $Z \Perp R \mid(X, Y)$, we have $\operatorname{pr}(z \mid x, y)=\operatorname{pr}(z \mid x, y, r=1)$ for all $(y, x, z)$. For arbitrary $y$, one can solve the linear equation $\operatorname{pr}(z \mid y)=\sum_{x} \operatorname{pr}(z \mid x, y$,
$r=1) \operatorname{pr}(x \mid y)$ for $\operatorname{pr}(x \mid y)$. As $Z \not \not X X \mid Y$, the solution is unique, and $\operatorname{pr}(x \mid y)$ is identified. One can further solve $\operatorname{pr}(r=1, x \mid y)=\operatorname{pr}(r=1 \mid x, y) \operatorname{pr}(x \mid y)$ to identify the propensity score $\operatorname{pr}(r=1 \mid x, y)$. Thus, one can identify the joint distribution $\operatorname{pr}(x, y, z, r)=\operatorname{pr}(y) \operatorname{pr}(x \mid y) \operatorname{pr}(z \mid x, y) \operatorname{pr}(r=1 \mid x, y)$. See the Appendix for additional details.

Ma, Geng and Hu (2003) noted that for the binary case of Example 7, the joint distribution $\operatorname{pr}(x, y, z, r)$ can be identified explicitly as a function of the observed data distribution when a binary shadow variable is available. For more complicated models, identification is not so straightforward. The following result is convenient to check identification of the outcome model, even if the propensity score model is nonparametric.

Proposition 1. Consider models $\operatorname{pr}(y \mid x, z ; \theta)$ and $\operatorname{pr}(x \mid z ; \xi)$. If for any $\theta_{1} \neq \theta_{2}$ and for all function $h(x, y), \operatorname{pr}\left(x, y \mid z ; \theta_{1}, \xi_{1}\right) / \operatorname{pr}\left(x, y \mid z ; \theta_{2}, \xi_{2}\right) \neq h(x, y)$ with a positive probability, then the parameter $\theta$ indexing the outcome model $\operatorname{pr}(y \mid x, z ; \theta)$ is identified.

The proposition follows from the fact that under the shadow variable assumption, the ratio of any two different propensity score models is not a function of $z$, and thus from Condition $1, \theta$ must be identified if the ratio $\operatorname{pr}\left(x, y \mid z ; \theta_{1}, \xi_{1}\right) / \operatorname{pr}(x$, $y \mid z ; \theta_{2}, \xi_{2}$ ) varies with $z$ for distinct values $\theta_{1}$ and $\theta_{2}$. Consider identification for generalized linear models. We suppose that $X$ and $Z$ are continuous variables, and take

$$
\begin{align*}
\operatorname{pr}(x \mid z ; \gamma, \lambda) & =\exp \left(\frac{x \cdot \eta_{1}-B_{1}\left(\eta_{1}\right)}{\lambda}+A_{1}(x, \lambda)\right)  \tag{4.1}\\
\operatorname{pr}(y \mid x, z ; \beta, \phi) & =\exp \left(\frac{y \cdot \eta_{2}-B_{2}\left(\eta_{2}\right)}{\phi}+A_{2}(y, \phi)\right) \tag{4.2}
\end{align*}
$$

with dispersion parameters $\phi, \lambda>0$, and known functions $A_{1}, A_{2}, B_{1}, B_{2}, \eta_{1}(z ; \gamma)$ $=\eta_{1}\left(\gamma_{0}+\gamma_{1} z\right)$ and $\eta_{2}(x, z ; \beta)=\eta_{2}\left(\beta_{0}+\beta_{1} z+\beta_{2} x\right)$. We assume that the functions are infinitely differentiable and that for all $(\gamma, \lambda)$ in the parameter space, the exponential family $\operatorname{pr}(x \mid z ; \gamma, \lambda)$ is of full rank (Shao (2003, p.96)). Here the propensity score model is unspecified except for $Z \Perp R \mid(Y, X)$.

Theorem 1. If $Z$ is a shadow variable and the generalized linear models (4.1) (4.2) hold, we have
(a) if $\eta_{2}$ is a linear function, then $\beta_{1} / \phi$ is identified;
(b) if $\eta_{2}$ a linear function, and $B_{2}^{(2)}$, the second-order derivative of $B_{2}$ is not a linear function, then $\left(\beta_{1}, \beta_{2}, \phi\right)$ are identified;
(c) if $\eta_{2}$ is a nonlinear function, then $\left(\beta_{1}, \beta_{2}\right)$ are identified.

The proof is in the Supplementary Material. The theorem establishes identification of the coefficients of $Z$ and $X$ in the outcome model $\operatorname{pr}(y \mid x, z)$ except when $\eta_{2}$ is a linear function and $B_{2}$ is a cubic or quadratic function. From Theorem 1, $\left(\beta_{1}, \beta_{2}\right)$ of the logistic model

$$
\operatorname{pr}(y \mid x, z ; \beta)=\exp \left(y\left(\beta_{0}+\beta_{1} z+\beta_{2} x\right)-\log \left(1+\exp \left(\beta_{0}+\beta_{1} z+\beta_{2} x\right)\right)\right),
$$

is identified. When $\eta_{2}$ is a linear function and $B_{2}$ is a quadratic function, $\operatorname{pr}(y \mid x, z)$ is normal, we observe that even though $Z$ is correlated with $X, Z$ may be independent of $X$ after conditioning on $Y$, and the shadow variable assumption is not met.

Example 8. Consider the normal models $\operatorname{pr}(y \mid x, z)=N\left(\beta_{1} z+\beta_{2} x, \phi\right)$ and $\operatorname{pr}(x \mid z)=N\left(\gamma_{1} z, \lambda\right)$ indexed by $\theta=\left(\beta_{1}, \beta_{2}, \phi, \gamma_{1}, \lambda\right)$. For the sets of values $\theta_{1}=(1,1,1,1,1)$ and $\theta_{2}=(1.5,0.5,1.5,1,2)$, one can verify

$$
\frac{\operatorname{pr}\left(x, y \mid z ; \theta_{1}\right)}{\operatorname{pr}\left(x, y \mid z ; \theta_{2}\right)}=\exp \left(-\frac{1}{2} \log (3)-\frac{1}{6}(y-2 x)^{2}\right),
$$

which does not vary with $z$. Consider models for the missingness process

$$
\text { logit } \operatorname{pr}_{2}(r=1 \mid x, y)=- \text { logit } \operatorname{pr}_{1}(r=1 \mid x, y)=-\frac{1}{2} \log (3)-\frac{1}{6}(y-2 x)^{2}
$$

Here one can verify that the two data generating mechanisms, encoded in $\operatorname{pr}(x$, $\left.y \mid z, \theta_{i}\right)$ and $\operatorname{pr}_{i}(r=1 \mid x, y)$ for $i=1,2$, have identical observed data distribution. Thus, $\theta$ is not identified from the observed data. But $\beta_{1} / \phi=1$ is identified, a fact that is consistent with Theorem 1 (a).

The example shows potential lack of identification of normal models, but this non-identification only happens at certain values of the parameter space.

Theorem 2. For the normal models $\operatorname{pr}(y \mid x, z)=N\left(\beta_{0}+\beta_{1} z+\beta_{2} x, \phi\right)$ and $\operatorname{pr}(x \mid z)=N\left(\gamma_{0}+\gamma_{1} z, \lambda\right)$, all parameters are identified if $\beta_{1} \beta_{2} / \phi-\gamma_{1} / \lambda \neq 0$.

The condition $\beta_{1} \beta_{2} / \phi-\gamma_{1} / \lambda \neq 0$ in fact characterizes the subset of data generating mechanisms that violate the shadow variable assumption. The following submodels offer better identification results as they involve fewer parameters than models (4.1)-(4.2).

$$
\begin{array}{ll}
\eta_{2}(x, z ; \beta)=\eta_{2}\left(\beta_{0}+\beta_{2} x\right), & \beta_{2} \neq 0 ; \\
\eta_{2}(x, z ; \beta)=\eta_{2}\left(\beta_{0}+\beta_{1} z\right), & \beta_{1} \neq 0 . \tag{4.4}
\end{array}
$$

Theorem 3. For model (4.3), $\left(\beta_{0}, \beta_{2}, \phi\right)$ are identified, and for model (4.4), $\left(\beta_{0}, \beta_{1}, \phi\right)$ are identified.

## 5. Estimation

Inverse probability weighting (Horvitz and Thompson (1952); Robins, Rotnitzky and Zhao (1994); Scharfstein, Rotnitzky and Robins (1999)) is an influential method for missing data analysis. The approach employs a propensity score model $\pi(x, y ; \alpha)=\operatorname{pr}(r=1 \mid x, y ; \alpha)$, for example, logit $\{\pi(x, y ; \alpha)\}=$ $\alpha_{0}+\alpha_{1} x+\alpha_{2} y$. If $\alpha_{1} \neq 0$, the model accommodates a nonignorable missingness process. With fully observed data, $\alpha$ can be consistently estimated by standard maximum likelihood. Alternatively, one may solve estimating functions of the form $\widehat{E}[\{r / \pi(x, y ; \widehat{\alpha})-1\} G(x, y)]=0$, with $\widehat{E}$ denoting the empirical expectation, $G(x, y)$ a user-specified vector function of dimension equal to that of $\alpha$, and $E[\partial\{r / \pi(x, y ; \alpha)\} / \partial \alpha \times G(x, y)]$ nonsingular for all $\alpha$. For instance, one can choose $G(x, y)=(1, x, y)$ for the logistic propensity score model. But, when $X$ has missing values, neither approach is feasible. Nevertheless, when a shadow variable $Z$ is fully observed, one can solve a modified estimating equation with $G(x, y)$ replaced by $G(z, y)$ :

$$
\begin{equation*}
\widehat{E}\left[\left\{\frac{r}{\pi(x, y ; \widehat{\alpha})}-1\right\} G(z, y)\right]=0 . \tag{5.1}
\end{equation*}
$$

Incorporating $\pi(x, y ; \hat{\alpha})$ obtained from (5.1), one can solve

$$
\begin{equation*}
\widehat{E}\left\{\frac{r}{\pi(x, y ; \widehat{\alpha})} S(x, y, z ; \widehat{\beta}, \widehat{\phi})\right\}=0 \tag{5.2}
\end{equation*}
$$

for $(\hat{\beta}, \hat{\phi})$, with $S(x, y, z ; \beta, \phi)=\partial \log (\operatorname{pr}(y \mid x, z ; \beta ; \phi)) / \partial(\beta, \phi)$. With a valid shadow variable $Z$, we show that replacing $G(x, y)$ with $G(z, y)$ does not compromise unbiasedness of the estimating equations (5.1)-(5.2).

Theorem 4. If the propensity score model $\pi(x, y ; \alpha)$ is correctly specified, then (5.1) is an unbiased estimating equation for $\alpha$. If further the outcome model $\operatorname{pr}(y \mid x, z ; \beta, \phi)$ is correctly specified, then (5.2) is an unbiased estimating equation for $(\beta, \phi)$.

Provided unbiasedness of the estimating equations, consistency and asymptotic normality of $(\hat{\alpha}, \hat{\beta}, \hat{\phi})$ can be obtained under standard regularity conditions as given by Newey and McFadden (1994, Thm. 6.1), and the asymptotic variance and $95 \%$ confidence intervals can be obtained based on asymptotic normality. Such asymptotic properties follow from the general theory of estimating equations. We refer readers to Newey and McFadden (1994), Robins, Rotnitzky and Zhao (1994), Shao (2003), and Tsiatis (2006) for the technical details. Specific choices of $G$ can generally affect efficiency but not consistency of the estima-
tors. In the Supplementary Material, we characterize the optimal choice of $G$ within our class of estimating equations, which typically follows from the general framework by Newey and McFadden (1994, Thm. 5.3).

Inverse probability weighted (IPW) estimation as applied in this paper is not new except that we use the shadow variable to assist with identification and estimation of the propensity score model in (5.1). There exists a large literature on properties and extensions of IPW estimation, including Horvitz and Thompson (1952), Robins, Rotnitzky and Zhao (1994), Wang, Shao and Kim (2014), and Shao and Wang (2016). For IPW estimation, the identification strategy for nonparametric propensity score models developed under the missing outcome setting of Sun et al. (2018) can be extended to assess identification for the missing covariate problem; the semiparametric IPW estimation developed for the missing outcome problem by Shao and Wang (2016) can be extended to the missing covariate problem to relax stringent parametric model assumptions. Moreover, such extensions are often achieved by simply switching $X$ and $Y$ in the propensity score model. Alternative fully likelihood-based or Bayesian-based approaches also exist for estimation in the present context, e.g., imputation methods ( $\mathrm{Ru}-$ bin and Schenker (1986)). However, to account for missing covariate data, these methods require additionally specifying a model for $\operatorname{pr}(x \mid y, z)$ or $E(x \mid y, z)$, and therefore are more sensitive to model misspecification and possible lack of coherence between models for $\operatorname{pr}(x \mid y, z)$ and $\operatorname{pr}(y \mid x, z)$.

## 6. Numerical Examples

### 6.1. Simulation studies

We studied the finite sample performance of the proposed inverse probability weighted estimator via simulations. We generated the shadow variable $Z$ from $N(0,1), X \sim N(0.5+0.5 z, 1)$, and $Y \sim N\left(\beta_{0}+\beta_{1} z+\beta_{2} x, 1\right)$ with $\left(\beta_{0}, \beta_{1}, \beta_{2}\right)=$ $(0.5,1.5,-0.5)$. We generated $R$ from logit $(\operatorname{pr}(r=1 \mid x, y))=\alpha_{0}+\alpha_{1} y+\alpha_{2} x$ with $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)=(0.5,-1,1)$, and treated the samples of $X$ with $R=0$ as missing values. Under such a setting, the missing data proportion is about $39 \%$. We simulated 1,000 independent data sets under sample sizes 500 and 1,500 . We applied inverse probability weighting, complete-case analysis, and full data maximum likelihood estimation in which we pretend to have the missing values. Results are summarized in the boxplots of Figure 3. As expected, the full data maximum likelihood estimation always performs best, with smallest bias and variance, but is infeasible when missing data arise. With the shadow variable in-


Figure 3. Boxplots for the estimators. Note: Data are analyzed with inverse probability weighting (IPW), complete-case analysis (CC), and full data maximum likelihood estimation (MLE). In each boxplot, white boxes are for sample size 500 and gray ones for 1,500 . The horizontal line marks the true value of the parameter.

Table 1. Coverage probability of the $95 \%$ confidence interval.

|  | $\alpha_{1}$ | $\alpha_{2}$ | $\beta_{1}$ | $\beta_{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| $N=500$ | 0.959 | 0.954 | 0.911 | 0.931 |
| 1,500 | 0.943 | 0.939 | 0.929 | 0.945 |

Note: Confidence intervals are constructed based on asymptotic normality of the estimators.
corporated, the inverse probability weighted estimator performs reasonably well. Both bias and variance are relatively small under moderate sample sizes; as sample size increases, the bias and variance decrease and the coverage probability of the $95 \%$ confidence interval approximates the nominal level as shown in Table 1. The estimator obtained from complete-case analysis has large bias, and this is not alleviated as sample size increases.

### 6.2. China home pricing example

We applied the shadow variable approach to a data set extracted from China Family Panel Studies (CFPS). Details of the survey can be found at http://www.isss.edu.cn/cfps/EN/. The dataset we used consists of 5,534 homeowners. One is interested in the effect of family income (faminc) on home price (houspr). Other covariates include gender, age, education status, and family size of the homeowners being investigated, and location, distance to the downtown (dist), year of construction, size, type, and tidiness of their homes.

Table 2. Results for the China home pricing example.

| Outcome model |  |  | Propensity score model |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gender | -0.242 | (0.182, 0.302$)$ | gender | 0.358 | (0.23 | 0.483) |
| age | 0.018 | (0.015, 0.021) | age | 0.015 | (0.008 | 0.021) |
| educ | -0.019 | (-0.030, -0.009) | educ | 0.081 | (0.049 | 0.113) |
| urban | 0.497 | (0.390, 0.604) | urban | 0.737 | (0.599 | 0.875) |
| year | -0.021 | (-0.025, -0.018) | famsz | 0.059 | (0.008 | 0.110) |
| size | 0.039 | (0.035, 0.043) | faminc | -0.440 | (-0.773 | -0.107) |
| type | 0.746 | (0.656, 0.836) | houspr | 0.013 | (-0.072 | 0.098) |
| famsz | -0.017 | $(-0.036, ~ 0.001)$ |  |  |  |  |
| tidy | 0.088 | (0.064, 0.111) |  |  |  |  |
| faminc | 0.148 | (0.104, 0.191) |  |  |  |  |
| dist | -1.972 | (-2.107, -1.838) |  |  |  |  |

Note: Point estimates and confidence intervals (in brackets) for the models, with 7 variables (after stepwise selection) included in the propensity score model and 11 in the outcome model.

Family income has 1,896 ( $34.2 \%$ ) missing values, while the other variables are fully observed. Home price increases as the distance to the downtown decreases, and homeowners living closed to the downtown are more likely to be wealthy. Thus, dist is highly correlated both with home price and family income, but it is reasonable to assume that dist does not affect the response propensity of homeowners after conditioning on home price, family income, and other covariates. As such, we used dist as a shadow variable for family income. We analyzed the dataset with a linear outcome model and a logistic propensity score model, and summarize the results in Table 2. The results for the propensity score model provides significant empirical evidence of nonignorable missingness of family income, with a coefficient of -0.440 and $95 \%$ confidence interval of $(-0.773,-0.107)$, which indicates that homeowners with high family income tend not to respond to the survey. In the outcome model, the coefficient of faminc is 0.148 with confidence interval $(0.104,0.191)$, which shows a significant positive effect of family income on home price. The results also confirm that home price increases as the distance to downtown decreases and home size increases, and that a newer home has a higher price.

## 7. Discussion

The shadow variable plays a central role in identification of the semiparametric models where the propensity score $\operatorname{pr}(r=1 \mid x, y)$ is left unspecified. The definition of shadow variable in this paper is close to the "instrumental variable"
described by D'Haultfoeuille (2010), Wang, Shao and Kim (2014), and Shao and Wang (2016), but differs from the conventional instrumental variable in the econometrics literature, where an instrumental variable is independent of the potentially missing variable but associated with its missingness. In econometrics, the instrumental variable approach has a longstanding tradition initiated by Wright (1928) and Goldberger (1972), and further developed by Imbens and Angrist (1994), Angrist, Imbens and Rubin (1996), and Heckman (1997). Recently, Sun et al. (2018) and Tchetgen Tchetgen and Wirth (2017) implemented such an instrumental variable to establish identification conditions for nonignorable missing data that only involve the propensity score $\operatorname{pr}(r=1 \mid x, y)$. Their work can be generalized to the missing covariate problem when an instrumental variable for $X$ is available and the propensity score model is specified, and thus is a useful complement to this paper.

## Supplementary Materials

The online supplementary material includes identification results for the pattern-mixture parametrization, efficiency issue for (5.1), useful lemmas, and proofs of the theorems.

## Acknowledgment

We thank the Editor, an associate editor, and two referees for their valuable comments. The work is partially supported by the China Scholarship Council and the National Institute of Health.

## Appendix

This appendix includes additional details for Examples 1, 2, 3, 6, and 7.

## Details for Example 1

As $\operatorname{pr}(y, r=0)=\operatorname{pr}(y)-\operatorname{pr}(y, r=1)$ and $\operatorname{pr}(y, r=1)=\int_{x} \operatorname{pr}(x, r=$ $1 \mid y) \operatorname{pr}(y) \mathrm{dx}$, we only need to show that these two settings lead to the identical distributions of $\operatorname{pr}(y)$ and $\operatorname{pr}(x, r=1 \mid y)$. One can verify that $\operatorname{pr}(y)=N(0,1)$ and

$$
\operatorname{pr}(x, r=1 \mid y)=(2 \pi)^{-1 / 2} \exp \left\{-\frac{(y-2 x)^{2}}{8}\right\} \frac{\exp (2-2 x+y)}{1+\exp (2-2 x+y)}
$$

## Details for Example 2

Suppose $\operatorname{pr}\left(x \mid y ; \theta_{1}\right) / \operatorname{pr}\left(x \mid y ; \theta_{2}\right)=h(y)$ for some function $h(y)$, then for all $y$ we have

$$
\int_{x} \operatorname{pr}\left(x \mid y ; \theta_{1}\right) d x=\int_{x} \operatorname{pr}\left(x \mid y ; \theta_{2}\right) h(y) d x=h(y)=1
$$

which contradicts $\operatorname{pr}\left(x \mid y ; \theta_{1}\right) \neq \operatorname{pr}\left(x \mid y ; \theta_{2}\right)$. Therefore, $\operatorname{pr}\left(x \mid y ; \theta_{1}\right) / \operatorname{pr}\left(x \mid y ; \theta_{2}\right)$ must vary with $x$.

## Details for Example 3

We only need to prove that $\operatorname{pr}\left(y \mid x ; \theta_{1}\right) / \operatorname{pr}\left(y \mid x ; \theta_{2}\right)$ varies with $y$. If not, suppose $\operatorname{pr}\left(y \mid x ; \theta_{1}\right) / \operatorname{pr}\left(y \mid x ; \theta_{2}\right)=h(x)$ for some function $h(x)$. Then for all $x$ we have

$$
\int_{y} \operatorname{pr}\left(y \mid x ; \theta_{1}\right) d y=\int_{y} \operatorname{pr}\left(y \mid x ; \theta_{2}\right) h(x) d y=h(x)=1
$$

which contradicts $\operatorname{pr}\left(y \mid x ; \theta_{1}\right) \neq \operatorname{pr}\left(y \mid x ; \theta_{2}\right)$. Therefore, $\operatorname{pr}\left(y \mid x ; \theta_{1}\right) / \operatorname{pr}\left(y \mid x ; \theta_{2}\right)$ and thus $\left\{\operatorname{pr}\left(y \mid x ; \theta_{1}\right) \operatorname{pr}_{1}(x)\right\} /\left\{\operatorname{pr}\left(y \mid x ; \theta_{2}\right) \operatorname{pr}_{2}(x)\right\}$ must vary with $y$.

## Details for Example 6

We use a proof by contradiction to show identification of the parameters. Suppose that there were two sets of parameters resulting in the identical distribution $\operatorname{pr}(x, y, r=1)$ :

$$
\begin{align*}
& \exp \left(\beta_{0}+\beta_{1} x\right) \exp \left(-y \exp \left(\beta_{0}+\beta_{1} x\right)\right) \frac{1}{\sigma_{1}} \Phi\left(\frac{x-\mu}{\sigma_{1}}\right) \frac{\exp \left(\alpha_{0}+\alpha_{1} x+\alpha_{2} y\right)}{1+\exp \left(\alpha_{0}+\alpha_{1} x+\alpha_{2} y\right)} \\
& =\exp \left(\beta_{0}^{\prime}+\beta_{1}^{\prime} x\right) \exp \left(-y \exp \left(\beta_{0}^{\prime}+\beta_{1}^{\prime} x\right)\right) \frac{1}{\sigma_{1}^{\prime}} \Phi\left(\frac{x-\mu^{\prime}}{\sigma_{1}^{\prime}}\right) \frac{\exp \left(\alpha_{0}^{\prime}+\alpha_{1}^{\prime} x+\alpha_{2}^{\prime} y\right)}{1+\exp \left(\alpha_{0}^{\prime}+\alpha_{1}^{\prime} x+\alpha_{2}^{\prime} y\right)} \tag{A.1}
\end{align*}
$$

with $\Phi$ the probability density function of $N(0,1)$. Taking logarithm on both sides and rearranging the terms, we have

$$
\begin{align*}
& c-\left\{\frac{(x-\mu)^{2}}{2 \sigma_{1}^{2}}-\frac{\left(x-\mu^{\prime}\right)^{2}}{2 \sigma_{1}^{\prime 2}}\right\}+\left(\beta_{1}-\beta_{1}^{\prime}+\alpha_{1}-\alpha_{1}^{\prime}\right) x+\left(\alpha_{2}-\alpha_{2}^{\prime}\right) y \\
& =y\left\{\exp \left(\beta_{0}+\beta_{1} x\right)-\exp \left(\beta_{0}^{\prime}+\beta_{1}^{\prime} x\right)\right\}+\log \frac{1+\exp \left(\alpha_{0}+\alpha_{1} x+\alpha_{2} y\right)}{1+\exp \left(\alpha_{0}^{\prime}+\alpha_{1}^{\prime} x+\alpha_{2}^{\prime} y\right)} \tag{A.2}
\end{align*}
$$

with $c=\left\{\beta_{0}-\beta_{0}^{\prime}+\alpha_{0}-\alpha_{0}^{\prime}-\log \left(\sigma_{1}\right)+\log \left(\sigma_{1}^{\prime}\right)\right\}$. For arbitrary $y$, the left hand side of A.2 is a linear combination of $x$ and $x^{2}$. But for $\beta_{0} \neq \beta_{0}^{\prime}$ or $\beta_{1} \neq \beta_{1}^{\prime}$, note that $\beta_{1}, \beta_{1}^{\prime} \neq 0$, the right hand side of $A .2$ must include an exponential term of $x$, and it cannot equal the left hand side of A.2. Thus, we must have
$\beta_{0}=\beta_{0}^{\prime}$ and $\beta_{1}=\beta_{1}^{\prime}$, and A.1 reduces to

$$
\frac{1}{\sigma_{1}} \Phi\left(\frac{x-\mu}{\sigma_{1}}\right) \frac{\exp \left(\alpha_{0}+\alpha_{1} x+\alpha_{2} y\right)}{1+\exp \left(\alpha_{0}+\alpha_{1} x+\alpha_{2} y\right)}=\frac{1}{\sigma_{1}^{\prime}} \Phi\left(\frac{x-\mu^{\prime}}{\sigma_{1}^{\prime}}\right) \frac{\exp \left(\alpha_{0}^{\prime}+\alpha_{1}^{\prime} x+\alpha_{2}^{\prime} y\right)}{1+\exp \left(\alpha_{0}^{\prime}+\alpha_{1}^{\prime} x+\alpha_{2}^{\prime} y\right)}
$$

By the argument of Miao, Ding and Geng (2017) for identification of normal densities, the identity holds only for $\mu=\mu^{\prime},\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)=\left(\alpha_{0}^{\prime}, \alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)$ and $\sigma_{1}=\sigma_{1}^{\prime}$. Therefore, all parameters are identified.

The Weibull regression $Y \sim \sigma_{2} y^{\sigma_{2}-1} \exp \left\{-y^{\sigma_{2}} \eta(x)+\log (\eta(x))\right\}$ is a generalization of the exponential regression model. We first prove identification of $\sigma_{2}$, and then identification of other parameters follows from identification of the exponential regression model. For the Weibull regression, we follow the proof for the exponential regression and then obtain a parallel version of (A.2):

$$
\begin{gather*}
c-\left\{\frac{(x-\mu)^{2}}{2 \sigma_{1}^{2}}-\frac{\left(x-\mu^{\prime}\right)^{2}}{2 \sigma_{1}^{\prime 2}}\right\}+\left(\beta_{1}-\beta_{1}^{\prime}+\alpha_{1}-\alpha_{1}^{\prime}\right) x+\left(\alpha_{2}-\alpha_{2}^{\prime}\right) y+\left(\sigma_{2}-\sigma_{2}^{\prime}\right) \log (y) \\
=\left\{y^{\sigma_{2}} \exp \left(\beta_{0}+\beta_{1} x\right)-y^{\sigma_{2}^{\prime}} \exp \left(\beta_{0}^{\prime}+\beta_{1}^{\prime} x\right)\right\}+\log \frac{1+\exp \left(\alpha_{0}+\alpha_{1} x+\alpha_{2} y\right)}{1+\exp \left(\alpha_{0}^{\prime}+\alpha_{1}^{\prime} x+\alpha_{2}^{\prime} y\right)} . \tag{A.3}
\end{gather*}
$$

For arbitrary $x$, the left hand side of A.3) is a linear combination of $y$ and $\log (y)$. But for $\sigma_{2} \neq \sigma_{2}^{\prime}$, the right hand side of (A.2) must include a power of $y$, and is not equal to the left hand side of A.2). Thus, we must have $\sigma_{2}=\sigma_{2}^{\prime}$. If $\widetilde{Y}=Y^{\sigma_{2}}$, then $\widetilde{Y} \sim \exp \{-\widetilde{y} \eta(x)+\log (\eta(x))\}$, which is an exponential regression model. Applying the identification result of the exponential regression model, we obtain identification of the remaining parameters.

## Details for Example 7

When $X$ and $Z$ are binary, for arbitrary $y$ we solve the equation $\operatorname{pr}(z=1 \mid y)=$ $\sum_{x=0,1} \operatorname{pr}(z=1 \mid x, y, r=1) \operatorname{pr}(x \mid y)$ for $\operatorname{pr}(x=1 \mid y)$. As $\operatorname{pr}(x=1 \mid y)+\operatorname{pr}(x=$ $0 \mid y)=1$, we have

$$
\operatorname{pr}(x=1 \mid y)=\frac{\operatorname{pr}(z=1 \mid y)-\operatorname{pr}(z=1 \mid x=0, y, r=1)}{\operatorname{pr}(z=1 \mid x=1, y, r=1)-\operatorname{pr}(z=1 \mid x=0, y, r=1)} .
$$

Under the assumption $Z \not \not X X \mid Y=y$ for any $y, \operatorname{pr}(z=1 \mid x=1, y) \neq \operatorname{pr}(z=1 \mid x=$ $0, y)$, thus, $\operatorname{pr}(z=1 \mid x=1, y, r=1) \neq \operatorname{pr}(z=1 \mid x=0, y, r=1)$ by the shadow variable assumption $Z \Perp R \mid(X, Y)$. Therefore, the solution for $\operatorname{pr}(x=1 \mid y)$ is unique.

## References

Afifi, A. and Elashoff, R. (1966). Missing observations in multivariate statistics: I. Review of the literature. Journal of the American Statistical Association 61, 595-604.

Anderson, T. W. (1957). Maximum likelihood estimates for a multivariate normal distribution when some observations are missing. Journal of the American Statistical Association 52, 200-203.
Angrist, J., Imbens, G. and Rubin, D. (1996). Identification of causal effects using instrumental variables. Journal of the American Statistical Association 91, 444-455.
Baker, S. G. and Laird, N. M. (1988). Regression analysis for categorical variables with outcome subject to nonignorable nonresponse. Journal of the American Statistical Association 83, 62-69.
Bartlett, J. W., Carpenter, J. R., Tilling, K. and Vansteelandt, S. (2014). Improving upon the efficiency of complete case analysis when covariates are MNAR. Biostatistics 15, 719-730.
Buck, S. F. (1960). A method of estimation of missing values in multivariate data suitable for use with an electronic computer. Journal of the Royal Statistical Society. Series B (Statistical Methodological) 22, 302-306.
Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Statistical Methodological) 39, 1-38.
D'Haultfoeuille, X. (2010). A new instrumental method for dealing with endogenous selection. Journal of Econometrics 154, 1-15.
Edgett, G. L. (1956). Multiple regression with missing observations among the independent variables. Journal of the American Statistical Association 51, 122-131.
Fay, R. E. (1986). Causal models for patterns of nonresponse. Journal of the American Statistical Association 81, 354-365.
Glasser, M. (1964). Linear regression analysis with missing observations among the independent variables. Journal of the American Statistical Association 59, 834-844.
Goldberger, A. S. (1972). Structural equation methods in the social sciences. Econometrica 40, 979-1001.
Haitovsky, Y. (1968). Missing data in regression analysis. Journal of the Royal Statistical Society. Series B (Statistical Methodological) 30, 67-82.
Heckman, J. (1997). Instrumental variables: A study of implicit behavioral assumptions used in making program evaluations. The Journal of Human Resources 32, 441-462.
Horton, N. J. and Laird, N. M. (2001). Maximum likelihood analysis of logistic regression models with incomplete covariate data and auxiliary information. Biometrics 57, 34-42.
Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association 47, 663-685.
Ibrahim, J. G. (1990). Incomplete data in generalized linear models. Journal of the American Statistical Association 85, 765-769.
Ibrahim, J. G., Chen, M. H., Lipsitz, S. R. and Herring, A. H. (2005). Missing-data methods for generalized linear models: A comparative review. Journal of the American Statistical Association 100, 332-346.
Ibrahim, J. G., Lipsitz, S. R. and Chen, M. H. (1999). Missing covariates in generalized linear models when the missing data mechanism is non-ignorable. Journal of the Royal Statistical Society: Series B (Statistical Methodological) 61, 173-190.
Imbens, G. and Angrist, J. (1994). Identification and estimation of local average treatment effects. Econometrica 62, 467-475.
Kott, P. S. (2014). Calibration weighting when model and calibration variables can differ. In

Contributions to Sampling Statistics, pp. 1-18. F. Mecatti, L. P. Conti, and G. M. Ranalli (Eds.), Cham: Springer.
Lipsitz, S. R., Ibrahim, J. G., Chen, M. H. and Peterson, H. (1999). Non-ignorable missing covariates in generalized linear models. Statistics in Medicine 18, 2435-2448.
Little, R. J. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association 88, 125-134.
Little, R. J. and Rubin, D. B. (2002). Statistical Analysis with Missing Data. Wiley: New York.
Little, R. J. and Zhang, N. (2011). Subsample ignorable likelihood for regression analysis with missing data. Journal of the Royal Statistical Society: Series C (Applied Statistics) 60, 591-605.
Ma, W. Q., Geng, Z. and Hu, Y. H. (2003). Identification of graphical models for nonignorable nonresponse of binary outcomes in longitudinal studies. Journal of Multivariate Analysis 87, 24-45.
Miao, W., Ding, P. and Geng, Z. (2017). Identifiability of normal and normal mixture models with nonignorable missing data. Journal of the American Statistical Association 111, 16731683.

Miao, W., Tchetgen Tchetgen, E. and Geng, Z. (2015). Identification and doubly robust estimation of data missing not at random with a shadow variable. Technical report.
Newey, W. K. and McFadden, D. (1994). Large sample estimation and hypothesis testing. In Handbook of Econometrics, Volume 4, pp. 2111-2245. R. F. Engle and D. L. McFadden (Eds.), Amsterdam: Elsevier.
Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1994). Estimation of regression coefficients when some regressors are not always observed. Journal of the American Statistical Association 89, 846-866.
Rubin, D. B. (1976). Inference and missing data (with discussion). Biometrika 63, 581-592.
Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: Wiley.
Rubin, D. B. and Schenker, N. (1986). Multiple imputation for interval estimation from simple random samples with ignorable nonresponse. Journal of the American Statistical Association 81, 366-374.
Scharfstein, D. O., Rotnitzky, A. and Robins, J. M. (1999). Adjusting for nonignorable drop-out using semiparametric nonresponse models. Journal of the American Statistical Association 94, 1096-1120.
Shao, J. (2003). Mathematical Statistics (2nd ed.). New York: Springer.
Shao, J. and L. Wang (2016). Semiparametric inverse propensity weighting for nonignorable missing data. Biometrika 103, 175-187.
Sun, B., Liu, L., Miao, W., Wirth, K., Robins, J. and Tchetgen, E. T. (2018). Semiparametric estimation with data missing not at random using an instrumental variable. Statistica Sinica. 28, 1965-1983.
Tang, G., Little, R. J. and Raghunathan, T. E. (2003). Analysis of multivariate missing data with nonignorable nonresponse. Biometrika 90, 747-764.
Tchetgen Tchetgen, E. J. and Wirth, K. E. (2017). A general instrumental variable framework for regression analysis with outcome missing not at random. Biometrics, in press.
Tsiatis, A. (2006). Semiparametric Theory and Missing Data. New York: Springer.
Vach, W. and Schumacher, M. (1993). Logistic regression with incompletely observed categorical
covariates: a comparison of three approaches. Biometrika 80, 353-362.
Wang, S., Shao, J. and Kim, J. K. (2014). An instrumental variable approach for identification and estimation with nonignorable nonresponse. Statistica Sinica 24, 1097-1116.
Wright, P. G. (1928). Tariff on Animal and Vegetable Oils. New York: Macmillan.
Zahner, G. E., Pawelkiewicz, W., DeFrancesco, J. J. and Adnopoz, J. (1992). Children's mental health service needs and utilization patterns in an urban community: an epidemiological assessment. Journal of the American Academy of Child $\& \mathcal{A}$ Adolescent Psychiatry 31, 951960.

Zhao, J. and Shao, J. (2015). Semiparametric pseudo-likelihoods in generalized linear models with nonignorable missing data. Journal of the American Statistical Association 110, 15771590.

Zhao, L. P., Lipsitz, S. and Lew, D. (1996). Regression analysis with missing covariate data using estimating equations. Biometrics 52, 1165-1182.

Guanghua School of Management, Peking University, Haidian District, Beijing 100871, China.
E-mail: mwfy@pku.edu.cn
Department of Biostatistics, Harvard University, Boston, Massachusetts 02115, USA.
E-mail: tchetge@hsph.harvard.edu
(Received June 2016; accepted August 2017)

