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Abstract: Missing data occur frequently in empirical studies in the health and social

sciences, and can compromise our ability to obtain valid inference. An outcome is

said to be missing not at random (MNAR) if, conditional on the observed vari-

ables, the missing data mechanism still depends on the unobserved outcome. In

such settings, identification is generally not possible without imposing additional

assumptions. Identification is sometimes possible, however, if an instrumental vari-

able (IV) is observed for all subjects that satisfies the exclusion restriction that

the IV affects the missingness process without directly influencing the outcome.

In this paper, we provide necessary and sufficient conditions for nonparametric

identification of the full data distribution under MNAR with the aid of an IV. In

addition, we give sufficient identification conditions that are more straightforward

to verify in practice. For inference, we focus on estimation of a population out-

come mean, for which we develop a suite of semiparametric estimators that extend

methods previously developed for data missing at random. Specifically, we propose

a novel doubly robust estimator of the mean of an outcome subject to MNAR.

For illustration, the methods are used to account for selection bias induced by HIV

testing refusal in the evaluation of HIV seroprevalence in Mochudi, Botswana, using

interviewer characteristics such as gender, age and years of experience as IVs.

Key words and phrases: Doubly robust, instrumental variable, inverse probability

weighting, missing not at random.

1. Introduction

Selection bias is a major problem in the health and social sciences, and is said

to be present in an empirical study if features of the underlying population of pri-

mary interest are entangled with features of the selection process not of scientific

interest. Selection bias can occur in practice due to incomplete data if the ob-

served sample is not representative of the underlying population. While various

ad hoc methods exist to adjust for missing data, such methods may be subject to
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bias unless under fairly strong assumptions. For example, complete-case analysis

is easy to implement and is routinely used in practice. However, complete-case

analysis can be biased when the outcome is not missing completely at random

(MCAR) (Little and Rubin (2002)). Progress can still be made if data are miss-

ing at random (MAR), such that the missing data mechanism is independent of

unobserved variables conditional on observed variables. Principled methods for

handling MAR data abound, including likelihood-based procedures (Little and

Rubin (2002); Horton and Laird (1998)), multiple imputation (Rubin (1987);

Kenward and Carpenter (2007a); Horton and Lipsitz (2001); Schafer (1999)), in-

verse probability weighting (Robins, Rotnitzky and Zhao (1994); Tsiatis (2007);

Li, Shen and Robins (2013)) and doubly robust estimation (Scharfstein, Rot-

nitzky and Robins (1999); Lipsitz, Ibrahim and Zhao (1999); Robins, Rotnitzky

and Scharfstein (2000); Robins and Rotnitzky (2001); Neugebauer and van der

Laan (2005); Tsiatis (2007); Tchetgen Tchetgen (2009)).

The MAR assumption is strictly not testable in a nonparametric model with-

out an additional assumption (Gill, van der Laan and Robins (1997); Potthoff

et al. (2006)) and is often untenable. An outcome is said to be missing not at

random (MNAR) if it is neither MCAR nor MAR, such that conditional on the

observed variables, the missingness process depends on the unobserved variables

(Little and Rubin (2002)). Identification is generally not available under MNAR

without an additional assumption (Robins and Ritov (1997)). A possible ap-

proach is to make sufficient parametric assumptions (Little and Rubin (2002);

Roy (2003); Wu and Carroll (1988)) about the full data distribution for identifica-

tion. However, this approach can fail even with commonly used fully parametric

models (Miao, Ding and Geng (2016); Wang, Shao and Kim (2014)). Alternative

strategies for MNAR include positing instead sufficiently stringent modeling re-

strictions on a model for the missing data process (Rotnitzky and Robins (1997))

or conducting sensitivity analysis and constructing bounds (Moreno-Betancur

and Chavance (2013); Kenward and Carpenter (2007b); Robins, Rotnitzky and

Scharfstein (2000); Vansteelandt, Rotnitzky and Robins (2007)). A framework

for identification and semiparametric inference was recently proposed by Miao,

Tchetgen Tchetgen and Geng (2015) and Miao and Tchetgen Tchetgen (2016),

building on earlier work by D’Haultfoeuille (2010), Wang, Shao and Kim (2014)

and Zhao and Shao (2015), under the assumption that a shadow variable is fully

observed which is associated with the outcome prone to missingness, but inde-

pendent of the missingness process conditional on covariates and the possibly

unobserved outcome. Another common identification approach involves leverag-
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ing an instrumental variable (IV) (Manski (1985); Winship and Mare (1992)).

Heckman’s framework (Heckman (1979, 1997)) is perhaps the most common IV

approach used primarily in economics and other social sciences to account for

outcome MNAR. A valid IV is known to satisfy the following conditions:

(i) The IV is not directly related to the outcome in the underlying population,

conditional on a set of fully observed covariates, and

(ii) The IV is associated with the missingness mechanism conditional on the

fully observed covariates.

Therefore a valid IV must predict a person’s propensity to have an observed

outcome, without directly influencing the outcome.

In principle, one can use a valid IV to obtain a nonparametric test of the

MAR assumption. However access to an IV does not generally point identify

the joint distribution of the full data nor its functionals. Heckman’s selection

model consists of an outcome model that is associated with the selection process

through correlated latent variables included in both models (Heckman (1979)).

It is generally not identifiable without an assumption of bivariate normal latent

error in defining the model (Wooldridge (2010)). Estimation using Heckman-type

selection models may be sensitive to these parametric assumptions (Winship and

Mare (1992); Puhani (2000)), although there has been significant work towards

relaxing some of the assumptions (Manski (1985); Newey, Powell and Walker

(1990); Das, Newey and Vella (2003); Newey (2009)). An alternative sufficient

identification condition was considered by Tchetgen Tchetgen and Wirth (2017)

which involves restricting the functional form of the selection bias function due to

non-response on the additive, multiplicative or odds ratio scale. However, their

approach for estimation is fully parametric and may be sensitive to bias due to

model misspecification. Therefore a more robust approach is warranted.

In this paper, we develop a general framework for nonparametric identifi-

cation of selection models based on an IV. We describe necessary and sufficient

conditions for identifiability of the full data distribution with a valid IV. For

inference we focus on estimation of an outcome mean, although the proposed

methods are easy to adapt to other functionals. We develop semiparametric

approaches including inverse probability weighting (IPW) and outcome regres-

sion (OR) that extend analogous methods previously developed for missing at

random (MAR) settings, and introduce a novel doubly robust (DR) estimation

approach. The consistency of each estimator relies on correctly specified models

for different parts of the data generating model. We note that IPW in MNAR
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via calibration weighting (Deville (2000); Kott (2006); Chang and Kott (2008))

has previously been proposed to account for sample nonresponse in survey design

settings, and typically requires matching of weighted estimates to population to-

tals for benchmark variables. Besides assuming a correctly specified model for

nonresponse, identification in such settings is made possible by availability of

known or estimated population totals, an assumption we do not require. Ex-

tensive simulation studies are used to investigate the finite sample properties

of proposed estimators. For illustration, the methods are used to account for

selection bias induced by HIV testing refusal in the evaluation of HIV seropreva-

lence in Mochudi, Botswana, using interviewer characteristics including gender,

age and years of experience as IVs. All proofs are relegated to a Supplemental

Appendix.

2. Notation and Assumptions

Suppose that one has observed n independent and identically distributed

observations (X,Y,R,Z) with fully observed covariates X. Let R be the miss-

ingness indicator for Y , with R = 1 if Y is observed to take a value in its sample

space Ω and R = 0 if Y = Y ∗, indicating any value in Ω. The variable Z is a

fully observed IV that satisfies conditions (i) and (ii) formalized below. In the

evaluation of HIV prevalence in Mochudi, X includes all demographic and behav-

ioral variables collected for all persons in the sample, while HIV status Y may be

missing for individuals who failed to be tested. Let π̃(X,Z) = Pr(R = 1|X,Z)

denote the propensity score for the missingness mechanism given (X,Z). As a

valid IV, we assume that Z satisfies the following assumptions.

(IV.1) Exclusion restriction:

PY |X,Z(y|x, z) = PY |X(y|x) ∀ x, z.

(IV.2) IV relevance:

π̃(x, z) 6= π̃(x, z′) ∀ x.

Exclusion restriction (IV.1) specifies that the IV does not have a direct effect

on the outcome, which places restrictions on the full data law. IV relevance

requires that the IV remains associated with the missingness mechanism even

after conditioning on X. In spite of (IV.2), (IV.1) implies that Z cannot reduce

the dependence between R and Y , therefore under MNAR π(x, y, z) = P (R =

1|x, y, z) remains a function of y even after conditioning on (x, z). In addition,

(IV.1) and (IV.2) imply that under MNAR the IV remains relevant in π(x, y, z)
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conditional on (x, y). These facts will be used repeatedly throughout. π̃(x, z) is

typically referred to as the propensity score for the missingness process, and we

shall refer to π(x, y, z) as the extended propensity score.

3. Identification

Although (IV.1) reduces the number of unknown parameters in the full data

law, identification is still only available for a subset of all possible full data laws.

As an illustration, consider the case of binary outcome and IV. For simplicity

and without loss of generality, we omit covariates X. Assumption (IV.1) implies

P (z, y) = P (y)P (z). We are only able to identify the quantities P (z, y|R = 1),

P (z|R = 0), P (R = 1) from the observed data. These quantities are functions

of the unknown parameters: P (Z = 1), P (Y = 1), and P (R = 1|z, y). So we

have six unknown parameters, but only five available independent equations, one

for each identified parameter given above. As a result, the full data law is not

identifiable, and P (Y = 1) is not identifiable.

The IV model becomes identifiable once one sufficiently restricts the class

of models for the joint distribution of (Z, Y,R). Let Pθ(R,Z, Y ), Pη(Z) and

Pξ(Y ) denote the collection of such candidates for P (R = 1|z, y), P (z) and P (y),

respectively. Members of the sets are indexed by parameters θ, η, and ξ, which

may be infinite dimensional. The identifiability of the model is determined by

the relationship between its members.

Result 1. Suppose that Assumption (IV.1) holds, then the joint distribution

P (z, y, r) is identifiable if and only if Pθ(R,Z, Y ) and Pξ(Y ) satisfy that for any

pair of candidates

{Pθ1(R = 1|z, y), Pξ1(y)} and {Pθ2(R = 1|z, y), Pξ2(y)}

in the model,

Pθ1(R = 1|z, y)

Pθ2(R = 1|z, y)
6=
Pξ2(y)

Pξ1(y)
(3.1)

holds for at least one value of z and y.

Result 1 presents a necessary and sufficient condition for identifiability of the

joint distribution of the full data, and thus a sufficient condition for identifiability

of its functionals. We provide a more convenient condition to verify.

Corollary 1. If Assumption (IV.1) holds, then the joint distribution P (z, y, r)

is identifiable if ∀ θ1, θ2 such that θ1 6= θ2, the ratio Pθ1(R = 1|z, y)/Pθ2(R =

1|z, y) is either a constant or varies with z.
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Although this provides a sufficient condition for identification of the joint

distribution of the full data, it may be used to establish identifiability in para-

metric or semi-parametric models, as we illustrate in a number of examples. Let

MIV denote the collection of models with valid IV.

Example 1. Suppose both Y and Z are binary and consider the model M1 ∩
MIV, where

M1 =
{
P (R = 1|Z, Y ) = expit (θ0 + θ1Z + θ2Y + θ3ZY ) :

(θ0, θ1, θ2, θ3) ∈ R4
}
,

which includes the nonparametric model. It is shown in the Supplemental Ap-

pendix that this model does not satisfy (3.1) and therefore the joint distribution

of (Z, Y,R) cannot be identified without reducing the dimension of θ. In contrast,

Corollary 1 confirms that the smaller model M2 ∩MIV is identified, where

M2 =
{
P (R = 1|Z, Y ) = expit (θ0 + θ1Z + θ2Y ) : (θ0, θ1, θ2) ∈ R3

}
.

Thus the IV model becomes identified upon imposing a no-interaction assumption

between Y and Z in the logistic model for the extended propensity score. An

analogous result holds for possibly continuous Y and Z, assuming a logistic

generalized additive model for the extended propensity score.

Example 2. The modelMSL∩MIV is identified for the separable logistic missing

data mechanism

MSL = {P (R = 1|Z, Y ) = expit(q(Z) + h(Y ))}, (3.2)

where q(·) and h(·) are unknown functions differentiable with respect to Z and

Y , respectively.

4. Estimation and Inference

In this section, we consider estimation and inference under a variety of semi-

parametric IV models shown to satisfy Result (1). We denote the collection of

such identifiable models as M∗
IV

. Although in principle the identification results

given in the previous section allow for nonparametric inference, in practice es-

timation often involves specifying parametric models, at least for parts of the

full data law. This is generally the case when a large number of covariates X

or Z are present and therefore the curse of dimensionality precludes the use of

nonparametric regression to model conditional densities or their mean functions

required for IV inferences (Robins and Ritov (1997)). As a measure of departure

from MAR, we introduce the selection bias function
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η(x, y, z) = log

[
{P (R=1|x, y, z)/P (R=0|x, y, z)}

{P (R=1|x, Y =0, z)/P (R=0|x, Y =0, z)}

]
. (4.1)

η quantifies the degree of association between Y and R given (X,Z) on the log

odds ratio scale. Under MAR, P (R = 1|x, y, z) = P (R = 1|x, z) and η = 0. The

conditional density P (r, y, z|x, z) can be represented in terms of the selection bias

function η and baseline densities as

P (r, y, z|x) = C(x, z)−1 exp{(r − 1)η(x, y, z)} (4.2)

× f(y|R = 1, x, z)P (r|Y = 0, x, z)q(z|x),

where C(x, z) < +∞ for all (x, z) is a normalizing constant, and q(z|x) models the

density of the IV conditional on the covariates (Chen (2007); Tchetgen Tchetgen,

Robins and Rotnitzky (2010)). As we show below, the selection bias function η in

(4.2) needs to be correctly specified for any of the three proposed estimators to be

consistent. To fix ideas, throughout we suppose that one aims to make inferences

about the population mean φ = E(Y ), although the proposed methods are easy

to extend to other full data functionals.

IPW estimation requires a correctly specified model for the extended propen-

sity score π(x, y, z), which under logit link function is

π(x, y, z) =
1

[1 + exp{−η(x, y, z)− λ(x, z)}]
, (4.3)

where η(x, y, z) is the selection bias function given in (4.1), and λ(x, z) = log{P (R

= 1|Y = 0, x, z)/P (R = 0|Y = 0, x, z)} is a person’s baseline conditional odds of

observing complete data. In principle, one could use any well-defined link function

for the propensity score, but we simplify the presentation by only considering the

logit case. We consider IPW estimation in the model MIPW ⊂M∗IV, where

MIPW =

{
P (r, y, z|x) : η(x, y, z; ζ), P (r|Y = 0, x, z;ω), q(z|x; ξ);

unrestricted P (y|R = 1, x, z)

}
,

and the parametric models indexed by parameters ζ, ω, and ξ, respectively, are

assumed to be correctly specified, while the baseline outcome model f(y|R =

1, x, z) in (4.2) is unrestricted.

Outcome regression-based estimation under MAR requires a model for f(y|R
= 1, x, z) = f(y|x, z), which can be estimated based on complete-cases. How-

ever, under MNAR f(y|R = 1, X, Z) 6= f(y|R = 0, X, Z) and estimation of

f(y|R = 0, x, z) is not readily available since outcome is not observed for this
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subpopulation. However, by (4.2),

f(y|r, x, z) =
P (y, r|x, z)∫

P (y, r|x, z)dµ(y)
=

exp{−(1−r)η(x, y, z)}f(y|R = 1, x, z)

E[exp{−(1−r)η(x, Y, z)}|R = 1, x, z]
, (4.4)

and therefore the density f(y|R = 0, x, z) can be expressed in terms of the selec-

tion bias function η and baseline outcome model f(y|R = 1, x, z) for complete-

cases. We consider OR estimation in the model MOR ⊂M∗IV where

MOR =

{
P (r, y, z|x) : η(x, y, z; ζ), P (y|R = 1, x, z; θ), q(z|x; ξ);

unrestricted λ(x, z)

}
,

which allows the baseline missing data model P (r|Y = 0, x, z) to remain unre-

stricted while the models indexed by parameters ζ, θ and ξ are assumed to be

correctly specified.

We also propose a doubly robust estimator which is consistent in the union

model MIPW ∪MOR, provided the models η(x, y, z; ζ) and q(z|x; ξ) are correctly

specified, and either P (r|Y = 0, x, z;ω) or P (y|R = 1, x, z; θ), but not necessarily

both, are correctly specified, thus giving the analyst two chances, instead of one,

to obtain valid inferences.

Throughout the next section, we let θ̂MLE denote the complete-case maximum

likelihood estimator which maximizes the conditional log-likelihood
∑

i:Ri=1 log

P (yi|xi, zi; θ), and let ξ̂MLE denote the maximum likelihood estimator which maxi-

mizes the log-likelihood
∑n

i=1 log q(zi|xi; ξ). Let Pn denote the empirical measure

Pnf(O) = n−1
∑n

i=1 f(Oi).

4.1. Inverse probability weighted estimation under MIPW

IPW is a well-known approach to acount for missing data under MAR. In this

section we describe an analogous approach under MNAR. Standard approaches

for estimating the propensity score under MAR, such as maximum likelihood of

a logistic regression model of the propensity score, cannot be used here since the

extended propensity score π(x, y, z) depends on Y which is only observed when

R = 1. Therefore, we adopt an alternative method of moments approach which

resolves this difficulty. Under the model MIPW, (ζ̂, ω̂) solves

Pn
{
U IPW

(
ξ̂MLE, ζ̂, ω̂

)}
= 0 (4.5)

where U IPW(·) consists of the estimating functions
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π
(
ζ̂, ω̂

) − 1

h1(X,Z) (4.6)

R

π
(
ζ̂, ω̂

)g(X,Y )
[
h2(Z,X)− E

{
h2(Z,X)

∣∣∣X; ξ̂MLE

}]
. (4.7)

Functions (4.6) and (4.7) estimate unknown parameters in P (r|Y = 0, x, z;ω)

and η(x, y, z; ζ) respectively, where h1 is an user-specified function of (x, z) with

the same dimension as ω, while g and h2 are user-specified functions of (x, y) and

(x, z), respectively, with the same dimension as ζ. Specific choices of (h1,h2, g)

can generally affect efficiency, but not consistency.

Proposition 1. Consider a model MIPW ⊂ M∗IV that satisfies Result (1). Then

the IPW estimator

φ̂IPW = Pn
{
RY

π(η̂)

}
(4.8)

is consistent and asymptotically normal as n→∞,
√
n
(
φ̂IPW − φ0

)
d−→ N (0, VIPW )

in model MIPW under suitable regularity conditions, where VIPW is given in the

Supplemental Appendix.

4.2. Outcome regression estimation under MOR

Next, consider inferences under a parametric model for the outcome, MOR.

Using the parametrization given in (4.4), consider the parametric model

P (y|R = 0, x, z; ζ, θ̂MLE) =
exp {−η(x, y, z; ζ)} f

(
y|R = 1, x, z; θ̂MLE

)
E
[
exp{−η(x, Y, z; ζ)}|R = 1, x, z; θ̂MLE

] ,
and the estimator ζ̃ solving

Pn
{
UOR

(
ζ̃, ξ̂MLE, θ̂MLE, q1, q2

)}
= Pn

[
q1(X,Z)− E

{
q1(X,Z)

∣∣∣X; ξ̂MLE

}]
×{

(1−R)E
(
q2(X,Y )

∣∣∣R = 0, X, Z; ζ̃, θ̂MLE

)
+Rq2(X,Y )

}
= 0, (4.9)

where q1, q2 are vectors of the same dimensions as ζ.

Proposition 2. Consider a model MOR ⊂ M∗IV that satisfies Result (1). Then
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the outcome regression estimator

φ̂OR = Pn
{
RY + (1−R)E

(
Y
∣∣∣R = 0, X, Z; ζ̃, θ̂MLE

)}
(4.10)

is consistent and asymptotically normal as n→∞,√
n
(
φ̂OR − φ0

)
d−→ N (0, VOR)

in model MOR under suitable regularity conditions, where VOR is given in the

Supplemental Appendix.

4.3. Doubly robust estimation under MDR

Estimation approaches described thus far depend on correct specification of

extended propensity score for IPW and outcome model for OR. Here we de-

scribe a doubly robust estimator that remains consistent if the conditional den-

sity q(z|x; ξ) is correctly specified, and either P (y|R,X,Z; θ) or P (r|Y,X,Z;ω)

is correctly specified, but not necessarily both. We write MDR =MIPW ∪MOR.

Our construction requires first obtaining the DR estimator ζ̂DR of the parameter

indexing selection bias function η(ζ) that remains consistent in MDR. In this

vein, let

GDR

(
R,X, Y, Z; ζ, ω, θ̂MLE,u

)
=

R

π(ζ, ω)
u(X,Y )− R− π(ζ, ω)

π(ζ, ω)
E
{
u(X,Y )

∣∣∣R = 0, X, Z; ζ, θ̂MLE

}
=

R

π(ζ, ω)

[
u(X,Y )− E

{
u(X,Y )

∣∣∣R = 0, X, Z; ζ, θ̂MLE

}]
+ E

{
u(X,Y )

∣∣∣R = 0, X, Z; ζ, θ̂MLE

}
, (4.11)

where u(X,Y ) is of the same dimensions as ζ. We obtain (ζ̂DR, ω̂) as the solution

to the estimating equation (4.6), combined with

Pn
{
UDR

(
ζ̂DR, ω̂, θ̂MLE, ξ̂MLE,u,v

)}
= Pn

([
v(X,Z)− E

{
v(X,Z)

∣∣∣X; ξ̂MLE

}]
×
{
GDR

(
R,X, Y, Z; ζ̂DR, ω̂, θ̂MLE,u

)})
= 0. (4.12)

Proposition 3. Consider a model MDR ⊂ M∗IV that satisfies Result (1). Then

the doubly robust estimator

φ̂DR = Pn
{
GDR

(
R,X, Y, Z, ζ̂DR, ω̂, θ̂MLE,u

†
)}

, (4.13)
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where u†(X,Y ) = Y , is consistent and asymptotically normal as n→∞,
√
n
(
φ̂DR − φ0

)
d−→ N (0, VDR)

in the model MDR under suitable regularity conditions, where VDR is given in the

Supplemental Appendix.

The notion of doubly robust estimation was first introduced in the context

of semi-parametric non-response models under MAR (Scharfstein, Rotnitzky and

Robins (1999)), and the approach was further studied by others (Lipsitz, Ibrahim

and Zhao (1999); Robins, Rotnitzky and Scharfstein (2000); Lunceford and Da-

vidian (2004); Neugebauer and van der Laan (2005)) with theoretical under-

pinnings given by Robins and Rotnitzky (2001) and van der Laan and Robins

(2003). A doubly robust version of estimating equation (4.13) of mean outcome

under MNAR was previously described by Vansteelandt, Rotnitzky and Robins

(2007), who assume that the selection bias function η is known a priori within

the context of a sensitivity analysis. An important contribution here is to derive

a large class of DR estimators of the selection bias using an IV. To the best of

our knowledge, this is the first time that a DR estimator for the mean outcome

has been constructed in the context of an IV for data subject to MNAR.

5. Simulation Study

In order to investigate the finite-sample performance of proposed estimators,

we carried out a simulation study involving i.i.d. data (Y,Z,X), where X =

(X1, X2). For each sample size n = 2,000, 5,000, we simulated 1,000 data sets as

follows:

X1 ∼ Bernoulli(p = 0.4), X2 ∼ Bernoulli(p = 0.6),

Z ∼ Bernoulli
[
p = {1 + exp (−0.4− 0.9X1 + 0.7X2 + 0.8X1X2)}−1

]
,

Y ∼ Bernoulli
[
p = {1 + exp (−1.0 + 1.2X1 − 1.5X2)}−1

]
,

R ∼ Bernoulli
[
p = {1 + exp (1.5− 2.5Z − 0.8X1 + 1.2X2 − 1.8Y )}−1

]
,

such that Y is only observed if R = 1. Under this data generating mechanism,

Z satisfies (IV.1) and (IV.2), with the true value of φ0 = E(Y ) = 0.769. The

selection bias model is α(x, y, z) = ζy with true value ζ0 = 1.8. The model is

identified since the missing data mechanism follows the separable logistic regres-

sion model described in Example 2 of Section 3. For IPW estimation, we specified

the correct extended propensity score and model for P (Z = 1|X1, X2; ξ), with
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h1 = (Z,X1, ZX1)
T , g = Y and h2 = Z in (4.6) and (4.7). For OR estimation,

we let (q1, q2) = (Z, Y ) in (4.9) and specified a saturated logistic regression for

Y with all 2-way and 3-way interactions included. DR estimation was carried

out as described in the previous section. While Chang and Kott (2008) only

considered a survey design setting, here the IPW approach is analogous to a

form of calibration weighted estimation that matches the weighted sample esti-

mates of benchmark variables LCW = {1, Z,X1, X2, Y {Z − P (Z = 1|X1, X2)}}
to their estimated population totals, where the last variable in LCW has known

population total value of zero by (IV.1).

To study the performance of the proposed estimators in situations where

some models may be mis-specified, we also evaluated the estimators where either

the extended propensity score model or the complete-case outcome model was

mis-specified by replacing them with models

P (R = 1|X,Y, Z) = expit(ω0 + ω1X1 + ω2Z + ω3X1Z + ζY )

and

P (Y = 1|R = 1, X, Z) = expit(θ0 + θX1),

respectively.

In each simulated sample, we evaluated the standard error of the estimator

using the sandwich estimator. Wald 95% confidence interval coverage rates were

evaluated across 1,000 simulations. Estimating equations were solved using the

R package BB (Varadhan and Gilbert (2009)). Figures 1 and 2 present results for

estimation of the selection bias parameter ζ0 and the outcome mean φ0, respec-

tively, while Table 1 shows the empirical coverage rates. Under correct model

specification, all estimators have negligible bias for φ0 and ζ0 that diminishes

with increasing sample size, with empirical coverage near the nominal 95% level.

In agreement with our theoretical results, the IPW and OR estimators are bi-

ased with poor empirical coverages when the extended propensity score or the

complete-case outcome model is misspecified, respectively. The DR estimator

performs well in terms of bias and coverage when either model is misspecified

but the other is correct.

6. Applications

To illustrate the proposed IV approach, we obtained data from a household

survey in Mochudi, Botswana to estimate HIV seroprevalence among adults ad-

justing for selective missingness of HIV test results. The data consist of 4,997
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Figure 1. Boxplots of inverse probability weighted (IPW), outcome regression (OR) and
doubly-robust (DR) estimators of the selection bias parameter, for which the true value
ζ0 = 1.8 is marked by the horizontal lines.

Table 1. Empirical coverage rates based on 95% Wald confidence intervals under three
scenarios: (i) mis-specified extended propensity score, (ii) mis-specified complete-case
outcome probability and (iii) both models are correct. In each scenario, the first row
presents results for n = 2,000 and the second row for n = 5,000.

ζ φ
IPW OR DR IPW OR DR

(i)
86.4 95.4 95.4 81.3 95.2 95.2
57.8 95.1 95.1 50.1 94.9 94.9

(ii)
95.0 0.0 94.4 95.1 65.6 95.2
94.7 0.0 94.5 95.0 29.9 94.5

(iii)
95.0 95.4 95.4 95.1 95.2 95.2
94.7 95.1 95.1 95.0 94.9 94.9

adults between the ages of 16 and 64 who were contacted for the survey, out

of whom 4,045 (81%) had complete information on HIV testing. Of those who
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Figure 2. Boxplots of inverse probability weighted (IPW), outcome regression (OR) and
doubly-robust (DR) estimators of the outcome mean, for which the true value φ0 = 0.769
is marked by the horizontal lines.

did not have HIV test results (R = 0), 111 (2%) agreed to participate in the

HIV test but their final HIV outcomes are unknown, and 841 (17%) refused to

participate in the HIV testing component. It is likely that refusal to participate

in the survey when contact is established presents a possible source of selection

bias.

Fully available individual characteristics from the survey include participant

gender (X). Candidate IVs include interviewer gender (Z1), age (Z2), and years

of experience (Z3). These interviewer characteristics are likely to influence the

response rates of individuals who were contacted for the survey, but are unlikely

to directly influence an individual’s HIV status given that interviewer deployment

was determined at random prior to the survey. We implemented the proposed

IPW, OR, and DR estimators by making use of interviewer gender, age, and

years of experience as IVs. For IPW estimation, the missingness propensity
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Table 2. Estimation for HIV seroprevalence (φ) and magnitude of selection bias (ζ) in
Mochudi, Botswana with 95% Wald confidence intervals.

Estimator φ̂ ζ̂ ζ̂ p-val
CC 0.214 (0.202, 0.227) – –

MAR IPW 0.213 (0.201, 0.226) – –
IV IPW 0.260 (0.175, 0.341) −1.601 (−2.992, −0.210) 0.02
IV OR 0.241 (0.175, 0.307) −0.757 (−1.889, 0.376) 0.19
IV DR 0.258 (0.174, 0.342) −1.121 (−2.433, 0.191) 0.09

score is specified as a main effects only logistic regression, with the selection bias

function specified as α(x, y, z) = ζy, where Y is HIV status. The posited missing

data mechanism belongs to the separable logistic class, therefore the average HIV

prevalence can be identified, by Example 2. For OR estimation, we specified the

regression model

logit P (Y = 1|R = 1, X,Z) = θ0 + θ1X + θ2Z1 + θ3Z2 + θ4Z3. (6.1)

Finally, the doubly robust estimator is implemented by incorporating both mod-

els. Because more than one IV was available, estimating equations U IPW, UOR,

and UDR were solved using the generalized method of moments (GMM) pack-

age in R (Chaussé (2010)). Standard errors were obtained using the proposed

sandwich estimator. For comparison, we also carried out standard complete-case

analysis and standard IPW estimation assuming MAR conditional on (x, z) using

a main effects only logistic regression to model the propensity score. Results are

presented in Table 2.

IV estimates of HIV seroprevalence are 12.6 − 21.5% higher than the crude

estimate of 0.214 (95% CI: 0.202–0.227) based on complete-cases only. Standard

IPW (i.e. assuming MAR) produced similar estimates as complete-case analysis.

Negative point estimates of the selection bias parameter ζ suggest that HIV-

infected persons are less likely to participate in the HIV testing component of the

survey, although this difference is statistically significant at 0.05 α-level only for

IPW. The larger confidence intervals of the three IV estimators of φ0 compared

to those of the CC and MAR estimators are a more accurate reflection of the

amount of uncertainty involving inferences about φ0, since the CC and MAR

estimators do not take into account the uncertainty about the underlying MNAR

mechanism by assuming MCAR and MAR, respectively, i.e. setting selection bias

parameter ζ = 0. φ̂IV IPW and φ̂IV DR are close to each other. This comparison is

useful as an informal goodness of fit test in that their similarity suggests that

the missingness propensity score may be specified nearly correctly (Robins and

Rotnitzky (2001)). In addition, by incorporating all possible pairwise interaction
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terms in the outcome logistic regression model, and therefore allowing it to be

more flexible, the OR point estimate φ̂IV OR increases to 0.246 (95% CI: 0.179-

0.314), thus even closer to φ̂IV IPW and φ̂IV DR.

7. Conclusion

In this paper, we have considered a pernicious form of selection bias which

can arise from outcome missing not at random. We have argued that under

fairly reasonable assumptions this problem can be made more tractable with

the aid of an IV, and proposed a general framework for establishing identifia-

bility of parametric, semiparametric, and nonparametric models. In addition,

we have characterized the set of all influence functions of regular and asymp-

totically linear estimators as well as the semiparametric efficient score of (ζ, φ)

in model Mnp which assumes that Z is a valid IV, the selection bias function

η (X,Y, Z; ζ) is correctly specified, and the joint likelihood of (Y,X,Z,R) is oth-

erwise unrestricted. The efficient score is not generally available in closed-form,

except in special cases, such as when Z and Y are both polytomous. Due to

space constraints, local efficiency results are available in Sun et al. (2016).

Supplementary Materials

The proofs for results, propositions and examples are included in an online

Supplemental Appendix.
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