
Statistica Sinica 28 (2018), 1285-1305
doi:https://doi.org/10.5705/ss.202016.0286

AN IMPROVED MEASURE FOR LACK OF FIT

IN TIME SERIES MODELS

Thomas J. Fisher and Michael W. Robbins

Miami University and RAND Corporation

Abstract: The correlation structure of time series is of fundamental importance

in diagnostic procedures. The squared autocorrelation function of the residuals of

a fitted model is generally used as a measure of the goodness-of-fit; multivariate

analogues are available for vector time series. As an alternative, we propose a

logarithmic transformation of the determinant of a constructed Toeplitz matrix

containing the typical measure of correlation. We show that the proposed measure

is asymptotically more powerful than the typical measure of correlation (when used

with or without the Ljung–Box correction) in the detection of a variety of residual

dependence structures. The proposed method is shown to have utility when applied

in conjunction with a host of methods used to diagnose the fit of strong and weak

autoregressive moving average models and generalized autoregressive conditional

heteroskedastic models. A simulation study demonstrates the effectiveness of the

proposed method and illustrates its improvement over the existent procedures.

Key words and phrases: Autocorrelation, GARCH, goodness-of-fit, portmanteau,

vector ARMA.

1. Introduction

With the recent explosion in the size and availability of data, accompanied

by an interest in predictive modeling and analytics, the importance of the field

of time series analysis continues to grow. Whether using time series regression

or the Box–Jenkins approach, it is well known that proper modeling of any serial

correlation in a time series is essential for forecasting, and likewise that proper

modeling of the variability is essential for the accuracy of prediction intervals.

Assessing the adequacy of a fitted model is an important diagnostic step in time

series analysis.

A time series is nearly always accompanied by a multitude of associated

series that may provide supplemental information. Consider the possible inter-

related economic indicators, for example. For analysis of multivariate time series,

it is common to assume a series has a stationary (vector) autoregressive moving
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average (VARMA/ARMA) representation. A d-dimensional time series {Xt}
with mean vector µ has a VARMA representation if, for all t ∈ Z,

Xt − µ =

p∑
i=1

Φi (Xt−i − µ) +

q∑
j=1

Θjεt−j + εt, (1.1)

where {εt} is a sequence of mean-zero error vectors, known as the innovations,

with finite covariance Σε. The terms Φi and Θj are d × d matrices of vector

autoregressive and moving average coefficients, respectively, for i = 1, . . . , p and

j = 1, . . . , q, where p is the autoregressive order and q is the order of the moving

average. For d = 1, we have the well-known ARMA model and, in most multi-

variate applications, practitioners use VAR models for ease-of-use and the lack of

uniqueness in a VARMA covariance structure, see Wei (2006). When the innova-

tions are an independent and identically distributed (iid) sequence, the model in

(1.1) is called a strong VARMA; whereas, if the innovations are dependent but

uncorrelated, it is referred to as a weak VARMA.

Assume that
√
n-consistent estimates µ̂, Φ̂1, . . . , Φ̂p, and Θ̂1, . . . , Θ̂q have

been calculated using the observed series {X1, . . .Xn}. From Dunsmuir and

Hannan (1976), such estimates exist under the stated conditions. The adequacy

of the fit is checked based on the serial correlation structure of the fitted residuals,

ε̂1, . . . , ε̂n, calculated to satisfy

ε̂t = (Xt − µ̂)−
p∑
i=1

Φ̂i (Xt−i − µ̂)−
q∑
j=1

Θ̂j ε̂t−j ,

for t = 1, . . . , n. Equivalently, we look to statistically test H0 : no serial corre-

lation remains in the residuals, versus, H1 : serial correlation remains. This can

be accomplished by visually exploring the correlogram or performing a formal

hypothesis test. Our focus here is the latter.

In the case of a weak VARMA process, the residuals are often assumed to

follow a vector generalized autoregressive conditional heteroskedastic (GARCH)

process

εt = H
1/2
t ηt,

where the d×dmatrix Ht is the conditional covariance matrix of εt and ηt is an iid

vector process such that E
(
ηtη

>
t

)
= Id, where Ij denotes the j×j identity matrix

and A> represents the transpose of matrix A. Many parametric formulations

for the matrix process Ht exist and a review can be found in Silvennoinen and

Teräsvirta (2009). When d = 1 (where Ht = ht), this is the GARCH process of

Engle (1982) and Bollerslev (1986),
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ht = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjht−j . (1.2)

Here (1.2) is essentially an ARMA process on ε2t terms. When modeling and

assessing the fit of a GARCH process, one typically concentrates on the square

of the residual series from the (V)ARMA model.

In this article, we explore the problem of goodness-of-fit testing for a fitted

time series. Our primary goal is to introduce a new measure of correlation that is

used to enhance the power of extant test statistics for assessing the goodness-of-fit

for time series models in a wide variety of settings. In Section 2, we introduce the

pertinent methods for measuring serial correlation in a time series and provide

our new, more powerful, measure for serial correlation. Section 3 reviews several

members of the class of so-called portmanteau tests, and introduces analogues

of these tests that are based on the proposed measure of correlation. Section

4 provides simulations showing that the proposed method can provide substan-

tial power increases while retaining type I error rates, and discussion follows in

Section 5.

2. Measures of Correlation

2.1. Traditional measure

The autocovariance function is arguably the foundational tool of time series

analysis. The value of this function realized at lag k in a d-dimensional stationary

time series {Xt} with mean vector µ is given by

Γk(Xt) = E
{

(Xt − µ) (Xt−k − µ)>
}
.

The operand (indicated as Xt above) in this quantity (and in those defined

below) is used to indicate the process over which the quantity is being calculated.

The preferred tool for monitoring intra-series dependence is the autocorrelation

function, defined here using Rk(Xt) = L(Xt)
>Γk(Xt)L(Xt), where L(Xt) is the

lower Cholesky decomposition of Γ−10 (Xt) (the usefulness of other manners of

defining multivariate autocorrelation are discussed at the end of Section 2.2).

When d = 1, these two components are estimated in the typical way,

γ̂k(xt) =
1

n

n∑
t=k+1

(xt − x̄) (xt−k − x̄) and ρ̂k(xt) =
γ̂k(xt)

γ̂0(xt)
,

for sample mean x̄. In the multivariate setting, the estimators are
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Γ̂k(Xt) =
1

n

n∑
t=k+1

(
Xt − X̄

) (
Xt−k − X̄

)>
and

R̂k(Xt) = L̂(Xt)
>Γ̂k(Xt)L̂(Xt), (2.1)

for L̂(Xt), the lower Cholesky decomposition of Γ̂
−1
0 (Xt), and sample mean vector

X̄. For diagnostic procedures, we look at the correlation structure of the fitted

residual series {ε̂t}. To simplify notation, we write ρ̂k = ρ̂k(ε̂t), Γ̂k = Γ̂k(ε̂t), and

R̂k = R̂k(ε̂t), unless otherwise noted.

Since the term ρ̂2k effectively indicates the presence of residual serial corre-

lation at lag k, Box and Pierce (1970) construct a goodness-of-fit statistic for

univariate time series using a sum of the squared sample autocorrelation func-

tion. In that vein, diagnosing the fit of a VARMA model, it is useful to condense

all the terms of the matrix R̂k into a single value that gauges the magnitude of

serial correlations at lag k. Such a quantity can serve as a statistic for testing

whether or not at least one of the elements of Γ̂k (or R̂k) is nonzero. Hosking

(1980) suggests

h̃k = (vecΓ̂k)
>
(
Γ̂
−1
0 ⊗ Γ̂

−1
0

)
vecΓ̂k = (vecR̂k)

>vecR̂k = tr(R̂>k R̂k), (2.2)

where vecA is the columns of matrix A stacked on top of one another, A ⊗ B

is the Kronecker product of matrices A and B, and tr(A) is the trace of matrix

A. With univariate data, h̃k = ρ̂2k; therefore, h̃k is a multivariate generalization

of the measure used by Box and Pierce (1970). For VARMA models, it follows

that nh̃k in (2.2) is asymptotically distributed as a linear combination of d2 iid

χ2
1 random variables, where χ2

ν denotes a chi-squared distribution with ν degrees

of freedom and the coefficients in the combination are the eigenvalues of the

covariance matrix of vecR̂k (see Hosking (1980) and Li and McLeod (1981)).

In moderate sample sizes, the distribution of nh̃k is known to be poorly ap-

proximated by its limiting distribution—test statistics that invoke the measure

can be highly conservative. Ljung and Box (1978) suggest that the performance

can be improved by multiplying the squared correlation by a correction factor

that depends on k. The multivariate analogue of the Ljung–Box corrected mea-

sure is h̃∗k = nh̃k/(n− k); see Hosking (1980). Herein, any statistic that employs

h̃∗k is referred to an LB-type statistic, whereas one that utilizes h̃k is called BP-

type.

For univariate time series, an alternative measure of correlation is given by

the partial autocorrelation function, which measures the remaining correlation
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at lag k after accounting for correlation at lower lags. Monti (1994) justifies

a LB-type correction to the partial autocorrelation–many of the goodness-of-fit

statistics described here can be constructed using this measure as well.

The state-of-the-art for goodness-of-fit testing in time series has advanced

well beyond these findings. Nonetheless, most goodness-of-fit test statistics are

calculated using the classic BP-type or LB-type measure of correlation. We

introduce a new measure that provides more power in detecting serial correlation

while retaining the same asymptotic distribution under the null hypothesis.

2.2. Proposed measure

We propose a block Toeplitz matrix for gauging the magnitude of autocor-

relation at the kth lag within the residuals of a fitted time series. For a lag-k

autocorrelation matrix R̂k, consider

R̃k =

[
Id R̂k

R̂>k Id

]
. (2.3)

Under the null hypothesis of no residual series correlation, the matrix R̃k should

be, for k 6= 0, statistically equivalent to I2d.

Borrowing from the framework of Robbins and Fisher (2015), establishment

of relevant properties regarding R̃k mandates the following lemma. Akin to

Hosking (1980), assume that the observed series {Xt} obeys the model in (1.1)

and that the sequence of innovations has finite variance.

Lemma 1. The eigenvalues of R̃k are symmetric about 1.

Proof. Let R̃0
k = R̃k − I2d and λ be an eigenvalue of R̃0

k with corresponding

eigenvector (e1, e2)
>. Straightforward algebra shows −λ is an eigenvalue with

associated eigenvector (e1,−e2)
>. It follows that the eigenvalues of R̃k are of

the form 1± λ.

To measure the amount of serial correlation at lag k, we propose

r̃k = − log det R̃k, (2.4)

where det A indicates the determinant of a matrix A. We can write R̃k =

L̃>Γ̃kL̃, where L̃ is a 2d×2d block-diagonal matrix with L̂(ε̂t) along the diagonal,

and Γ̃k is a 2d×2d matrix with Γ̂0 on the diagonal and Γ̂k (Γ̂
>
k ) on the upper-right

(lower-left) diagonal. Using this, calculations show that R̃k is positive definite

in practice. This observation and Lemma 1 yield 0 < det R̃k ≤ 1, and therefore

r̃k exists and is nonnegative.
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Theorem 1. Under the hypothesis H0 of no serial correlation, nr̃k and nh̃k from

(2.2) are asymptotically equivalent, with n(r̃k − h̃k) = Op(n
−1). Furthermore,

nr̃m = n(r̃1, . . . , r̃m)> and nh̃m = n(h̃1, . . . , h̃m)>, for m ∈ Z+, share the same

asymptotic joint distribution.

Proof. If λ1, λ2, . . . , λ2d are the eigenvalues of R̃k, then

n

2d∑
i=1

(λi − 1)2 = ntr(R̃>k R̃k)− 2dn

= 2dn+ 2ntr(R̂>k R̂k)− 2dn

= 2nh̃k

where the last equality follows from the results in Hosking (1981). Next,

nr̃k = −n log det R̃k = −n log

2d∏
i=1

λi

= n

2d∑
i=1

{
(λi − 1)2

2
+

(λi − 1)4

4
+

(λi − 1)6

6
+ · · ·

}
= nh̃k +Op(n

−1), (2.5)

where the second equality holds since all odd powers are zero, by Lemma 1.

Following Eaton and Tyler (1991), each λk consistently approximates unity un-

der H0, and the rate of convergence in the third equality comes from the
√
n-

consistency of the parameter estimates. The argument holds for all k = 1, . . . ,m,

whence nr̃m and nh̃m are asymptotically equivalent.

Large values of the correlation measure h̃k indicate the presence of nonzero

lag-k serial correlation. By illustrating that r̃k is at least as large as h̃k and

is, in fact, divergent from it under H1 (as stated formally below), we infer that

goodness-of-fit statistics that utilize our measure are more powerful asymptoti-

cally than those that use the BP-type measure. We focus on fixed alternative

hypothesis models and not local alternatives (although these are briefly discussed

in Section 5), wherein the departure of the true model from the null hypothesis

specification vanishes as n increases. Therefore, we can assume that λj − 1
p−→ c

where c 6= 0 for some j, where
p−→ denotes convergence in probability.

Theorem 2. The measure nr̃k is more powerful than nh̃k at detecting serial cor-

relation at lag k, given that critical values are obtained using the same asymptotic

approximations. Furthermore, the discrepancy between the measures diverge at

the rate of n.
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Proof. Let Ak = n(r̃k − h̃k) which consists of terms of the form n
∑

(λi − 1)l for

even values of l ≥ 4, and therefore, Ak > 0. Under the alternative hypothesis,

λj − 1
p−→ c 6= 0 for some j, it follows that Ak = Op(n).

Although the LB-type measure h̃∗k is designed to offer improved power over

h̃k, we see an analog of Theorem 2 holds when we compare r̃k to h̃∗k.

Corollary 1. The measure nr̃k is more powerful than nh̃∗k at detecting serial

correlation at lag k.

Proof. The LB-type measure h̃∗k has Bk = n(h̃∗k − h̃k) = nk/(n − k)h̃k and,

under H1, h̃k = Op(1), whence Bk = Op(1). Further, n(r̃k − h̃∗k) = Op(n) while

P (r̃k > h̃∗k)→ 1.

Thus the discrepancy between the LB-type and BP-type measures is bounded,

whereas the discrepancy between our measure and the LB-type measure is un-

bounded. This implies that, asymptotically, our measure r̃k offers improvement

in detection capability not offered by the LB-type. However, small sample per-

formance could deviate.

Our measure can be motivated using likelihood ratio principles. Define the

vector Ξt = (ε>t , ε
>
t+1, . . . , ε

>
t+k)

>. When H0 is true, the covariance matrix of Ξt

can be approximated via Ĝ∗k, where Ĝ∗k is a d(k+1)×d(k+1) block diagonal matrix

where the diagonal blocks are each set as Γ̂0. Consider an alternative hypothesis

that allows Γk(εt) 6= 0 while enforcing Γk′(εt) = 0 for k′ 6= k. Therein, the

covariance matrix of Ξt is estimated using Ĝk, which is identical to Ĝ∗k with the

exception that the upper-right d×d block is set to Γ̂k and likewise the lower-left

block is set as Γ̂
>
k . If L̂∗k denotes the lower triangular Cholesky decomposition

of (Ĝ∗k)−1 it follows that L̂∗k is block-diagonal where each diagonal block is given

by L̂(ε̂t). Gaussian likelihood ratio statistics for multivariate data are frequently

set as the ratio of the determinant of a covariance matrix calculated under an

alternative hypothesis and the determinant of a covariance matrix calculated

under the corresponding null hypothesis. We observe

det Ĝk
det Ĝ∗k

= det
(

(L̂∗k)>ĜkL̂
∗
k

)
= det R̃k,

where R̃k is equivalent to a d(k+1)×d(k+1) identity matrix with the top-right

and lower-left blocks replaced with R̂k and R̂>k , respectively. As

det R̃k = det
(
Id − R̂>k R̂k

)
= det R̃k,

we describe r̃k as a likelihood ratio-type statistic.

Autocorrelation matrices in multivariate time series have been defined within
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the literature via expressions differing from (2.1). For instance, Chitturi (1974)

defines residual autocorrelation via R̂
(†)
k = Γ̂kΓ̂

−1
0 . We use arguments posited

by Mahdi and McLeod (2012) to illustrate that if we define R̃
(†)
k , an analogue

of (2.3), by setting the top-left block equal to R̂
(†)
−k (note that Γ̂−k = Γ̂

>
k ) and

the bottom-right block equal to R̂
(†)
k , it holds that det R̃

(†)
k = det R̃k. Therefore,

r̃k may be equivalently calculated by using R̃
(†)
k in place of R̃k. However, if we

calculate residual autocorrelation by using (2.1) with L̂ replaced by a diagonal

matrix that has the inverse of the square root of the diagonal elements of Γ̂0

along its diagonal (this gives the traditional definition of correlation), we cannot

use the calculations that yield r̃k to extract a useful measure.

The Ljung-Box correction can be used in conjunction with our measure of

correlation. For instance, define r̃∗k = nr̃k/(n − k). This measure is asymptot-

ically equivalent to, and more powerful than, each of h̃k, h̃
∗
k, and r̃k. However,

goodness-of-fit statistics based on r̃∗k tend to have a slightly liberal type I error

in finite samples and, as such, further discussion of this measure is withheld until

Section 5.

3. Portmanteau Statistics

Correlation at a single lag is rarely considered when assessing the adequacy

of a fitted time series model. Instead, one looks at the serial correlation at a

multitude of lags; this leads to the so-called portmanteau test. In the ensuing

subsections a wide variety of portmanteau test statistics are illustrated for use

in settings involving independent innovations as well as innovations that are

uncorrelated but dependent.

Each of the statistics outlined, as originally described in the literature, is

constructed using the BP-type or LB-type measure of correlation. We propose

revised versions that substitute our measure of correlation. As a consequence

of Theorem 1, the new statistics have the same asymptotic distribution as their

respective BP-type and LB-type versions. From Theorem 2 and Corollary 1

statistics that employ our measure are more powerful asymptotically than those

that use the BP-type or LB-type measures. The model assumptions required by

each statistic that is defined using our proposed measure are the same as those

required by its BP- or LB-type analogue; this follows from (2.5).

3.1. Independent innovations

In the seminal work of Box and Pierce (1970), the portmanteau test for time
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series goodness-of-fit testing in the univariate setting is introduced. Therein, the

asymptotic distribution of the autocorrelation function is derived for the resid-

uals from a fitted ARMA model with iid innovations. The goodness-of-fit test

statistic of Box and Pierce (1970) is the sum of the first m (where m is the max-

imum lag considered) squared residual autocorrelations. Hosking (1980) extends

the findings of Box and Pierce (1970) to the multivariate setting. Therein, the

foundational BP-type and LB-type portmanteau test statistics are written as

Qm = n

m∑
k=1

h̃k and Q∗m = n

m∑
k=1

h̃∗k, (3.1)

respectively, where h̃k is as defined in (2.2) and h̃∗k = nh̃k/(n− k). Both Qm and

Q∗m follow a χ2
d2(m−p−q) distribution for large n (Hosking (1980)).

A version of Qm that utilizes our measure of correlation is expressed as

Q̃m = n

m∑
k=1

r̃k, (3.2)

where r̃k was defined in (2.4). From Theorem 1 it follows that Q̃m has the same

limit behavior as Qm and Q∗m under H0. Likewise, the improvement in power

offered by Q̃m over Qm and Q∗m follows from Theorem 2 and Corollary 1.

3.2. Uncorrelated but dependent innovations

Over the past three decades, there has been growing interest in nonlinear

time series models, particularly those that model heteroskedasticity, such as the

GARCH model and the Stochastic Volatility model of Taylor (1986). Therein,

the error series is uncorrelated but not independent. Time series which satisfy

(1.1) with a uncorrelated but dependent error structure are said to have a weak

VARMA representation. As shown in Romano and Thombs (1996) and Francq,

Roy and Zaköıan (2005), the methods of Box and Pierce (1970) do poorly under

the assumption of merely uncorrelated innovations.

Many authors have explored this problem by developing methods for un-

correlated innovations. Shao (2011) showed that weighting the Box–Pierce test

provides some robustness to the uncorrelated error problem if the maximum lag

m grows with the sample size. Lobato (2001) provides a statistic for a weak

ARMA fit whose asymptotic null distribution is not standard. A robust ver-

sion of the Box–Pierce measure that includes second moment information of the

residuals is discussed in Lobato, Nankervis and Savin (2001).

In Lobato, Nankervis and Savin (2002) and Francq, Roy and Zaköıan (2005),
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the asymptotic distribution of Qm is found under some weak assumptions that

allows for dependent innovations such as a GARCH process. In those settings, un-

like those in Box and Pierce (1970), the covariance matrix of ρ̂m = (ρ̂1, . . . , ρ̂m)>

does not have a simple form. Those authors present methods to consistently es-

timate the covariance matrix and provide an alternative distribution to the BP-

type test when the innovations are uncorrelated. In Francq and Räıssi (2007),

these results are generalized to the multivariate setting wherein one fits a VAR

model. In such settings, Qm and Q∗m from (3.1) and Q̃m from (3.2) are asymptot-

ically distributed as a linear combination of iid χ2
1 variates where the coefficients

are the eigenvalues of

ΣQm
=
(
Im ⊗Σ

−1/2
ε ⊗Σ

−1/2
ε

)
Σγ

(
Im ⊗Σ

−1/2
ε ⊗Σ

−1/2
ε

)
.

Recall from (1.1) that Σε is the covariance of the innovations. Further, Σγ is

the covariance matrix of γ = ({vecΓ1(ε̂t)}>, . . . , {vecΓm(ε̂t)}>)> and models

nuisance parameters in the covariance of Qm. This result follows from Francq

and Räıssi (2007) and Theorem 2. Francq and Räıssi (2007) provide an algorithm

for a consistent estimator of ΣQm
based on Σ̂ε and an autoregressive spectral

estimator (see den Haan and Levin (1997)) for determining γ. The distribution

of Qm (Q∗m and Q̃m) can be determined numerically via the algorithm of Imhof

(1961) or by a gamma approximation from Box (1954) (used in our simulations).

3.3. Weighted methods

Residual autocorrelation in ill-fit models of stationary processes tend to grav-

itate toward lower lags. Weighted portmanteau tests, wherein one can emphasize

certain lags over others, are gaining in popularity (see Hong (1996a), Fisher and

Gallagher (2012), Mahdi and McLeod (2012), Gallagher and Fisher (2015), for

example).

Most published work discussing general schemes for weighting portmanteau

tests considers univariate data only (see Gallagher and Fisher (2015) for exam-

ple). However, multivariate analogues of these techniques can be developed by

applying the weighting mechanisms discussed in these references to the statistic of

Hosking (1980) (although we are unaware of any published results demonstrating

their utility). Specifically, consider weighted versions of (3.1) and (3.2):

Qwm = n

m∑
k=1

wkh̃k, Qw∗m = n

m∑
k=1

wkh̃
∗
k, and Q̃wm = n

m∑
k=1

wkr̃k,

where the {wk} are a sequence of positive lag-based weights. Q̃wm has the same
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limit distribution as Qwm and Qw∗m under H0, but has more power under H1. For

a finite m, Qwm (and therefore Qw∗m and Q̃wm) are asymptotically distributed as

a linear combination of d2m iid χ2
1 random variables; see Hosking (1980) and

Gallagher and Fisher (2015) for details on the asymptotic distribution and its

approximations.

Various choices of {wk} have been suggested. These schemes can be seg-

mented into two groupings: divergent and convergent sequences of weights. Hong

(1996a) proposes the weights be determined by the square of a kernel function

and the Daniel kernel is shown to be optimal under a certain class of kernels.

Shao (2011) demonstrates that this approach provides a level of robustness in

weak ARMA models. Weights that are convergent were suggested in Gallagher

and Fisher (2015) have similar properties. They suggest that by utilizing weights

that decrease sufficiently fast one alleviates the need to select a maximum lag m.

Our measure of correlation has the utility to be used in either of these large m

situations.

Goodness-of-fit statistics based on the log of the determinant of a single

Toeplitz matrix (as constructed using several lags of autocorrelations) have been

proposed previously (Peña and Rodŕıguez (2006), Mahdi and McLeod (2012)).

The statistic of Mahdi and McLeod (2012) with maximum lag m = 1 is equivalent

to Q̃m. In general, these statistics are asymptotically equivalent to the version of

Qwm described in Fisher and Gallagher (2012). Unlike these extant matrix-based

methods, our proposed measure enables the flexibility to be used in conjunction

with any weighting scheme. Although Peña and Rodŕıguez (2002, 2006) and

Mahdi and McLeod (2012) demonstrate their matrix-based tests can improve

power over competing methods, their matrix does not obey a property akin to

Lemma 1 herein. Therefore, their test is more powerful than the asymptotically

equivalent method of Fisher and Gallagher (2012) in some circumstances and

not in others. The statistic from Peña and Rodŕıguez (2006) uses a version of r̃k
constructed with the partial autocorrelation function for univariate data and, as

a consequence, is more powerful than the weighted Monti (1994) statistic from

Fisher and Gallagher (2012).

The Q̃m statistic can be motivated as a data-weighted statistic in the vein

of Gallagher and Fisher (2015). In the univariate setting, our measure obeys

nr̃k = n
(
1 + ρ̂2k/2 + ρ̂4k/3 + · · ·

)
ρ̂2k. Since each h̃k = ρ̂2k is multiplied by the term

(1 + ρ̂2k/2 + ρ̂4k/3 + · · · ), our proposed statistic places greater emphasis on lags

that observe higher residual autocorrelations. Nonetheless, portmanteau tests

that employ deterministic weighting schemes are more common in the literature
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than data-driven weights. The utility of our measure when used in conjunction

with deterministic weights is explored in our simulations.

3.4. Other methods

Even though the weighted statistics above can assuage the impact the maxi-

mum lag m has on the performance of the portmanteau test, a user must choose

a maximum lag or set some acceptable criterion for its growth. Recent work in

the literature has attempted to alleviate this issue.

Consider the work of Escanciano and Lobato (2009) for univariate time series

and the extension to multivariate time series given by Escanciano, Lobato and

Zhu (2013). They propose a method that automatically selects the maximum

lag for Qm based on a penalty term that relates to the well-known AIC and BIC

criteria. Under the null hypothesis of an adequately fitted model, the asymptotic

distribution is found based on the observation that m̃
p−→ 1 under H0 (see

Escanciano, Lobato and Zhu (2013) for details). Simulations in Escanciano,

Lobato and Zhu (2013) demonstrate that the automatic lag selected test tends

to have slightly inflated type I errors. Our simulations (as seen in Section 4)

found that for moderate m, methods based on our measure have type I errors

that are comparable to those seen in analogous LB-type methods. Therefore, we

anticipate that the procedure based on automatic lag selection using our measure

will also have slightly inflated type I errors.

McLeod and Li (1983) propose the use of transformations, such as squaring

of the residual series, to determine if a nonlinear process such as that in Section

3.2 is present within an observed time series. This concept was later used for

multivariate time series in Mahdi and McLeod (2012). Specifically, they consider

methods based on autocorrelation matrices R̂k(ε̂
2
t ), where R̂k(·) is as defined

in (2.1) and for the d-dimensional fitted residuals, ε2t = (ε21, . . . , ε
2
d)
>
t . Once

established that a time series has a nonlinear structure, modeling can be per-

formed using a (multivariate) GARCH or some similar model. We are unaware

of any extant goodness-of-fit techniques for multivariate GARCH so we briefly

highlight the univariate work of Li and Mak (1994). Under the null hypothesis

of an adequately fitted GARCH model, Li and Mak (1994) show the vector of

autocorrelations constructed from the autocorrelations of the standardized resid-

uals follows a quadratic form asymptotically. A statistic constructed with our

modified measure, r̃k, will provide more power than that of Li and Mak (1994).
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Table 1. Rate of rejections, out of 10,000 replications, under the null hypothesis (δ = 0)
at two sample sizes n, two lags m, and three significance levels for data generated as
VAR(2) in (4.1) and fit as a VAR(1).

n = 80 n = 160
m = 4 m = 7 m = 5 m = 8

5% 1% 0.1% 5% 1% 0.1% 5% 1% 0.1% 5% 1% 0.1%
Qm 3.0 0.4 0.0 2.5 0.3 0.0 3.9 0.6 0.1 3.2 0.6 0.1
Q∗

m 4.1 0.7 0.0 4.1 0.6 0.1 4.5 0.8 0.1 4.4 0.9 0.1

Q̃m 4.4 0.8 0.1 3.7 0.6 0.1 4.5 0.8 0.1 4.0 0.8 0.1
Qw

m 4.3 0.8 0.1 3.3 0.5 0.1 4.4 0.8 0.1 3.9 0.8 0.1
Qw∗

m 5.1 1.1 0.1 4.7 1.0 0.1 4.9 0.9 0.1 4.8 1.0 0.1
Dm 2.4 0.3 0.1 3.5 0.6 0.0 2.1 0.3 0.0 2.8 0.5 0.1

Q̃w
m 5.5 1.3 0.1 4.5 1.0 0.1 5.0 1.0 0.1 4.6 0.9 0.1

4. Simulation Studies

We studied the improvement provided by our proposed methods over those in

the literature via simulation. For brevity, we limited our study to the cases of iid

and uncorrelated innovations. We excluded a large study on different weighting

techniques, methods using automatic lag selection, and diagnostics for nonlinear

models. We encourage the interested reader to consult the relevant references

and to see that our method applies in those settings.

4.1. Goodness-of-fit in IID data

Consider a bivariate centered VAR(2) process satisfying (1.1) with parame-

ters

Φ1 =

[
0.2 0.1

0.1 0.2

]
, Φ2 =

[
0 0

0 −δ

]
and Σε =

[
1 0.71

0.71 2

]
. (4.1)

Given that the introduced measure clearly is more powerful under the alternative

hypothesis, the primary concern about (3.2) is the finite sample performance

under the null hypothesis, i.e., whether the extra terms Ak from Theorem 2 are

collectively negligible in practice. A series of size n = 80 was generated for δ = 0

and fit as a VAR(1), the goodness-of-fit tests were found for maximum lags m = 4

and 7 at significance levels α = 5%, 1%, and 0.1%. The process was repeated for

sample size n = 160 with maximum lags m = 5 and 8 where the maximum lag

values were chosen based on rates in Hong (1996a), log(n) and 3n0.2. Results are

shown in Table 1 comparing the proposed portmanteau test Q̃m (3.2) with the

traditional methods Qm and Q∗m from (2.2). To further demonstrate the utility of

our measure we implemented it in a weighted statistic using the weighting scheme
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α

δ

Figure 1. Empirical power, at α = 0.1%, of Q̃w
m, Qw∗

m , Dm, and Qw
m in detecting underfit

VAR(2) process at m = 4 with n = 40 as a function of δ for parameters in (4.1).

of Fisher and Gallagher (2012), wk = (m − k + 1)/m. Table 1 also reports the

empirical type I error rates of Qwm, Qw∗m , and Q̃wm representing a Weighted BP-

type statistic, a weighted LB-type (where the weights are a convolution of wk
and n/(n−k)), and a weighted statistic using our proposed measure. For further

comparison, we included the statistic from Mahdi and McLeod (2012), Dm, which

is asymptotically equivalent to Qwm. A Gamma approximation for the asymptotic

distribution was utilized where the first two cumulants were adjusted with the

fitted degrees of freedom (see Peña and Rodŕıguez (2002), Hosking (1980)) for

Qwm, Qw∗m , and Q̃wm while the published χ2 approximation was used for Dm; see

Mahdi and McLeod (2012). Note the acceptable-to-conservative type I error

performance for all methods.

The potential increase in power was explored as a function of the pertur-

bation parameter δ. A series of length n = 40 was generated from the VAR(2)

process in (4.1) and an inadequate vector autoregressive of order 1 was fit to

the bivariate series. The three weighted goodness-of-fit statistics and the matrix

based statistic Dm were calculated with maximum lag 4 log(n). The rate of

rejection was calculated at significance level 0.1% based on 10,000 replications.

Figure 1 provides the empirical power of each statistic as a function of the pa-

rameter δ. The figure demonstrates the proposed method can provide substantial

improvement in terms of power (roughly 27% more power over Qwm and 17% over

Dm at δ = 0.66), and overall is more powerful while still providing acceptable

type I error performance.
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δ

α

Figure 2. Empirical power, at α = 0.1%, of Q̃m, Q∗
m, and Qm in detecting underfit

VAR(2) process of dimension 4 at m = 6 with n = 360 as a function of δ for parameters
in (4.2).

To further demonstrate the utility of our method consider a scenario of higher

dimension: A d = 4 centered VAR(2) was generated with parameters

Φ1 =


0.25 0 0 0

0 0.87 0.55 0

−1.5 −0.07 0.46 0

0 0 0 0.35

 , Φ2 = δ


0 0 0 0.04

0 0 −0.59 0

0 0 0.25 0

0 0 0 0

 (4.2)

and Σε = I4, where the parameters were based on the significant values from the

fitted VAR(2) of monthly real stock returns, interest rates, industrial production

growth, and the inflation rate in Zivot and Wang (2006).

Figure 2 provides the empirical power of Qm, Q∗m, and Q̃m for n = 360,

m = 6 and α = 0.1% as a function of perturbation parameter δ. Here Q̃m offers

upward of 3.5% more power than Q̃m around δ = 0.4. While not reported in

Figure 2, the empirical type I error rates of Qm, Q∗m and Q̃m were 0.03, 0.08

and 0.09, respectively. Lastly, higher dimensional time series require larger n

to obtain stable performance of any of the test statistics, and the improvement

offered by our method is less noticeable for larger n.

4.2. Goodness-of-fit in uncorrelated but dependent data

We considered a simulation with data from a weak VAR process. Here we

report the modified versions of Qm, Q∗m, and Q̃m using the distribution described

in Section 3.2. We followed the estimation procedure in Francq and Räıssi (2007)
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Table 2. Rate of rejections, out of 10,000 replications, under the null hypothesis (δ = 0)
at two sample sizes n, two lags m, and three significance levels for data generated as a
weak VAR(2) in (4.3) with innovations from (4.4) and fit as a VAR(1).

n = 160 n = 320
m = 2 m = 3 m = 3 m = 4

5% 1% 0.1% 5% 1% 0.1% 5% 1% 0.1% 5% 1% 0.1%
Qm 2.5 0.3 0.0 2.1 0.3 0.0 2.4 0.3 0.0 2.2 0.3 0.0
Q∗

m 2.7 0.3 0.0 2.3 0.3 0.0 2.4 0.4 0.0 2.3 0.3 0.0

Q̃m 2.9 0.3 0.0 2.5 0.3 0.0 2.5 0.4 0.0 2.4 0.3 0.0

and chose the intermediate autoregressive order, r ∈ {0, 1, 2, 3} in step 6 of their

algorithm, via BIC. Here, we only considered a maximum order of 3 as we are

working with smaller sample sizes. In the first study, data were generated from

a bivariate VAR(2) with parameters

Φ1 =

[
0.2 0.1

0.1 0.2

]
, Φ2 = −δ

[
1 0

0 1

]
, (4.3)

with innovations from

εt =

(
η1tη1t−1η1t−2
η2tη2t−1η2t−2

)
for

(
η1t
η2t

)
iid N2 (0, I2) . (4.4)

The residual series here is uncorrelated but not serially independent.

The results in Francq and Räıssi (2007) show that the portmanteau test for

weak VAR processes can be conservative for large lags relative to the sample size.

We considered n = 160 and 320 with lags m = 2 and 3 and 3 and 4, respectively.

The results are in Table 2 and, consistent with Francq and Räıssi (2007), the

tests appear to have conservative type I error rates. Although not reported here,

the statistics based on the asymptotic chi-square distribution of Hosking (1980)

produced highly inflated type I errors.

In a study analogous to Figures 1 and 2, consider the possible improvement

by using our recommended statistic. A series of length n = 160 was generated

from a weak VAR(2) with parameters from (4.3) and innovations following the

structure outlined in (4.4). Figure 3 provides the power of each statistic at lag

m = 2 for α = 1% as a function of δ. We see that the proposed method offers

substantially more power than Q∗m and Qm for larger values of δ. As δ increases,

the power of Qm, and Q∗m, appears to level off compared to the proposed method;

all methods lose some power as δ approaches 1 (the point at which the process

becomes non-stationary).

Figure 4 provides the median value (of the 10,000 replicates) of the three
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α

δ

Figure 3. Empirical power, at α = 1%, of Q̃m, Q∗
m, and Qm in detecting underfit weak

vector autoregressive process at m = 2 with n = 160 as a function of δ for parameters
in (4.3) with innovations from (4.4).

α

δ

Figure 4. Median values of of Q̃m, Q∗
m, Qm, and the 1% critical point for each of 10,000

iterations in detecting underfit weak vector autoregressive process at m = 2 with n = 160
as a function of δ for parameters in (4.3) with innovations from (4.4).

test statistics and the critical point at α = 1% (determined from the data) at

each perturbation value δ. The figure indicates that Qm and Q∗m tend to observe

similar values for all δ; however, the Q̃m statistic diverges from the other two

with increasing δ—this is in accordance with Theorem 2 and Corollary 1. In

fact, similar patterns are observed when an analogous graph is made using time

series that have iid innovations (not shown). However, the explanation for the
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marked improvement in power offered by our method in Figure 3 is the fact

that the critical value (the same critical value is used for all tests) increases

with δ. For iid innovations, the critical value is given by a χ2 distribution, and

therefore is invariant of terms like δ. Therefore, when δ is large enough for Q̃m
to diverge from the other statistics, all statistics have power close to 100% in the

iid setting. Since critical values observed under the uncorrelated setting increase

with δ, all methods have lower power, and therefore the improvement offered by

our method is more visible. We theorize that the critical value increases with

δ in the uncorrelated setting because ΣQm
is not consistently estimated under

the alternative hypothesis. Further, although not visualized here, we note the

distribution of the critical point appears to be strongly skewed near the point

of non-stationarity, which along with the median value in Figure 4 explains the

power functions in Figure 3.

Consistent with the results presented earlier, we expect that the proposed

measure will provide more power than McLeod and Li (1983) in detecting non-

linear processes, and that of Li and Mak (1994) when used to diagnose the fit of

a GARCH process. However, we anticipate that the improvement will be modest

since both are designed for univariate data. Likewise, when critical values of the

test statistics are determined via bootstrapping (see Lin and McLeod (2006)),

we expect that our method will have power that is comparable to the analogous

statistic. Overall, we found the proposed method to be most effective in the

multivariate setting and, in line with Robbins and Fisher (2015), the “more in-

correct” the null hypothesis. For larger sample sizes and significance levels, the

differences between the proposed and established tests is minimal. For smaller α

values, larger deviations from H0 (measured by δ in our simulations) are needed,

and the proposed is method most effective.

5. Discussion

Weighting the statistic (3.2) in a way similar to Hong (1996a), Peña and

Rodŕıguez (2006), Fisher and Gallagher (2012), and Gallagher and Fisher (2015)

can provide additional power compared to the results herein and should outper-

form those published methods as the underlying measure of correlation in the

residual time series is more powerful.

One can define r̃∗k = nr̃k/(n−k) as a version of our measure that incorporates

the Ljung-Box correction. We define a new statistic Q̃∗m, which represents Q̃m
from (3.1) with r̃k replaced by r̃∗k; this statistic will observe a higher rejection rate
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under H1 than the standard Ljung–Box method in all settings. Under the setting

used to generate the results of Table 1, where we isolate to α = 1%, n = 80, and

m = 4, Q̃∗, has an estimated type I error of 1.1% (compared to respective value

of 0.7% for the standard Ljung–Box technique). As this method may result in

liberal type I errors, we recommend Q̃m over Q̃∗m in practice.

The improvement in power provided by our method are asymptotic in nature,

while simulations indicate the improvement is more prominent when there are

strong departures from the null hypothesis. Therefore, our method is preferable

over existing methods in moderately sized samples (therein, the departure from

the null hypothesis may be large while existing methods do not have power

close to unity). We do not anticipate that our method will perform well (in

comparison to extant procedures) under local alternatives. For instance, consider

λj − 1 = Op(n−1/ν) for some ν and some j within (2.5) (note λj − 1 = Op(1)

for some j under fixed alternatives). If ν > 2, the Hosking quantity h̃k has

detection power asymptotically. When ν ≥ 4, our statistic r̃k offers asymptotic

improvement in power over h̃k. If 2 < ν < 4, r̃k converges to h̃k, and there is no

asymptotic improvement.

Our results have several directions for further development. One could take

the results of Section 4.1 in Robbins and Fisher (2015) and construct a statistic

for gauging the cross-correlation between two series using a statistic, such as

Q̃m herein. Following Hong (1996b), Bouhaddioui and Roy (2006), and Robbins

and Fisher (2015), a weighted variant can further improve power. The results of

Peña and Rodŕıguez (2002) and Mahdi and McLeod (2012) are based on large

Toeplitz matrices with the kth off-diagonal populated with an R̂k term – one

could develop an analogous matrix-based test using the proposed measure of

correlation.
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