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Supplementary Material

In this material, we provide the detailed proofs of the proposed 4 theorems in the main

context.

S1 Complement Lemmas

We provide some useful lemmas that support our proofs in this section. In Lemma, |1| we
reformulate BCSS for facilitating our derivation. Lemma [2 gives a concentration inequal-
ity of a non-central y? random variable. Lemma |3| calculates an important expectation

which will be used in the proof of Theorem 3 and 4.

Lemma 1. Under the same setting we have described at subsection 2.3 of the main

context, we can obtain a; denoted in (3) of main context has the reformulation

_Z zeck%z (Ziz/%%)a? (SL.1)

where ny, k = 1,2,..., K is the number of sample size in cluster Cy and 7, = ny/n.

Therefore,

BCSS(C) = 'p a; = 'p {i(My _ (Z%%Iij)z}
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Proof. Based on the definition of a;,j = 1,2,...,p, we have

1
4 = 5, (Tij — Ting)” Z Z (i) — Tinj)° (S1.2)

11,22 ’L1 2€C
K
— — 2 _ i( )2)
- x’L] :UZJ mij n Lij
k=1 ieC’k koo,
= __E:‘TZJ +§, E:xw
iECk

_ Z(Z\Z/E%Z’Jy (Z?:lxij)Q'

[]

Lemma 2. Suppose Y € R™ is a random vector with standard multivariate normal dis-

tribution. A € R™™ is a matriz and b € R™ is a vector. Then Z = ||AY +b||* obeys sub-

exponential distribution with parameters (2\/H]AAT|||2F + 2||ATD||?, H!ATA‘H*) If we de-

note & to be the spectral norm ||| AT A|||,, we can also use the parameters (21/md? + 26([b]|2, 5).

Then we have the concentration inequality

- ' 4(m3?+25]b]12)
exp(—mt—) if 0 <t < ===k
P(|Z-EZ| >1t) < 8(md?+23]b]?) 5

exp(—5) if t > w
Proof. Note that ||AY + b||? obeys a non-central x? distribution, whose cumulative dis-
tribution function is explicit. Then the moment generating function can be deducted

and the lemma can be proved (Foss et al., 2011)). O

Lemma 3. Recall that F(C,w) is defined in (18) of main context and data is generated
from (12) of main context and. For any partition C = {C4,...,Ck}, let 7, = ‘i—’“‘ for
k=1,....K, and fi;; = ﬁ Zz‘eCk Zﬁzl Qi i Then the conditional expectation for

fized ¢y would be E,F(C,w) = K||wl|; + Z?;l w; Zszl N7 flj ;-
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Proof. We analyze the distribution of the objective function F'(C,w). For any j, k and

fixed ¢ (i =1,...,K), it is obvious that

1 — .
\/m Z zij ~ N/ n7g - fug, 1).
1€Cl

Thus Zszl (\/ﬁ Sicc, %j)Q has the same distribution as ||Y" + b;||* where Y obeys
N0, Igxk), bjr = N fig;- We further assume that the eigen decomposition of
Y Q®Ixxx = UNUT, where @ is the Kronecker product. Denote L = UA, then we know
F(C,w) has the same distribution as |[|[W (LY + b)||*, where W = diag(,/w;) @ Ixxx-

The expectation of F/(C,w) is

EF(C,w) =tr(L"W?2L) + |Wb|? (S1.3)
=tr(W2LL") + ||[Wb|]? (S1.4)
=tr(W?S Q) Ticxx) + W] (S1.5)

P K
j=1 k=1
O

S2 Proof of Theorem 1

Proof. we omit the proof since it is easy to obtain. n



4 FIRSTNAME1 LASTNAME1 AND FIRSTNAME2 LASTNAME2

S3 Proof of Theorem 2
Proof. Based on Lemma[I] the expectation of the BC'SSS for the jth feature is

' _ zeCk D im1 Tij\o
Ea;(C) = EZ \/n_ﬂk —( G ) (S3.7)

- nz Tuik; — n(Z Tufins)* + K =1, (83.8)
k=1

k=1

where 7}, = % is the proportion of the size of kth cluster C, and i, = ﬁ ZieCk 25:1 oyany

is the expectation of the sample mean in cluster C}.

For p* < j < p, we have Ex;; = 0. This shows fi;; = 0. Therefore we know they are
noise features Ea;(C) = K — 1,VC. For other features j < p*, consider Eq;(C*) =
K 2 K 2 K 2
N ey TeHy; — Nk Tritky)” + K — 1. So, we can denote ¢; = n ), iy, —

n(S8 Trikg)? > 0 holds because of the convexity of function z2.

S4 Proof of Theorem 3

Proof. Let C* = (Cy,...,Ck) to be the partition defined by the Gaussian mixture model
parameter ¢;i.. If ¢ = 1, which means x; is drawn from the kth component of Gaussian
mixture model, then x; is in Cy. As n — oo, |C|/n — 7 almost surely independent
of the dimension p. Therefore, without loss of generality, we assume |Ck| = n x 7, for
k=1,..., K. Define A to satisfy the following equation:
> Eay(Cr) — Ap”
VI (Eay(Cr) - A)?
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Define wj \/ZJLE:*J((;@? (CA) ~ . The proof can be summarized as the following chain of
inequalities,
P(w has SCP) (54.9)
>P ( sup |W; — wj| < min wj) (54.10)
j:]- 77777 p* ]:1 ..... p*
>P ( sup |F(C,w)—-EF(C,w)| < cn) (S4.11)
Cliwli<s
>1 — pK™ exp( ne” ) (S4.12)
- exp(— :
= p p 24520,
where ¢ = ﬁ\/zj'gp* (Ea;(C*) — A)QJ:IE}% wi? > 0 is a constant. When p*? < W%IH(K)
and
Zkal Wk/‘ij - %‘7 P’ s < Zk 1 Wkﬂk;

\/Z Zk 1 Wk#kj - 5‘71 \/Z Zk 1 Wkﬂkj)

since the relation between s and A, we know K + n501 > A > K. Because c is lower

bounded by
D (Ea;(C*) = A min w}’ (S4.13)
4 j=1,....p*
J<p*
= *) 2
—4i r{un ) (Ea,(€) ~ &) (S4.14)
P 5 e (Bas(C) = A)2
(TLO'l + K — A)Q
4.1
“dp*n(noy + K — A) (54.15)
2
_ (S4.16)

16\/_0'2

and s? < p, we know

Thus when In(p) = o(n), the last term goes to 0, the proof is complete.
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Now we turn to the proof of (S4.10HS4.12]). The inequality (S4.10)) is trivial, so we

only prove ((S4.11f) and (S4.12)).

Proof of inequality (S4.11]): 1t suffices to prove that

sup |F(C,w)—EF(C,w)] < E (Ea;(C*) — min _wj 2 3(S4.18)
C,”W”lSS ]<p :1 ..... p
== { sup |, — wj| < mln w’ } (S4.19)
]:1 ----- p* J_ 7777 p

EF(C*,w*) <F Ea;(C*) — in_w}? S4.20
) ) [ B =8 i (8420
<F(C, W)+ E Z(E@-(C*) —A)? min_w}? (S4.21)
4 = J=lp
. 1 - o
<EF(C,w) + 5 J%;(]Eaj(c ) — A)Qj:IBI.?p* wy? (54.22)
1

<EF(C*, W)+ [> (Ea;(C*) — A)> min wi?. (S4.23)

2 = J=1,...p*

Denote d = w — w*. Since w and w* are both in Q;, d must satisfy

> di+ ) d;i<o,

Jj<p* Jj>p*
1
J<p* J<p*
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Thus we have

p

EF(C*, W) —EF(C*,w") = > Ka,;(C*)d;

j=1
p 1 - p .

<A d; - 5 (Ea;(C*) — A2 Y d2+ Y Ea;(C*)d;
Jj=1 J<p* J<p* Jj=p*+1

J<p* J<p
1 _
<=3 [ (Bay(er) — AP swp &

-----

J<p*

Combining (S4.23)) and ((S4.28)), we get the result.
Proof of inequality : It suffices to prove

P( sup ]F(C,w)—EF(C,w)]ch)

Cllwlli<s

7’LC2

).

Since C can have at most K™ choices, we have

P( sup |F(C,W)—EF(C,W)|26TL>

Cillwlli<s

<K"sup P < sup |F(C,w)—EF(C,w)| > cn) :

¢ [wlli<s

Using the dual norm, we actually have that

sup |F(C,w) —EF(C,w)|=s- sup |a;(C) — Ea;(C)|.

[wl1<s JEL,...,p

(S4.24)

(S4.25)

(S4.26)

(S4.27)

(54.28)

(S4.29)

(S4.30)

($4.31)

(54.32)
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Therefore, ((S4.31]) can be bounded by

K"sup P < sup |F(C,w)—EF(C,w)| > cn)
\

¢ \Iwlh<s
<K" supP< sup |a;(C) — Ea;(C)| > fn) (S4.33)
C JEL..p S
_ _ C
<pK"™ sup P (|aj(C) — Ea,(C)] > -n). (94.34)
C,j=1,....p S

2

a; = S (\/% > e, wi]) has the same distribution as ||Y" + b;]|> where Y obeys
k

N(0,Ixxx), bjx = y/n7wfiy; for j = 1,...,p" and bj, = 0 for j > p*. By lemma , we

know a; are all sub exponential variables with parameter (2¢/K + 2no,, 1). Note that

c<oyands>1,

En < noy < 4(K + 2noy).
S

Therefore when n > U—IZ, i.e. ogn > K, the last term could be bounded by

2

nc

_ i S4.35
This completes the proof. n
S5 Proof of Theorem 4
Proof. Similar to the proof of Theorem 3, we assume |Cy| = n x m for k = 1,... K.

Then the proof can be summarized as the following chain of inequalities,

P(w has SCP)

1
>P ( sup |F(C,w)—EF(C,w)| < —nal) (S5.36)
C,weds 2
2
>1 — pK" exp(— had] ). (S5.37)

96520,
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Under the theorem conditions, similar to theorem 1, we can prove the last term goes to

0. Now we only prove ([55.36H55.37)).

Proof of inequality : It suffices to prove that

1
{w does not have SCP} — { sup |F(C,w)—EF(C,w)| > §nal} .

C,weldo
If w does not have SCP, then there exist features ji, j» s.t. j; > p* is a noise feature

where w;, # 0 and j, < p* is a relevant feature where @w;, = 0. Consider w such that

{1}] j%jhj%

wj:< '&7]’2 j:jb

@jl j = j2'

Note that w is in €25, too. By lemma [3[ and Theorem 1,

p* K p* K
EF(C*,W) —BF(C,W) =Ks+nY i;» mwip;—Ks—nY @;y #nfiz; (55.38)
j=1 k=1 j=1 k=1
p* K
>n Y (w; — @) Y Tep (S5.39)
j=1 k=1

K
=niwj, Z Tkl (S5.40)
k=1
>noy. (S5.41)
On the other hand, F(C*,w) < F(C, W) because (C, W) is optimal. Therefore,
1
sup |F(C,w)—EF(C,w)| > —no;.
C,weQy 2

Thus we know the first inequality holds.
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Proof of inequality : It suffices to prove

1
P ( sup |F(C,w)—EF(C,w)| > —n01> (S5.42)
C,WEQQ 2
2
no
<pK™ exp(— 9632172 ). (S5.43)

Since C can have at most K" choices. Therefore, we have

1
P( sup |F(C,w)—-EF(C,w)| > §n01)

C,weo

<K"sup P (sup |F(C,w)—EF(C,w)| > %nm) . (S5.44)
c

wEg

Using the dual norm,

sup |F(C,w) —EF(C,w)| = s- sup |a,(C) — Ea(C)|. (S5.45)

weo JEL,.., D

Therefore, ((S5.44]) can be bounded by

1
K"sup P (Sup |F(C,w) —EF(C,w)| > 57101)
c

wEs
1
<K"sup P ( sup |a;(C) —Ea;(C)| > —nal) (S5.46)
c jel,..p 2s
1
<pK"™ sup P <|c_zj(C) —Ea;(C)| > —nal) : (S5.47)
Cj=Lyp 2s

2
a; = S (\/ﬁ > e, xij> has the same distribution as ||Y" 4 b;||* where Y obeys

N(0,Ixxx), bjx = y/n7xfiy; for j = 1,...,p" and bj, = 0 for j > p*. By lemma , we
know a; are all sub exponential variables with parameter (2¢/K + 2nos, 1). Note that

s>1,
1

2—77/0'1 S noo S 4(K + 2n02).
S

When n > a%v the last term could be bounded by

2
noj

96520,

exp(— ). (S5.48)
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Now the proof is completed. O]
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