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Abstract: We propose a method for linear mixed effects models when the covariates

are completely observed but the outcome of interest is subject to missing under

cluster-specific nonignorable (CSNI) missingness. Our strategy is to replace missing

quantities in the full-data objective function with unbiased predictors derived from

inverse probability weighting and calibration technique. The proposed approach can

be applied to estimating equations or likelihood functions with modified E-step, and

does not require numerical integration as do previous methods. Unlike usual inverse

probability weighting, the proposed method does not require correct specification of

the response model as long as the CSNI assumption is correct, and renders inference

under CSNI without a full distributional assumption. Consistency and asymptotic

normality are shown with a consistent variance estimator. Simulation results and

a data example are presented.

Key words and phrases: Calibration method, cluster-specific nonignorable missing-

ness, inverse probability weighting, nonignorable missingness.

1. Introduction

Missing data occur for various reasons and are frequent problems in surveys,

clustered, or longitudinal data. We consider a regression setting with clustered

data when the outcome variable is subject to missing, but the covariates are

completely observed. Rubin (1976) in his seminal paper used the term missing

at random if the response or observation indicator for the outcome is indepen-

dent of the outcome given the covariates. When the data are missing at random,

inverse probability weighting and imputation approaches, aside from likelihood

approach, have been developed to handle missing values (Robins, Rotnitzky and

Zhao (1995); Paik (1997)). The validity of these approaches depends on correct

specification of the response and the imputation models, respectively. Many au-

thors have investigated doubly robust methods that utilize both auxiliary models,
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but require correct specification of either model for the validity of the method,

while achieving semiparametric efficiency when both are correct (Robins, Rot-

nitzky and Zhao (1994); Bang and Robins (2005); Kang and Schafer (2007); Han

(2014)). In the case of nonignorable missingness, the probability of response de-

pends on unobserved data, and the analysis becomes challenging. The methods of

handling nonignorable missingness require both auxiliary models to be correctly

specified. Many authors have attacked the nonignorability problem using the like-

lihood approach (Follmann and Wu (1995); Ibrahim, Chen and Lipsitz (2001);

Gao (2004); Zhang and Paik (2009)), imputation approach (Paik (1997); Yang,

Kim and Zhu (2013)), and inverse probability weighting approach (Rotnitzky

and Robins (1995); Shao and Wang (2016)). Nonignorability often causes non-

identifiability which should be carefully addressed in developing methods (Wang,

Shao and Kim (2014); Molenberghs et al. (2008)).

In cluster data analysis, missing data should be handled while taking account

of the correlation within cluster. Furthermore, the response indicators may be

correlated within cluster. A popular way to model clustered data is mixed effects

model where random effects are shared among the outcomes within the cluster

to induce correlation. The random effects are not directly observable, which

opens the possibility that data can be nonignorably missing when the response

indicator depends on the random effect. It is plausible that an unmeasured

common factor that explains the outcome also explains the response indicators.

When the response indicator depends on the random or cluster effects, but is

independent of outcome given covariates and cluster effects, Yuan and Little

(2007) called this cluster-specific nonignorable (CSNI) missingness. The CSNI

mechanism is a subclass of nonignorable missingness, but due to the conditional

independence, is less serious than the case where the response indicators depend

on the unobserved outcomes that are planned to be measured. Yuan and Little

(2007) considered a special case of CSNI where the response indicator depends

on cluster-specific covariates. A few methods have been proposed in the context

of survey sampling under CSNI in the presence of covariates that vary within

cluster (Skinner and D’Arrigo (2011); Kim, Kwon and Paik (2016)).

In the mixed effects model setting under CSNI missingness, the likelihood

approach has been proposed by Ibrahim, Chen and Lipsitz (2001) and Gao

(2004) using the Monte Carlo expectation-maximization (EM) algorithm and

the Laplace approximation method, respectively. Both methods provide good

parameter estimation with a full distributional assumption, but computations

are extensive. Recently, Shao and Zhang (2015) proposed a clever solution to
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estimate the regression parameter under CSNI without any auxiliary model as-

sumptions by transforming the model so that random effects are eliminated. This

method works for a general structure of random effects and simplifies computa-

tion dramatically but, due to elimination, the variance component cannot be

estimated.

In this paper we propose methods for linear mixed effects models under

CSNI missingness without correctly specifying the response model. Our strategy

is to replace missing quantities in the full-data objective function with their

unbiased predictors derived using inverse probability weighting and calibration

technique. We apply the proposed approach both to estimating equations and

likelihood functions with a modified E-step. While previous methods require a

full distributional assumption, the proposed method can use assumptions on the

first two moments. The proposed method is robust in a sense that the validity of

the method relies on the CSNI aspect of the response model not on the correct

specification of the functional form. While the proposed estimator does not

require numerical integration, it provides a consistent estimator for the variance

component. Consistency and asymptotic normality of the proposed estimator

are shown along with a consistent variance estimator.

The rest of this paper is organized as follows. In Section 2, we present basic

notations and the existing methods. In Section 3, we introduce the proposed

method and present asymptotic properties. In Section 4, we report on finite

sample properties examined via simulation studies. Section 5 illustrates our

method on a data application.

2. Basic Setup

Let yij be an outcome of interest, xij be a row vector of covariate for the jth

unit (j = 1, . . . , ni) in the ith cluster (i = 1, . . . ,K). Consider the linear mixed

effect models,

yij = xijβ + ai + eij , (2.1)

where β is an unknown regression parameter, random effects ai’s are distributed

with mean zero and variance D, and error eij ’s are conditionally independent

given ai and xij , with E(eij |xij , ai) = 0 and Var(eij |xij , ai) = σ2. The main goal

is to estimate parameters θ = (βT , σ2, D)T . Suppose that all fixed covariates

xij ’s are completely observed but the outcomes yij , j = 1, . . . , ni are subject to

missing. Let δij be the response indicator whose value is one if the outcome yij
is observed, zero, otherwise. Assume that
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P (δij = 1|xij , ai, yij) = P (δij = 1|xij , ai). (2.2)

The mechanism in (2.2) is called cluster-specific nonignorable (CSNI) by Yuan

and Little (2007). The CSNI missingness states that the outcome yij is indepen-

dent of response indicator δij given xij and ai. Yuan and Little (2007) considered

the special case xij = xi. We use the working model,

P (δij = 1|xij , ai) ≡ π(xij , αi; γ) =
exp(αi + xijγ)

1 + exp(αi + xijγ)
, (2.3)

where αi = γ0ai, and (γ0, γ) are unknown parameters. We call it working model

since the validity of the method does not depend on the functional form of π, but

depends only on the CSNI assumption itself. We require that π(xij , αi; γ) > 0

and
∑ni

j=1 δij > 0, and fix π(xij , αi; γ) = 1 if
∑ni

j=1 δij = ni. We postulate the

same cluster-specific factor is responsible for within-cluster correlation in (2.1)

and (2.3). This type of models has been developed as a shared parameter model

(Follmann and Wu (1995)) or a shared random effects model (Gao (2004)).

While imputation and inverse probability weighting approach are popular

under a missing-at-random mechanism due to their own merit, most existing

works under nonignorable missingness utilize the likelihood method. Assuming

both the linear mixed effects model (2.1) and the response model (2.2), a marginal

likelihood function has the form
K∏
i=1

∫ ∫ ni∏
j=1

f(yij |xij , ai)g(δi|xi, αi; γ)φ(ai)dyi,misdai, (2.4)

where f(·|·) denotes the conditional density of yij given xij and ai, δi = (δi1, δi2,

. . . , δini
)T , xi = (xi1, xi2, . . . , xini

)T , yi,mis denotes missing parts of yi = (yi1, . . . ,

yini
), φ(ai) is a density of ai, and g(δi|xi, αi; γ) =

∏ni

j=1 π(xij , αi; γ)δij{1 −
π(xij , αi; γ)}(1−δij). Ibrahim, Chen and Lipsitz (2001) proposed a Monte Carlo

expectation-maximization (EM) algorithm to estimate the unknown parameters.

Maximizing the marginal likelihood function (2.4) using the EM algorithm re-

quires calculating the conditional expectation given observed data,

E(ai|xi, yi,obs, δi) =

∫ ∫ ∏ni

j=1 aif(yij |xij , ai)g(δi|xi, αi; γ)φ(ai)daidyi,mis∫ ∫ ∏ni

j=1 f(yij |xij , ai)g(δi|xi, αi; γ)φ(ai)daidyi,mis
, (2.5)

where yi,obs denotes the observed parts of yi, and

E(yij |xi, yi,obs, δi)

= δijyij + (1− δij)
∫ ∫ ∏ni

j=1 yijf(yij |xij , ai)g(δi|xi, αi; γ)φ(ai)daidyi,mis∫ ∫ ∏ni

j=1 f(yij |xij , ai)g(δi|xi, αi; γ)φ(ai)daidyi,mis
. (2.6)
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Evaluating (2.5) and (2.6) is computationally demanding. Implementing a Monte

Carlo version of the EM algorithm is also computationally extensive because the

Gibbs sampling from this model involves multiple Monte Carlo integrations. An-

other approach is to approximate the marginal likelihood (2.4) using the Laplace

approximation. As Gao (2004) pointed out, accuracy of the Laplace approxima-

tion is questionable, which can cause lack of convergence in practice.

3. Proposed Method

The proposed approach starts from identifying functions with missing data

in the objective function when data are fully observed. The next step is to derive

unbiased predictors of the functions with missing data using inverse probabil-

ity and calibration technique, and to replace them in the full-data estimating

function. Our approach can be applied to estimating equations or likelihood

functions. We first examine the calibration method in estimating the marginal

mean and the required assumptions needed for the validity of the method.

3.1. Calibration method

When the goal is to estimate the marginal mean, say, µ, (
∑K

i=1 ni)
−1∑K

i=1

∑ni

j=1(yij − µ) = 0 provides a consistent estimate. When some values are

missing, Kim, Kwon and Paik (2016) proposed (
∑K

i=1 ni)
−1
∑K

i=1

∑ni

j=1(δij/π̂ij)yij ,

where π̂ij satisfies

E

[
K∑
i=1

{
ni∑
j=1

yij −
ni∑
j=1

(
δij
π̂ij

)
yij

}]
= 0. (3.1)

This approach can be viewed as replacing quantities with missing data,
∑ni

j=1 yij ,

with unbiased predictors,
∑ni

j=1(δij/π̂ij)yij . When π does not depend on random

effects, the usual inverse probability weighting method estimates π from maxi-

mum likelihood. On the surface, the difference between the calibration method

and the inverse probability weighting method in the case of non-clustered data

seems trivial since they only differ in how to estimate auxiliary model π. An

important difference lies in the model assumption. To proceed, we inspect the

calibration condition of Kim, Kwon and Paik (2016) as

E

{
K∑
i=1

ni∑
j=1

yij−
K∑
i=1

ni∑
j=1

(
δij
πij

)
yij

}
=E

[
K∑
i=1

ni∑
j=1

{
1−
(
δij
πij

)}
(xijβ+ai+eij)

]
=0.

(3.2)

Due to CSNI, E[{1−(δij/πij)}eij ] is zero. For E
[∑K

i=1

∑ni

j=1{1−(δij/πij)}(xijβ+
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ai)
]

to be zero, Kim, Kwon and Paik (2016) enforced the constraints

K∑
i=1

ni∑
j=1

δij
π(xij , αi; γ)

xij =

K∑
i=1

ni∑
j=1

xij ,

ni∑
j=1

δij
π(xij , αi; γ)

=

ni∑
j=1

1 ∀i ∈ {1, 2, . . . ,K}. (3.3)

The validity of the inverse probability weighting relies mainly on

E

{
K∑
i=1

ni∑
j=1

(
δij
π̃ij

)
(yij − µ)

}
= 0,

where π̃ij is evaluated at the maximum likelihood estimator (MLE). Therefore

the correct model specification of π is required for valid inference. As for the

calibration method, the validity mainly depends on (3.1). The main requirement

for (3.2) is the CSNI assumption (3.3). To wit, one does not require the correct

specification of the functional form of the response model as long as the data are

CSNI. In this sense, (2.3) is only a working model. If the goal is to estimate the

marginal mean µ, the imputation or outcome model is required to be partially

correct in that only the part regarding the variables xij needs to be correct.

For example, if the true model for outcome yij is xijβ + g(zij) + ai + eij , where

E{g(z)} = 0, and δij is independent of zij given ai and xij , E[{1−(δij/πij)}g(zij)]

is zero. An outcome model misspecified regarding zij , or even omitted zij could

estimate µ consistently. In the regression setting, the conditional model for y

should be correctly specified to estimate the conditional mean even when data

are fully observed. As for the response model, we show in the next section that

the correct specification of π is not required, but only the CSNI assumption is.

Under the working logistic model, (2.3), the calibration conditions reduce to

ψ(γ) =

K∑
i=1

ni∑
j=1

ψij(γ) =

K∑
i=1

ni∑
j=1

{
δij

π̂ij(γ)
− 1

}
xij = 0, (3.4)

where π̂ij(γ) = π{xij , α̂i(γ); γ} and exp(α̂i(γ)) =
∑ni

j=1 δij exp(−xijγ)/(ni −∑ni

j=1 δij). We derive calibration-assisted objective function based on (3.4).

3.2. Calibration-assisted estimating equation

Under model (2.1), V ar(yi|xi) ≡ Vi = σ2Ii + DJi, where Ii and Ji are the

ni× ni identity matrix and the matrix of 1’s, respectively, and V −1
i = aIi + biJi,

where a = σ−2 and bi = −Dσ−2(σ2 + niD)−1. The weighted sum of squares has
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the form
K∑
i=1

(yi−xiβ)TV −1
i (yi−xiβ) =

K∑
i=1

{a(yi−xiβ)T (yi−xiβ)+bi(yi−xiβ)TJi(yi−xiβ)}.

When data are fully observed, consistent estimators for β, σ2, and D can be ob-

tained based on a moment-based estimating equation without any distributional

assumptions,

S(θ) =

K∑
i=1

ST1i(θ)S2i(θ)

S3i(θ)

 , (3.5)

where

S1i(θ) =

ni∑
j=1

(xij − τix̄i)(yij − xijβ),

S2i(θ) =

ni∑
j=1

{
(yij − xijβ)2 − τi(ȳi − x̄iβ)2 − σ2

}
,

S3i(θ) =

ni∑
j=1

{τi(ȳi − x̄iβ)2 −D},

τi =
niD

σ2 + niD
.

Since the expectation of (3.5) equals zero, a solution to the equation S(θ) = 0

is consistent under certain regularity conditions. When there are missing data

and data are missing at random, a naively modified estimating equation using

observed records alone gives a consistent estimate and is the restricted maximum

likelihood estimator (REML). Under CNSI, the estimating function does not

have mean zero and the REML is biased. For example, the expectation of the

estimating function for β,

E

 ni∑
j=1

δij(xij − τix̄i){E(yij |xij , ai, δij)− xijβ}


= E


ni∑
j=1

δij(xij − τix̄i)ai

 6= 0,

as δij depends on ai given xij .

Our strategy is to find an estimating function U(η) that satisfies

E{S(θ)− U(η)} = 0 (3.6)
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under constraints (3.3), where η = (θT , γT )T . The estimating function (3.5) has

components including missing data,
∑ni

j=1 xij(yij − xijβ), x̄i
∑ni

j=1(yik − xikβ),∑ni

j=1(yij − xijβ)2, and {
∑ni

j=1(yij − xijβ)}2. Under constraints (3.3), we can

verify that

E

x̄i
ni∑
j=1

(yij − xijβ)

 = E

x̄i
ni∑
j=1

δij
π̂ij(γ)

(yij − xijβ)

 , (3.7)

E


ni∑
j=1

(yij − xijβ)2

 = E


ni∑
j=1

δij
π̂ij(γ)

(yij − xijβ)2

 . (3.8)

For
∑ni

j=1 xij(yij −xijβ) and {
∑ni

j=1(yij −xijβ)}2, similar identities do not hold.

We have the following result. The sketch of a proof is given in the supplementary

material.

Lemma 1.

E


ni∑
j=1

xij(yij − xijβ)

 = E


ni∑
j=1

δij
π̂ij

(xij − x̃i)(yij − xijβ)

 , (3.9)

where x̃i = ni
−1
∑ni

j=1 xij {δij/π̂ij(γ)− 1}, and

E


ni∑
j=1

(yij − xijβ)


2 = E


ni∑
j=1

δij
π̂ij(γ)

(yij − xijβ)


2

− Ci(η)

 , (3.10)

where Ci(η) =
∑ni

j=1{δij/π̂2ij(γ)− 1}σ2.

Using (3.7), (3.8), (3.9), and (3.10), we can construct a calibration-assisted

estimating equation U(η) that satisfies (3.6) as

U(η) =

K∑
i=1

ni∑
j=1

{U1ij(η), U2ij(η), U3ij(η)}T , (3.11)

where

U1ij(η) =
δij

π̂ij(γ)
(xij − x̃i)(yij − xijβ)− x̄iτi

δij
π̂ij(γ)

(yij − xijβ),

U2ij(η) =
δij

π̂ij(γ)
(yij − xijβ)2 − τin−2

i ξi(η)− σ2,

U3ij(η) = τin
−2
i ξi(η)−D,

with

ξi(η) =


ni∑
j=1

δij
π̂ij(γ)

(yij − xijβ)


2

− Ci(η),



A ROBUST CALIBRATION-ASSISTED METHOD 1915

and x̃i and Ci(η) defined in (3.9) and (3.10), respectively.

Let Ψ(η) =
∑K

i=1 Ψi(η) =
∑K

i=1{Ui(η), ψi(γ)}T where Ui(η) =
∑ni

j=1 Uij(η)

and ψi(γ) =
∑ni

j=1 ψij(γ). Let η̂ be the solution of Ψ(η) = 0. Computations can

be carried out by using Newton-Raphson algorithm from the calibration-assisted

estimating equation. The method can be applied when covariates are either

continuous, categorical, or a mixture of them. The proposed method does not

require numerical integration. Furthermore, it does not require π to be correctly

specified but only that CSNI holds. Consistency and asymptotic normality of

the calibrated parameter estimator η̂ can be obtained mainly due to (3.6). Let

η∗ satisfy E{Ψ(η∗)} = 0. Under CSNI and (2.1), η∗ = (θT0 , γ
∗T )T , where θ0 is

the true parameter, and γ∗ satisfies E{ψ(γ)} = 0. Then by Taylor’s expansion

we have

K1/2(η̂ − η∗) = K−1/2
K∑
i=1

i(η∗)−1Ψi(η
∗) + op(1),

where N =
∑K

i=1 ni and

i(η) = E

{
− 1

K

∂Ψ(η)

∂η

}
.

Under regularity conditions, the Ψi(η
∗) = {U1i(η

∗), U2i(η
∗), U3i(η

∗), ψi(γ
∗)}T ’s

are independently distributed as normal with mean zero. This gives us that

K1/2(η̂ − η∗) is asymptotically normal with mean zero and variance, V1 ≡ K−1∑K
i=1E[{i(η∗)−1Ψi(η

∗)}⊗2], which can be consistently estimated by K−1∑K
i=1{̂i(η̂)−1Ψi(η̂)}⊗2, where î(η) = −K−1

∑K
i=1 ∂Ψi(η)/∂η.

Theorem 1. Suppose η̂ is the solution of Ψ(η) = 0, and assume that {n1, . . . , nK}
satisfies

K−1
∑K

i=1 n
2
i

(K−1
∑K

i=1 ni)
2

= O(1), (3.12)

∑K
i=1 n

2+δ
i

(
∑K

i=1 n
2
i )

(2+δ)/2
= o(1), (3.13)

for some δ > 0, as K → ∞. Under some regularity conditions, K1/2(η̂ − η∗) is

asymptotically normally distributed with mean zero and variance V1 as K →∞,

where V1 can be consistently estimated by the sandwich variance K−1
∑K

i=1{̂i(η̂)−1

Ψi(η̂)}⊗2, with B⊗2 = BBT .

Condition (3.12) roughly states that max1≤i≤K ni = O(K−1/2N), where N =∑K
i=1 ni. Condition (3.13) is essentially a Liapounov condition for the Central
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Limit Theorem. It means that no single ni dominates the others in the asymptotic

sense. Especially, the result holds when we do not make a full distributional

assumption on eij .

3.3. Likelihood method with EM algorithm

We consider the case of a full distributional assumption with likelihood given

by (2.4) when f(·|·) and φ(·) are normal. When there are no missing data in y,

the EM algorithm treats (y, a) as full data, (y) as observed data, and (a) as

missing data. The M-step is to solve W (θ) = 0, where

W (θ) =


∑K

i=1{
∑ni

j=1 xij(yij − xijβ)−
∑ni

j=1 xijE(ai|xi, yi)}T∑K
i=1

∑ni

j=1E{(yij − xijβ − ai)2 − σ2|xi, yi}∑K
i=1E(a2i −D|xi, yi)


=


∑K

i=1W1i(η)∑K
i=1W2i(η)∑K
i=1W3i(η)

 . (3.14)

When ni = n for all i, W is equivalent to S. When ni varies across clus-

ters, (W2i,W3i) differs from (S2i, S3i). When data are missing, E(ai|xi, yi) and

E(a2i |xi, yi) contain missing data and cannot be evaluated. When data are miss-

ing at random, the E-step is to evaluate E(ai|xi, yi,obs), which has a closed form,

but when data are CSNI missing, E(ai|xi, yi,obs, δi) and E(yij |xi, yi,obs, δi) need

to be evaluated according to (2.5) and (2.6). Instead of evaluating them, our

strategy is to replace E(ai|xi, yi) and E(a2i |xi, yi) with their unbiased predic-

tors: to modify the E-step by imputing the unbiased predictors of E(ai|xi, yi)
and E(a2i |xi, yi) instead of evaluating E(api |xi, yi,obs, δi) and E(ypij |xi, yi,obs, δi),
p = 1, 2. This avoids numerical integration when lack of accuracy can lead to

computational instability. We have E(ai|xi, yi) = D1Ti V
−1
i (yi − µi), and let

Ẽ(ai|xi, yi, δi)=D1Ti V
−1
i ∆i(yi − xiβ)=τin

−1
i

ni∑
k=1

δik
π̂ik(γ)

(yik − xikβ),

where ∆i is a diagonal matrix with the jth element δij/π̂ij(γ). Using (3.7) through

(3.10), we find

E

{
ni∑
j=1

xijE(ai|xi, yi)

}
= E

{
ni∑
j=1

xijẼ(ai|xi, yi,obs, δi)

}
,

and an unbiased predictor of E(a2i |xi, yi). After replacing them in (3.14), the

resulting M-step with the modified E-step provides the equations
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Q(η) =

K∑
i=1

{Qi(η)}T =

K∑
i=1

{Q1i(η), Q2i(η), Q3i(η)}T ,

where

Q1i(η) =

ni∑
j=1

(xij − x̃i)
δij

π̂ij(γ)
(yij − xijβ)−

ni∑
j=1

xijẼ(ai|xi, yi, δi),

Q2i(η) =

ni∑
j=1

δij
π̂ij(γ)

(yij − xijβ)2 − (2τi − τ2i )n−1
i ξi(η)− niσ2(1− n−1

i τi),

Q3i(η) = τi

ni∑
j=1

{
τin

−2
i ξi(η)−D

}
,

ξi(η) =


ni∑
j=1

δij
π̂ij(γ)

(yij − xijβ)


2

− Ci(η),

and x̃i, ξ(η), and Ci(η) are defined in Section 3.2. Let Ξ(η) =
∑K

i=1 Ξi(η) =∑K
i=1{Qi(η), ψi(γ)}T , η̃ be the solution of Ξ(η) = 0, CK ≡ K−1

∑K
i=1E[{i∗(η̃)−1

Ξi(η̃)}⊗2], and i∗(η) = E
{
−K−1∂Ξ(η)/∂η

}
.

Theorem 2. Suppose that η̃ is the solution of Ξ(η) = 0. Under the conditions

in Theorem 1, K1/2(η̃ − η∗) is asymptotically normally distributed with mean

zero and variance V2 as K → ∞, where V2 can be consistently estimated by

the sandwich variance formula K−1
∑K

i=1{̂i∗(η̃)−1Ξi(η̃)}⊗2, with î∗(η) = −K−1∑K
i=1 ∂Ξi(η)/∂η.

4. Simulation Studies

We conducted simulation studies to evaluate finite sample performance of the

proposed estimator. We set the outcome model as yij = 0.25 + 0.5xij + ai + eij
and the response model as h(P (δij = 1|xij , ai)) = γ0 + 0.6ai + xij) where h(·)
is the inverse of the logistic or the complementary log-log link function, and

γ0 = 0.4 or 1.0 for logistic or complementary log-log link function, respectively.

The complementary log-log function is used to evaluate the effect of misspecified

response model. We generated xij from U(−0.5, 0.5), and eij and ai from the

standard normal. The number of clusters K was 400 or 200, and the maximum

number of clusters, M , was 20 or 10. The overall response probability was 71.4%

or 74.4% for the logistic or complementary log-log link function, respectively.

We compared four estimators, (i) REML using the full data, (ii) REML using

the observed data, (iii) the proposed estimator from Section 3.2, and (iv) the
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Table 1. Three estimators with their bias, mean squared error, and coverage probability
based on 1,000 Monte Carlo samples under CSNI when the true response model function
is logistic. The number of clusters and cluster sizes are in parentheses.

Bias (×102) MSE (×103) CP
FUL COM EE FUL COM EE FUL COM EE

LOG(400, 20)
INT 0.02 1.48 0.06 2.64 2.92 2.74 0.941 0.934 0.944
β 0.05 −0.80 0.05 1.47 2.18 2.26 0.955 0.947 0.963
D −0.68 −4.86 −0.74 5.82 7.97 6.03 0.930 0.871 0.935
σ2 −0.04 0.17 −0.06 0.25 0.39 0.40 0.953 0.944 0.950

LOG(400, 10)
INT 0.13 2.93 0.11 2.60 3.56 2.82 0.953 0.923 0.954
β 0.16 −1.49 0.16 3.33 5.18 5.48 0.944 0.945 0.944
D −0.51 −5.14 −0.54 5.96 8.56 6.65 0.943 0.878 0.942
σ2 0.04 0.47 0.03 0.55 0.87 0.93 0.942 0.949 0.944

LOG(200, 20)
INT −0.35 1.14 −0.29 5.08 5.30 5.26 0.949 0.944 0.948
β 0.09 −0.55 0.29 3.00 4.50 4.92 0.956 0.951 0.948
D −0.46 −4.75 −0.59 11.46 13.63 12.14 0.929 0.890 0.928
σ2 −0.05 0.17 −0.07 0.51 0.77 0.80 0.946 0.947 0.945

LOG(200, 10)
INT 0.27 3.13 0.30 5.67 6.72 5.90 0.943 0.938 0.940
β −0.14 −1.67 0.05 6.46 9.76 10.48 0.957 0.949 0.952
D −0.66 −5.42 −0.85 11.37 15.76 13.55 0.944 0.885 0.933
σ2 −0.05 0.31 −0.15 1.15 1.83 1.91 0.940 0.944 0.941

MSE, Mean squared error; CP, Coverage probability; FUL, Full; COM, Com-
plete; EE, Estimating equation; LOG, Logistic; INT, Intercept.

proposed estimator from the likelihood method with the modified E-step given

Section 3.3. We compared the bias, simulation mean squared error, and coverage

probability based on 1,000 Monte Carlo replications. The REML based on the

observed data is valid when data are missing at random.

Tables 1 and 2 show the results under CSNI missingness when ni = n for

all i. Since ni = n, the two proposed estimators are identical and we report re-

sults for the three estimators. All the estimators, except the ones using observed

data, had negligible bias and nominal coverage probabilities as anticipated. The

REML based on the observed records only had non-negligible bias in D, the vari-

ance component of random effects, and coverage probabilities were significantly

different from the nominal value. The proposed estimator had negligible bias

and coverage probabilities close to the nominal value; this remained true when

the true underlying response model was different from the working model.
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Table 2. Three estimators with their bias, mean squared error, and coverage probability
based on 1,000 Monte Carlo samples under CSNI when the true response model function
is complmentary log-log. The number of clusters and cluster sizes are in parentheses.

Bias (×102) MSE (×103) CP
FUL COM EE FUL COM EE FUL COM EE

CLL(400, 20)
INT −0.12 2.08 −0.14 2.66 3.08 2.73 0.945 0.930 0.948
β −0.21 −1.67 −0.29 1.53 2.36 2.35 0.957 0.938 0.959
D 0.10 −6.64 0.12 5.31 9.68 5.88 0.954 0.806 0.953
σ2 −0.00 0.33 −0.03 0.25 0.36 0.39 0.953 0.945 0.937

CLL(400, 10)
INT 0.17 4.42 0.13 2.75 4.75 2.96 0.943 0.865 0.945
β 0.02 −2.73 −0.07 3.77 5.90 5.83 0.936 0.913 0.932
D −0.11 −7.77 −0.22 6.32 12.40 7.78 0.945 0.788 0.940
σ2 −0.10 0.61 −0.06 0.55 0.85 0.90 0.947 0.938 0.941

CLL(200, 20)
INT −0.33 1.88 −0.36 5.57 5.76 5.61 0.937 0.938 0.947
β 0.14 −1.29 0.10 3.24 4.58 4.88 0.938 0.942 0.955
D −0.63 −7.32 −0.56 10.91 15.86 11.65 0.919 0.834 0.936
σ2 −0.08 0.32 -0.02 0.50 0.71 0.82 0.955 0.956 0.945

CLL(200, 10)
INT 0.22 4.57 0.25 5.38 7.49 5.67 0.950 0.922 0.949
β −0.13 −2.75 −0.06 6.92 10.73 10.93 0.951 0.943 0.945
D −0.49 −8.26 -0.50 11.92 18.19 13.84 0.936 0.845 0.949
σ2 −0.08 0.61 −0.17 1.12 1.74 1.79 0.945 0.940 0.952

CLL, Complementary log-log; Others are defined in Table 1.

Tables 3 and 4 feature results when the ni were generated from a binomial

distribution. Since ni varies across clusters, the two proposed estimators are not

identical, and we report results for the four estimators. As in Tables 1 and 2, the

proposed estimators had negligible bias and coverage probabilities close to nom-

inal value even when the true underlying response model was different from the

working model. The two proposed estimators showed similar performance, but

the simulation variances of D from the likelihood-based estimates in Section 3.3

were slightly smaller than those based on the estimating equation of Section 3.2,

especially when n is small. Interestingly, all the estimators exhibited negligible

bias and coverage probabilities close to the nominal value for the variance of the

error term σ2.

Tables 5 and 6 show the results when ai was distributed as a Gaussian

mixture: the distribution function F was given by F (x) =
∑2

i=1wiPi(x), where

w1 = 1/3, w2 = 2/3, and P1(x), P2(x) were univariate normal with means
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Table 3. Four estimators with their bias, mean squared error, and coverage probability
with varying ni based on 1,000 Monte Carlo samples under CSNI when the true response
model function is logistic. The number of clusters and cluster sizes are in parentheses.

Bias (×102) MSE (×103) CP
FUL COM EE EM FUL COM EE EM FUL COM EE EM

LOG(400, 20)
INT 0.18 1.72 0.15 0.15 2.60 2.92 2.68 2.68 0.945 0.932 0.945 0.945
β 0.03 −0.74 0.12 0.12 1.68 2.40 2.49 2.49 0.954 0.962 0.957 0.957
D −0.34 −4.38 −0.30 −0.28 5.61 7.49 5.95 5.92 0.932 0.870 0.935 0.940
σ2 −0.07 0.23 −0.06 −0.06 0.30 0.46 0.47 0.47 0.952 0.938 0.936 0.936

LOG(400, 10)
INT 0.27 3.43 0.31 0.31 2.94 4.22 3.16 3.16 0.942 0.889 0.940 0.940
β 0.41 −1.16 0.57 0.57 3.58 5.33 5.68 5.68 0.952 0.953 0.952 0.952
D −0.58 −5.25 −0.58 −0.53 5.41 8.61 6.46 6.48 0.963 0.886 0.955 0.955
σ2 0.06 0.56 0.05 0.05 0.64 1.02 1.06 1.06 0.941 0.940 0.931 0.931

LOG(200, 20)
INT −0.15 1.49 −0.10 −0.10 4.92 5.13 4.97 4.97 0.950 0.945 0.952 0.952
β 0.14 −0.61 0.32 0.32 3.51 5.34 5.68 5.68 0.949 0.945 0.947 0.948
D −0.38 −4.79 −0.48 −0.45 11.26 13.58 12.28 12.28 0.942 0.885 0.930 0.936
σ2 −0.00 0.15 −0.10 −0.10 0.62 0.88 0.92 0.92 0.936 0.948 0.949 0.949

LOG(200, 10)
INT 0.13 3.20 0.08 0.08 5.47 6.64 5.73 5.73 0.947 0.924 0.946 0.946
β 0.46 −1.24 0.49 0.49 7.64 10.76 12.09 12.09 0.940 0.949 0.945 0.945
D −0.64 −5.29 −0.66 −0.70 13.15 16.76 15.08 15.04 0.929 0.887 0.922 0.922
σ2 −0.06 0.24 −0.28 −0.28 1.33 1.95 2.03 2.03 0.945 0.943 0.940 0.943

EM, Expectation-Maximization; Others are defined in Table 1 and 2.

−10/3 and 5/3, and variance 1. The proposed methods produced estimators

with negligible bias. This result was anticipated for the method proposed in

Section 3.2 since it does not depend on normality of the random effects. The

method proposed in Section 3.3 does depend on normality, but the results were

robust when normality of random effects was violated. The variance estimate for

σ2 depends on the assumption of the fourth moment, but the bias of the variance

estimate seems small, exhibiting coverage probabilities close to nominal.

Tables 7 and 8 exhibit results when the covariates contained both contin-

uous and discrete components. We set the outcome model as yij = 0.25 +

0.25x1ij+0.25x2ij+ai+eij and the response model as h(P (δij = 1|x1ij , x2ij , ai)) =

γ0 + 0.6ai + 0.5x1ij + 0.5x2ij , where h(·) was the inverse of the logistic or the

complementary log-log link function and γ0 = 0.4 and 1.0 for logistic and comple-

mentary log-log link function, respectively. We generated x1ij from U(−0.5, 0.5)

and x2ij from two supporting points {−0.5, 0.5} and the eij and ai as standard
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Table 4. Four estimators with their bias, mean squared error, and coverage probability
with varying ni based on 1,000 Monte Carlo samples under CSNI when the true response
model function is complmentary log-log. The number of clusters and cluster sizes are in
parentheses.

Bias (×102) MSE (×103) CP
FUL COM EE EM FUL COM EE EM FUL COM EE EM

CLL(400, 20)
INT 0.20 2.68 0.20 0.20 2.51 3.23 2.61 2.61 0.947 0.922 0.950 0.950
β 0.01 −1.55 0.07 0.07 1.93 2.89 2.89 2.89 0.937 0.928 0.945 0.945
D −0.51 −7.27 −0.50 −0.53 5.45 10.61 5.99 5.98 0.939 0.799 0.944 0.942
σ2 0.09 0.49 0.09 0.09 0.26 0.39 0.40 0.40 0.960 0.956 0.959 0.959

CLL(400, 10)
INT 0.25 5.00 0.25 0.25 2.92 5.43 3.14 3.14 0.946 0.841 0.943 0.943
β −0.08 −2.99 0.21 0.21 3.88 6.33 5.94 5.94 0.942 0.914 0.947 0.947
D −0.58 −8.50 −0.57 −0.60 6.68 13.55 8.17 8.09 0.927 0.768 0.929 0.928
σ2 0.05 0.86 0.07 0.08 0.63 0.95 0.95 0.95 0.956 0.945 0.948 0.952

CLL(200, 20)
INT 0.00 2.56 0.09 0.09 5.14 5.91 5.41 5.41 0.942 0.924 0.942 0.942
β 0.37 −1.42 0.10 0.10 3.57 4.98 5.54 5.54 0.947 0.945 0.949 0.949
D −0.37 −7.29 −0.54 −0.52 10.53 15.51 12.09 12.06 0.943 0.847 0.929 0.929
σ2 −0.13 0.25 −0.14 −0.14 0.58 0.82 0.93 0.94 0.956 0.950 0.938 0.942

CLL(200, 10)
INT 0.37 5.18 0.43 0.43 5.61 8.36 6.01 6.01 0.947 0.886 0.954 0.954
β 0.22 −2.81 0.28 0.28 7.42 11.24 10.72 10.72 0.944 0.947 0.960 0.960
D −0.78 −8.97 −0.88 −0.92 12.13 20.04 14.64 14.58 0.939 0.828 0.935 0.934
σ2 −0.03 0.83 0.03 0.03 1.23 1.94 2.11 2.10 0.953 0.948 0.934 0.936

See Table 1, 2, and 3.

normals. The results show that the proposed estimators have negligible bias and

coverage probabilities close to nominal when covariates are both continuous and

discrete.

5. The 2006 State Inpatient Database

As total health care spending in the United States soared to 17% of GDP,

the cost of unscheduled rehospitalization within 1 month from previous discharge

is a major healthcare problem, and identifying factors related to the cost of

rehospitalization could be of great interest to policy makers (Kim et al. (2015)).

Kim et al. (2015) described the inpatient database in the state of California in

year 2006, which is a part of the family of databases and software tools developed

for the Healthcare Cost and Utilization Project. The state inpatient database

includes inpatient discharge records with various demographic, socioeconomic,
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Table 5. Four estimators with their bias, mean squared error, and coverage probability
with varying ni based on 1,000 Monte Carlo samples under CSNI when the true response
model function is logistic. The number of clusters and cluster sizes are in parentheses.

Bias (×102) MSE (×103) CP
FUL COM EE EM FUL COM EE EM FUL COM EE EM

LOG(400, 20)
INT −0.09 1.86 −0.08 −0.08 3.01 3.46 3.13 3.13 0.946 0.937 0.940 0.940
β 0.13 −0.83 0.25 0.25 1.66 2.45 2.64 2.64 0.957 0.949 0.953 0.953
σ2 −0.11 0.88 −0.04 −0.04 0.29 0.50 0.46 0.46 0.950 0.933 0.947 0.946

LOG(400, 10)
INT 0.24 4.18 0.26 0.26 3.17 5.01 3.32 3.32 0.939 0.885 0.944 0.944
β −0.17 −2.37 −0.26 −0.26 3.59 5.95 5.63 5.63 0.947 0.939 0.957 0.957
σ2 −0.13 1.76 −0.14 −0.14 0.62 1.30 1.03 1.02 0.948 0.917 0.943 0.945

LOG(200, 20)
INT −0.61 1.30 −0.65 −0.65 6.42 6.74 6.62 6.62 0.942 0.932 0.941 0.941
β −0.11 −1.23 −0.18 −0.18 3.65 5.36 5.74 5.74 0.949 0.947 0.939 0.939
σ2 −0.04 0.86 −0.12 −0.12 0.54 0.89 0.86 0.86 0.956 0.949 0.957 0.958

LOG(200, 10)
INT −0.05 4.06 0.11 0.11 6.25 8.25 6.73 6.73 0.953 0.909 0.946 0.946
β −0.27 −2.53 −0.41 −0.41 8.10 12.01 12.68 12.68 0.943 0.936 0.947 0.947
σ2 0.04 1.93 0.08 0.09 1.34 2.46 2.13 2.12 0.940 0.930 0.929 0.932

See Table 1 and 3.

Table 6. Four estimators with their bias, mean squared error, and coverage probability
with varying ni based on 1,000 Monte Carlo samples under CSNI when the true response
model function is complmentary log-log. The number of clusters and cluster sizes are in
parentheses.

Bias (×102) MSE (×103) CP
FUL COM EE EM FUL COM EE EM FUL COM EE EM

CLL(400, 20)
INT −0.06 3.16 −0.09 −0.09 2.97 4.06 3.06 3.06 0.953 0.893 0.952 0.952
β −0.22 −1.88 −0.00 −0.00 1.86 2.97 3.02 3.02 0.941 0.928 0.949 0.949
σ2 −0.03 1.29 −0.09 −0.09 0.30 0.59 0.48 0.48 0.949 0.909 0.943 0.943

CLL(400, 10)
INT 0.18 6.51 0.16 0.16 3.00 7.53 3.27 3.27 0.954 0.777 0.948 0.948
β 0.21 −3.40 0.19 0.19 3.59 6.32 5.80 5.80 0.961 0.925 0.956 0.956
σ2 0.04 2.77 0.01 0.01 0.64 1.71 0.98 0.98 0.943 0.862 0.951 0.956

CLL(200, 20)
INT −0.10 3.17 −0.08 −0.08 5.96 7.00 6.04 6.04 0.951 0.930 0.946 0.946
β −0.02 −1.79 0.02 0.02 3.42 5.19 5.70 5.70 0.951 0.942 0.944 0.944
σ2 −0.05 1.37 −0.03 −0.03 0.55 1.00 0.91 0.91 0.954 0.929 0.947 0.947

CLL(200, 10)
INT 0.23 6.56 0.19 0.19 6.17 10.69 6.56 6.56 0.951 0.864 0.951 0.951
β 0.45 −3.19 0.46 0.46 7.59 12.01 11.87 11.87 0.943 0.926 0.953 0.953
σ2 −0.04 2.77 0.09 0.10 1.28 2.76 2.09 2.09 0.941 0.910 0.943 0.943

See Table 1, 2, and 3.



A ROBUST CALIBRATION-ASSISTED METHOD 1923

Table 7. Four estimators with their bias, mean squared error, and coverage probability
with varying ni based on 1,000 Monte Carlo samples under CSNI when the true response
model function is logistic. The number of clusters and cluster sizes are in parentheses.

Bias (×102) MSE (×103) CP
FUL COM EE EM FUL COM EE EM FUL COM EE EM

LOG(400, 20)
INT −0.07 1.47 −0.09 −0.09 2.55 2.80 2.64 2.64 0.952 0.938 0.947 0.947
β1 −0.01 −0.55 −0.03 −0.03 1.78 2.59 2.70 2.70 0.953 0.948 0.952 0.952
β2 −0.00 −0.27 0.19 0.19 0.54 0.84 0.90 0.90 0.950 0.941 0.946 0.946
D 0.08 −1.68 0.06 0.08 5.50 6.01 5.95 5.99 0.959 0.939 0.947 0.950
σ2 −0.09 −0.03 −0.12 −0.12 0.29 0.39 0.43 0.43 0.947 0.959 0.958 0.958

LOG(400, 10)
INT 0.03 3.16 0.09 0.09 2.70 3.79 2.87 2.87 0.945 0.904 0.945 0.945
β1 −0.25 −1.17 −0.42 −0.42 3.84 5.57 6.07 6.07 0.943 0.940 0.939 0.938
β2 0.05 −0.90 −0.08 −0.08 1.20 1.80 1.96 1.96 0.953 0.953 0.953 0.953
D −0.32 −3.37 −0.34 −0.34 6.20 7.83 7.35 7.29 0.938 0.912 0.945 0.945
σ2 −0.08 0.06 −0.14 −0.14 0.63 0.88 0.94 0.94 0.948 0.948 0.952 0.954

LOG(200, 20)
INT −0.16 1.46 −0.09 −0.09 5.28 5.47 5.35 5.35 0.947 0.945 0.947 0.947
β1 0.22 −0.11 0.35 0.35 3.67 5.35 5.72 5.72 0.946 0.947 0.947 0.947
β2 0.15 −0.40 0.05 0.05 1.23 1.75 1.86 1.86 0.938 0.938 0.939 0.940
D −0.30 −2.18 −0.42 −0.41 10.75 11.75 11.91 11.78 0.943 0.925 0.932 0.934
σ2 −0.16 −0.17 −0.21 −0.21 0.54 0.81 0.87 0.87 0.954 0.953 0.949 0.949

LOG(200, 10)
INT 0.15 3.30 0.22 0.22 6.15 7.33 6.44 6.44 0.937 0.915 0.944 0.944
β1 0.33 −0.71 0.02 0.02 7.91 10.88 11.88 11.88 0.930 0.947 0.946 0.946
β2 −0.33 −1.42 −0.62 −0.62 2.47 3.82 3.92 3.92 0.946 0.939 0.948 0.948
D −0.37 −3.53 −0.40 −0.43 11.83 13.88 13.79 13.66 0.929 0.910 0.925 0.930
σ2 −0.13 0.12 −0.07 −0.07 1.31 1.92 2.09 2.09 0.938 0.948 0.933 0.938

See Table 1 and 3.

and clinical variables. The subjects are patients aged 50 or older who were

discharged alive from acute care hospitals between April and September during

the year and who experienced unscheduled rehospitalizations within 30 days.

Details on the data are available from the website (URL: https://www.hcup-us.

ahrq.gov), Kim et al. (2015), and Kim, Paik and Kim (2016).

In the database, 59,566 subjects are nested in 353 hospitals and the cluster

size ni varies from 1 to 930 (
∑K

i=1 ni = 59,566, K = 353). The outcome of

the analysis is the cost incurred from the rehospitalization in U.S. dollars($).

The number of patients with observed outcome variable was 51,396, yielding an

overall missing rate of 13.8%, and the missing proportions across the hospital

levels ranged from 0% to 98.3%. Moreover, 327 over 353 hospitals had missing

https://www.hcup-us.ahrq.gov
https://www.hcup-us.ahrq.gov
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Table 8. Four estimators with their bias, mean squared error, and coverage probability
with varying ni based on 1,000 Monte Carlo samples under CSNI when the true response
model function is complmentary log-log. The number of clusters and cluster sizes are in
parentheses.

Bias (×102) MSE (×103) CP
FUL COM EE EM FUL COM EE EM FUL COM EE EM

CLL(400, 20)
INT 0.03 2.45 0.06 0.06 2.60 3.15 2.62 2.62 0.952 0.932 0.952 0.952
β1 −0.19 −1.05 −0.32 −0.32 1.76 2.48 2.70 2.70 0.955 0.952 0.961 0.961
β2 −0.17 −1.04 −0.30 −0.30 0.55 0.90 0.88 0.88 0.960 0.935 0.957 0.957
D −0.48 −3.69 −0.40 −0.43 5.69 7.04 6.32 6.29 0.940 0.896 0.945 0.944
σ2 0.03 0.16 0.03 0.03 0.27 0.38 0.42 0.42 0.965 0.955 0.956 0.956

CLL(400, 10)
INT 0.18 4.72 0.11 0.11 2.97 5.21 3.13 3.13 0.934 0.844 0.937 0.937
β1 −0.19 −1.61 −0.20 −0.20 3.77 5.50 5.97 5.97 0.942 0.938 0.944 0.944
β2 −0.02 −1.51 −0.10 −0.10 1.39 2.09 2.05 2.05 0.937 0.919 0.947 0.947
D −0.49 −5.76 −0.31 −0.28 6.54 10.31 8.28 8.24 0.943 0.841 0.919 0.923
σ2 −0.11 0.24 −0.11 −0.12 0.60 0.90 0.96 0.96 0.948 0.944 0.944 0.945

CLL(200, 20)
INT −0.31 2.12 −0.29 −0.29 5.48 5.82 5.58 5.58 0.941 0.936 0.939 0.939
β1 −0.12 −0.76 0.04 0.04 3.79 5.31 5.88 5.88 0.943 0.942 0.943 0.943
β2 0.16 −0.64 0.08 0.07 1.23 1.66 1.83 1.83 0.951 0.950 0.951 0.951
D 0.67 −2.69 0.58 0.60 11.36 12.08 12.53 12.44 0.946 0.913 0.942 0.942
σ2 −0.08 0.03 −0.06 −0.06 0.64 0.81 0.89 0.89 0.937 0.948 0.949 0.949

CLL(200, 10)
INT −0.14 4.44 −0.15 −0.15 5.22 7.27 5.58 5.58 0.955 0.914 0.957 0.957
β1 −0.20 −1.55 −0.01 −0.01 7.32 10.11 11.19 11.19 0.954 0.951 0.950 0.949
β2 0.05 −1.59 −0.23 −0.23 2.54 3.88 4.00 4.00 0.947 0.940 0.940 0.940
D −1.21 −6.50 −1.19 −1.23 12.18 16.96 15.28 15.17 0.933 0.881 0.924 0.930
σ2 −0.20 0.07 −0.37 −0.36 1.24 1.83 1.98 1.98 0.948 0.954 0.948 0.950

See Table 1, 2, and 3.

proportions less than 5% or greater than 95%. Figure 1 shows the heatmaps of

mean of the log-transformed rehospitalization care cost in U.S. dollars($) and its

missing rates according to counties of state Califormia.

We treated each hospital as a cluster and patients as analysis units. We

set the log-transformed rehospitalization care cost in U.S. dollars ($) as y, and

Sex, Race, Age, Income status, and Insurance status as covariates, x. We fit the

response model using x and random effects with the logistic model. The likelihood

ratio test at the boundary of parameter space for the variance component of the

random effect being zero was significant, suggesting that data may not be missing

at random. We assumed the linear mixed effect model (2.1) and used the working
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Table 9. Factors predicting rehospitalization cost (logarithm in US dollar) with esti-
mates, standard errors, and p-value using 2006 California inpatient database.

Estimates Standard error p-value
COMP EE EM COMP EE EM COMP EE EM

Intercept 9.121 9.145 9.144 0.0207 0.0327 0.0322 < 10−3 < 10−3 < 10−3

Sex
Male . . . . . . . . .

Female −0.050 −0.045 −0.045 0.0083 0.0127 0.0127 < 10−3 < 10−3 < 10−3

Race
White . . . . . . . . .
Black 0.057 −0.003 −0.004 0.0172 0.0340 0.0340 0.001 0.465 0.454

Hispanic 0.001 0.001 0.001 0.0126 0.0245 0.0245 0.489 0.476 0.476
Others 0.046 0.103 0.102 0.0162 0.0438 0.0439 0.002 0.010 0.010

Age
50-59 . . . . . . . . .
60-69 0.047 0.015 0.015 0.0139 0.0260 0.0258 < 10−3 0.286 0.285
70-79 0.007 −0.022 −0.022 0.0156 0.0265 0.0262 0.324 0.203 0.202
> 80 −0.079 −0.128 −0.128 0.0158 0.0332 0.0329 < 10−3 < 10−3 < 10−3

Income
High −0.001 0.009 0.008 0.0115 0.0249 0.0250 0.458 0.358 0.378

Medium . . . . . . . . .
Low −0.027 −0.012 −0.011 0.0123 0.0252 0.0253 0.013 0.313 0.328

Insurance
Medicare . . . . . . . . .
Medicaid 0.019 0.010 0.010 0.0161 0.0187 0.0186 0.122 0.301 0.302

Private −0.113 −0.068 −0.067 0.0146 0.0269 0.0270 < 10−3 0.006 0.006
Others −0.065 −0.079 −0.079 0.0264 0.0299 0.0298 0.007 0.004 0.004

Others include self-pay, no-charge, county indigent programs, charity care, etc.
See Table 1 and 3.

response model (2.3). We tried to fit the model under CSNI by maximizing the

marginal likelihood (2.4) via Laplace approximation. The algorithm did not

converge.

Table 9 shows results for the analysis assuming missing at random and the

proposed method under CSNI missingness. The proposed method under the

assumption of CSNI changed the significance status of such factors as low income

and age, and the estimate for Black race. A careful examination of different

models would be needed to make recommendations for policy changes, and less

computational burden can be a definite advantage in exploring various models.

6. Summary and Discussion

In this study, we proposed a new approach to handle CSNI missingness in
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Figure 1. A heatmap of (Left) mean of the log-transformed rehospitalization care cost
in U.S. dollars($) and (right) missing rate of the cost according to county. In the present
data, no information was recorded for Alpine, Sierra, and Sutter counties.

the context of linear mixed effects models using inverse probability weighting

and calibration technique. The proposed method provides a consistent estimator

with a weaker set of assumptions and simpler computation than previous works.

This work can be extended to the case where conditional independence of eij is

violated and the variance of yi is not of compound symmetry form. The extension

involves a different calibration equation incorporating elements of inverse of the

marginal variance. An extension of the proposed method to generalized linear

mixed effects models is not obvious and calls for future research.

Supplementary Materials

In the supplementary material, we include the proof of the Lemma 1, equa-

tions (3.7) and (3.8), and Theorem 1.
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