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Abstract: We propose a new method for supervised learning. The hubNet proce-

dure fits a hub-based graphical model to the predictors, to estimate the amount

of “connection” that each predictor has with other predictors. This yields a set of

predictor weights that are then used in a regularized regression such as the lasso

or elastic net. The resulting procedure is easy to implement, can often yield higher

or competitive prediction accuracy with fewer features than the lasso, and can give

insight into the underlying structure of the predictors.

HubNet can be generalized seamlessly to supervised problems such as regular-

ized logistic regression (and other GLMs), Cox’s proportional hazards model, and

nonlinear procedures such as random forests and boosting. We prove recovery re-

sults under a specialized model and illustrate the method on real and simulated

data.

Key words and phrases: Adaptive lasso, graphical model, hubNet, unsupervised

weights.

1. Introduction

We consider the usual linear regression model: given n realizations of p

predictors X = {xij} for i = 1, 2, . . . , n and j = 1, 2, . . . , p, the response Y =

(y1, . . . , yn) is modeled as

yi = β0 +
∑
j

xijβj + εi (1.1)

with ε ∼ (0, σ2). The ordinary least squares (OLS) estimates of βj are obtained by

minimizing the residual sum of squares. There has been much work on regularized

estimators that offer an advantage over the OLS estimates, both in terms of

accuracy of prediction on future data and interpretation of the fitted model.

One major focus has been on the lasso (Tibshirani (1996)), which minimizes

J(β0, β) =
1

2
‖Y − β0 −Xβ‖22 + λ‖β‖1 (1.2)

where β = (β1, . . . , βp), and the tuning parameter λ ≥ 0 controls the sparsity

of the final model. This parameter is often selected by cross-validation. The
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objective function J(β0, β) is convex, which means that the solutions can be found

efficiently even for very large n and p, in contrast to combinatorial methods like

best subset selection. A body of mathematical work shows that, under certain

conditions, the lasso often provides good recovery of the underlying true model

and produces predictions that are mean-square consistent (Knight and Fu (2000);

Meinshausen and Bühlmann (2006); Zhao and Yu (2006); Bunea, Tsybakov and

Wegkamp (2007); Zhang and Huang (2008); Meinshausen and Yu (2009); Bickel,

Ritov and Tsybakov (2009); Wainwright (2009)). The elastic net of Zou and

Hastie (2005) generalizes the lasso by adding an `2 penalty,

1

2
‖Y − β0 −Xβ‖22 + λ(α‖β‖1 + (1− α)‖β‖22), (1.3)

where α ∈ [0, 1] is a second tuning parameter. This approach sometimes yields

lower prediction error than the lasso, especially in settings with highly correlated

predictors.

Zou (2006) introduced the adaptive lasso that minimizes

1

2
‖Y − β0 −Xβ‖22 + λ

∑
j

wj |βj | (1.4)

for feature weights wj . The feature weights can be chosen in various ways:

For example, when n > p, we can first compute the OLS estimates β̂j and

then set wj = 1/|β̂j |. For p > n, we can set wj by first computing univariate

regression coefficients (Huang, Ma and Zhang (2008)). Other similar “two-step”

procedures include variants of the non-negative garrote (Breiman (1995); Yuan

and Lin (2007)) and the adaptive elastic net (Zou and Zhang (2009)). One less-

than-ideal property of these methods of feature weighting is that there is to no

underlying generative model leading to the weights. Perhaps as a result, it is

difficult to simulate datasets that show substantial gains relative to the usual

lasso.

In this paper, we provide a new perspective by choosing weights in the adap-

tive lasso in an unsupervised manner. All of the above two-step procedures select

weights by computing an initial estimate β̂ using the response Y . We instead

propose to use the partial correlations of the features in X to select good weights.

Our proposal is based on an underlying conceptual model in which there is a

core subset S of “hub” features that explains both the other features and Y . For

example, each member of S might be the RNA or protein expression of a “driver”

gene in a pathway which simultaneously influences other gene expressions and

the phenotype under study. Our method, called hubNet, fits an (unsupervised)
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graphical model to the features in a way that tries to discover these “hubs”.

These features are then given higher weight in the adaptive lasso. The hubNet

procedure can sometimes yield lower prediction error and better support recovery

than the lasso, and the discovered hubs can provide insight on the underlying

structure of the data.

The idea of first identifying structure in X before performing regression is

similar to principal components regression (PCR), and the hub features identi-

fied by hubNet may be thought of as analogous to the principal directions in

PCR. An important difference is that hubNet assigns weights to the original fea-

tures, rather than combining them into new principal directions. This preserves

the interpretability of the features, and also allows the method to be more ro-

bust to the possibility that some of the structure in X may be unrelated to Y .

Furthermore, performing PCR may be problematic if p is large, unless sparsity

assumptions are imposed on the principal component loadings using sparse PCA

methods (e.g., Zou, Hastie and Tibshirani (2006); d’Aspremont et al. (2007)).

Sparse PCA assumes a sparse covariance matrix for the p features, whereas our

model assumes row-wise sparsity for the inverse covariance. The latter may be

more suitable for certain applications.

This paper is organized as follows. In Section 2, we introduce our underly-

ing model and the hubNet procedure. Section 3 examines applications to real

datasets. Some theoretical results on the recovery of the underlying model are

given in Section 4, while further topics, such as extensions to random forests, are

discussed in Section 5.

1.1. Illustrative example: olive oil data

The data for this example, from Forina et al. (1983), consists of measure-

ments of 8 fatty acid concentrations for 572 olive oils, with each olive oil classified

into one of two geographic regions. The goal is to determine the geographic region

based on these 8 predictors. We randomly divided the data into training and test

sets of equal size. Results from hubNet and lasso-regularized logistic regression

are given in Figure 1. HubNet yields a more parsimonious model than the lasso,

with perhaps lower error. More details are given in the caption. (Extension of

hubNet to logistic regression is straightforward and discussed in Section 2.3.)

2. The hubNet Procedure

Let Y = (y1, . . . , yn) and let X = {xij} be the n × p matrix of features.

Define the core set S to be a subset of {1, 2, . . . p}, with corresponding feature
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1. Palmitic Acid

2. Palmitoleic
Acid

3. Stearic Acid

4. Oleic Acid

5. Linoleic Acid

6. Linolenic Acid

7. Arachidic Acid

8. Eicosenoic Acid

Figure 1. Results from hubNet and lasso-regularized logistic regression. HubNet focuses
on just two predictors—2 and 4, which have apparent connections to the other six. In
the process, it yields a more parsimonious model than the lasso, with perhaps a lower
CV and test error.

matrix XS . Our proposal is based on the following model:

Y = β0 + XSβ + ε, (2.1)

Xj = XSΓj + εj , j /∈ S, (2.2)

where each Γj is an s × 1 coefficient vector. This model postulates that the

outcome Y is a function of an (unknown) core set of predictors S, and that the

predictors not in S are also a function of this same core set.

If this model holds, even approximately, then we can examine the partial

correlations among the features to determine the features more likely to belong

to this core set S, and hence do a better job of predicting Y . Following this logic,

our proposal for estimating β in (2.1) consists of three steps.

The hubNet procedure

1. Fit a model of the form X ≈ XB with Bii = 0 using the “edge-out”

procedure detailed in Section 2.1 below. (The Γj in the generating model

(2.2) correspond to coefficients of B in rows S and columns SC .)
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2. Let sj = ‖B̂j,.‖2 (j = 1, . . . , p) and construct feature weights wj = 1/sj .

3. Fit the adaptive lasso using feature weights wj (e.g., using wj as “penalty

factors” in the glmnet R package.) [If sj = 0, then wj = ∞ and Xj is not

used.]

The hubNet procedure has a number of attractive features:

(a) The construction of weights is completely unsupervised, separating it from

the fitting of the response model in Step 3. Thus for example, cross-

validation can be applied in Step 3, and we can use cross-validation to

choose between hubNet and lasso for a given problem. In addition, tools

for post-selection inference for the lasso can be directly applied.

(b) The supervised fitting in Step 3 is simply a lasso (or elastic net) with feature

weights, and hence fast off-the-shelf solvers can be used.

(c) Examination of the estimated hub structure for the chosen predictors can

shed light on the structure of the final model.

(d) The procedure can be directly applied to generalized regression settings,

such as generalized linear models and the proportional hazards model for

survival data, using an appropriate method in Step 3.

The challenging task of the hubNet procedure is to perform Step 1 in a way

that identifies the hub features. Applying the graphical lasso for this step, or

performing an individual lasso regression to predict each feature using the oth-

ers, can produce a sparse estimate of B corresponding to an edge-sparse feature

graph. However, we would like a procedure that further encourages the appear-

ance of features having many non-zero partial correlations with other features.

These hub nodes then represent our estimate of the core set S. Tan et al. (2014)

propose a method called hglasso for learning graphical models with hubs. Their

procedure uses an ADMM algorithm having computational complexity O(p3) per

iteration, which is too slow for problems with p = 1,000 or greater. We instead

use a generalization of the (unpublished) “edge-out” method of Friedman, Hastie

and Tibshirani (2010) that has complexity O(min(np2, sp2)) per iteration. Simu-

lations comparing this edge-out method, hglasso, and individual lasso regressions

for estimating B are given in the supplementary material.

2.1. The edge-out procedure

To estimate B in step 1 of the hubNet procedure, we use the edge-out esti-

mator
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B̂eo = arg min
B∈Rp×p:Bii=0∀i

1

2
‖X−XB‖2F + θ

p∑
i=1

{
γ‖Bi,.‖1 + (1− γ)

√
p− 1‖Bi,.‖2

}
.

(2.3)

Here, θ, γ > 0 are tuning parameters, ‖ ·‖F denotes the Frobenius norm, and Bi,.

denotes the ith row of B.

By constraining the diagonal entries of B to 0, the edge-out estimator si-

multaneously regresses each feature onto the remaining features of X. These

regressions are coupled by the `2 penalties ‖Bi,·‖2 that are group-lasso penalties

that encourage zeroing-out of entire rows of B. It is this coupling that leads to

the appearance of hub nodes in the resulting estimate. The additional `1 penal-

ties ‖Bi,·‖1 encourage additional sparsity in the non-zero rows of B; we include

this primarily for purposes of interpretability, to identify which features are in-

fluenced by the hubs. (The original hubNet proposal of Friedman, Hastie and

Tibshirani (2010) used only the `2 penalty, i.e., γ = 0.)

The estimate B̂eo is not symmetric. We expect the “hub” features in the

core set S to correspond to the rows of B having many non-zero entries, and

hence the row sums should give higher weight to these features. Our procedure

for minimizing this objective is outlined in the supplementary material.

2.2. Choosing tuning parameters for edge-out

We have two proposals for setting the tuning parameter θ in the edge-out

method. The first is K-fold cross-validation, applied to the objective function

1/2‖X−XB‖2F . The second uses a form of generalized cross validation

GCV(X̂) =
‖X− X̂‖22
np− df(X̂)

.

If there is only an `1 penalty, we use for df(X̂) the number of non-zero entries

|B̂|0. If there is also an `2 penalty, we propose an adjustment based on our

updating formula:

df(X̂) =

p∑
i=1

‖B̂i,.‖2
‖B̂i,.‖2 + θ(1− γ)

√
p− 1

‖B̂i,.‖0.

This is not an exact formula for degrees of freedom, but rather a rough estimate.

2.3. Extension to generalized regression models

The hubNet procedure can be extended in a straightforward manner to the

class of generalized linear models and other settings such as Cox’s proportional
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hazards model. If the outcome Y depends on a parameter vector η, we assume

that a core set of predictors S determines both η and the other predictors:

η = β0 + XSβ,

Xj = XSΓj + εj , j /∈ S. (2.4)

As in the linear case, we fit a model X = XB using the edge-out procedure,

and use the absolute row sums of B̂ as predictor weights in an `1-regularized

(generalized) regression of Y on X.

For logistic regression, an alternative strategy would assume that a model of

the form Xj = XSΓk
j + εkj for j /∈ S holds within each class k = 1, 2. We may

then estimate a hub model from the pooled within class covariance matrix of X,

and use the absolute row sums as predictor weights.

2.4. Simulated data example

Figure 2 shows hubNet applied to a simulated data example. Here n = 60,

p = 40, and the first three predictors are the core set, explaining both Y and

predictors 4 through 12. The estimated coefficients and various error rates of

hubNet over 20 realizations are shown, in comparison to the elastic net, adaptive

lasso, and lasso. We see that hubNet does a much better job at recovering the

true coefficients, which in turn leads to substantially lower prediction error. In

Figure 3 we have generated data from an adversarial setting where the first three

predictors are hub predictors, but the signal is a function of predictors 4 to 6.

As expected, the hubNet procedure does poorly; however, its CV error is also

high, so this poor behavior would be detectable in practice. Detailed comparisons

between hubNet and other methods are given in the supplementary material – we

found that hubNet produces better results not only when the generative model

is true but also in several other settings with correlated predictors.

3. Application to Real Datasets

We compare hubNet with the lasso, elastic net, and/or principal components

regression (PCR) on several real datasets. We tested ordinary PCR as well as

sparse PCR using 10, 50, and 100 non-zero loadings. Results are shown for 100

non-zero loadings, corresponding to the lowest obtained test errors with cross-

validated tuning parameter λ. Results for the other settings of PCR are reported

in the supplementary materials.

Lipidomic breast cancer data: This data, from the lab of RT’s collabo-

rator Livia Schiavinato Eberlin at UT Austin, consists of 806 features measured



1232 GUAN, FAN AND TIBSHIRANI
−

Figure 2. Estimates from 20 simulations from a favorable underlying hub model; n = 60,
p = 40, and the first three predictors are hub predictors that contain the signal and also
influence predictors 4 through 12. The top left panel shows the fraction of simulations
for which the estimated coefficient was non-zero. The top right panel displays the mean-
squared test error with the tuning parameter chosen by cross-validation for each method.
The bottom left panel shows the minimum CV error for each realization: note that the
adaptive lasso CV error is not a valid estimate of error since the weights are estimated
in a supervised manner. The bottom right panel shows the number of false positive
predictors, in the smallest model where the procedure contains all of the true predictors.

on 15,359 pixels in tissue images from 24 breast cancer patients. The pixels are

divided into two classes, normal and cancer, and we fit a regularized logistic re-

gression model using each procedure. Cross-validation classification errors are

shown in Figure 4 as λ varies. Table 1 reports results for λ selected using 5-fold

cross-validation.

B cell lymphoma gene expression data: This data from Rosenwald

et al. (2002) consists of survival times (observed or right-censored) and 7,399
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Figure 3. Estimates from 20 simulations from an adverserial underlying hub model;
n = 60, p = 40, first three predictors are hub predictors, but the signal is a function of
predictors 4 to 6. See previous figure caption for details of panels.

gene expression features for 240 patients with diffuse large B-cell lymphoma

(DLBCL). We divided the data with survival time Y > 0 into 156 training and

79 test samples, and trained a regularized proportional hazards model using each

procedure. The p-value of the log-likelihood ratio (LR) statistic of this trained

model evaluated on the test set is shown in the left subplot of Figure 5 as λ

varies. Table 1 reports results for λ selected using 20-fold cross-validation.

Kidney cancer gene expression data: This data from Zhao, Tibshirani

and Brooks (2005) consists of survival times and 14,814 gene expression features

for 177 patients with conventional renal cell carcinoma. We divided the data into

88 training samples and 89 test samples and trained a regularized proportional

hazards model using each procedure. For computational reasons, hubNet was fit

using the 7999 features with largest absolute row sum in the pairwise correlation
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Figure 4. Cross-validation classification error rates for breast cancer data. (The error
bar represents one standard deviation of cross-validation error.)
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Figure 5. Results for B-cell lymphoma (left) and kidney cancer (right): p-values of LR
statistics.

matrix; lasso and elastic net were fit using all features. Test set LR p-values are

shown in the right subplot of Figure 5 as λ varies, and Table 1 reports results

for λ selected using 8-fold cross validation.

Table 1 summarizes the cross-validation errors, test errors, number of se-

lected features, and number of such features in common with those selected by

lasso. For the breast cancer data, the error value is the misclassification percent-

age, and it is the partial likelihood deviance for other two examples.
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Table 1. Comparisons among lasso, elasticNet and hubNet on three real data sets.

cvm(se)
Num.

features
test
error

common
features
(lasso)

Breast Cancer Data lasso 5.15 (3.86) 46 – –
p = 806 elasticNet 5.85 (3.97) 303 – 46
ntrain = 15,359 hubNet 3.52 (2.92) 92 – 26

cvm(se)
Num.

features
test

p-value

common
features
(lasso)

Kidney Cancer Data lasso 9.90 (0.59) 20 0.29 –
p = 14,814 elasticNet 9.92 (0.56) 24 0.11 4
ntrain = 88, ntest = 89 hubNet 9.98 (0.40) 1 0.008 0

SPCR (100
non-zeros)

10.0 (0.40) 1 0.137 –

cvm(se)
Num.

features
test

p-value

common
features
(lasso)

DLBCL-patient Data lasso 10.9 (0.39) 29 0.076 –
p = 7,399 elasticNet 10.9 (0.39) 37 0.052 28
ntrain = 156, ntest = 79 hubNet 10.9 (0.36) 21 0.020 1

SPCR (100
non-zeros)

11.07(0.26) 1 0.473 –

4. Theory

In this section we study the recovery of the core set S assuming that our

generating model (2.1), (2.2) holds. We first establish conditions under which the

unsupervised edge-out procedure alone can recover S, and then discuss recovery

of S by the second adaptive lasso step even if the edge-out procedure does not

yield perfect recovery.

We assume the asymptotic regime n, p → ∞ where s � min(n, p), as well

as a fully random design where the rows of X are independent and distributed

as N(0,Σ), normalized so that Σjj = 1 for all j = 1, . . . , p. Without loss

of generality, we suppose S contains the first s predictors. By (2.2), if X :=

(XS , XSC ) ∼ N(0,Σ), then

XS ∼ N(0,ΣSS),

Xj |XS
ind∼ N(XT

S Γj , σ
2
j ), j ∈ SC , (4.1)

where σ2j = Var(εj) ∈ (0, 1). Specifically, Γ := (Γs+1, . . . ,Γp) is given by

Σ−1SSΣSSC . We assume that this model holds in all of the results that follow.
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4.1. Recovery of the core set using the edge-out procedure

We analyze recovery of S by the edge-out procedure applied with only the

group-lasso penalty term in (2.3), corresponding to the setting γ = 0. For any

matrix M, denote by Mi,. and M.,j the ith row and jth column of M. We use

the following operator norms which measure the maximum `1 and `2 norm of

any row of M:

‖M‖∞ := sup
‖x‖∞=1

‖Mx‖∞ = max
i
‖Mi,.‖1,

‖M‖∞,2 := sup
‖x‖2=1

‖Mx‖∞ = max
i
‖Mi,·‖2.

We define also the usual spectral norm, given by the largest singular value of

M : ‖M‖2 := sup‖x‖2=1 ‖Mx‖2 = σmax(M).

We show that in the asymptotic regime n, p → ∞, the edge-out procedure

can recover the true core set S for a suitable choice of the tuning parameter θ

when the following conditions hold.

Assumption 1. Let λmin(ΣSS) be the smallest eigenvalue of ΣSS. For a fixed

constant Cmin > 0, we have λmin(ΣSS) ≥ Cmin.

Assumption 2. Define D := diag(1/‖Γs+1‖2, . . . , 1/‖Γp‖2), for a fixed constant

δ ∈ (0, 1], we have ‖ΓTDΓ‖∞,2 ≤ 1− δ.

Assumption 3. (Number of hub nodes). The size s of the core set satisfies the

constraint s� min(
√
n, n/ log p).

Assumption 4. (Hub strength). The minimum hub strength Γmin = mini ‖Γi,.‖2
satisfies Γmin � max(‖ΓT ‖∞, 1)‖Σ−1SS‖∞max(1,

√
p/n,

√
p log p/n).

Theorem 1. Let B̂ := B̂eo be the edge-out estimate in (2.3) applied with γ = 0,

and take Ŝ = {i : ‖B̂i,.‖2 > 0}. Suppose Assumptions 1, 2, 3, and 4 hold. With

θn = θ
√
p− 1/n, if the tuning parameter θ is chosen so that

Γmin

max(‖ΓT ‖∞, 1)‖Σ−1SS‖∞
� θn � max

(
1,

√
p

n
,

√
p log p

n

)
, (4.2)

then P (Ŝ = S)→ 1.

Assumption 1 ensures that the hub features are not too correlated. Assump-

tions 3 and 4 restrict the maximal size of the core set and minimal “strength” of

the hub features, as measured by the minimum `2 row norm of Γ. Our normaliza-

tion implies an additional implicit constraint on s, namely p ≥
∑

j∈SC Var(Xj) =
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j∈SC ΓT

j ΣSSΓj + σ2j ≥ ‖Γ‖2FCmin ≥ sCminΓ2
min, so by Assumption 4,

s� min(n, p, n2/ log p)

max(‖ΓT ‖∞, 1)2‖Σ−1SS‖2∞
.

In the worst case, we have the upper bounds ‖Σ−1SS‖∞ ≤
√
s‖Σ−1SS‖2 ≤

√
s/Cmin

and ‖ΓT ‖∞ ≤
√
s‖ΓT ‖∞,2 ≤

√
s/Cmin, where the latter bound follows from our

normalization condition

‖ΓT ‖2∞,2Cmin ≤ max
j∈SC

ΓT
j ΣSSΓj ≤ Var(Xj) ≤ 1. (4.3)

Assuming log p�
√
n, recovery can occur in this worst case when s� min(n1/3,

p1/3). In the best case where an “irrepresentable condition” ‖ΓT ‖∞ ≤ 1 holds

(see below) and ΣSS = Id, then we have max(‖ΓT ‖∞, 1)‖Σ−1SS‖∞ = 1, and

recovery can occur for s� min(
√
n, p).

Assumption 2 is analogous to but much weaker than the “irrepresentable

condition” of Zhao and Yu (2006) (see also Wainwright (2009)) that is required

for perfect support recovery by the standard lasso procedure. In our random

design setting, the irrepresentable condition corresponds to

‖ΓT ‖∞ ≤ 1− δ (4.4)

for some δ ∈ (0, 1]. When (4.4) holds, Assumption 2 is implied by ‖ΓTDΓ‖∞,2 ≤
‖ΓT ‖∞‖DΓ‖∞,2 = ‖ΓT ‖∞. The following example illustrates that Assumption

2 is weaker than (4.4):

Example 1. Suppose the entries of Γ are i.i.d. and equal to (1−2δ)/
√
s or −(1−

2δ)/
√
s, each with probability 1/2. Then ‖ΓTDΓ‖∞,2 ≤ ‖ΓT ‖∞,2‖D‖2‖Γ‖2 =√

s/(p− s)‖Γ‖2. If p→∞ with s� p, the maximal singular value of Γ satisfies,

for any fixed ε > 0 with probability approaching 1, ‖Γ‖2 ≤ (1 + ε)
√
p · (1 −

2δ)/
√
s. (See e.g. Theorem 5.39 of Vershynin (2012).) Hence for large p, Γ

satisfies Assumption 2 with high probability. However, ‖ΓT ‖∞ = (1−2δ)
√
s� 1.

This example shows that Assumption 2 can hold even in the worst-case

setting where ‖ΓT ‖∞ �
√
s, as long as the non-hub features are not influenced

by the hub features “in the same way”.

4.2. Recovery of the core set using adaptive lasso

We now consider the linear model (2.1) where ε = (ε1, . . . , εp) is independent

of X with εi
iid∼ N(0, σ2). We study recovery of S by the adaptive lasso step of the

hubNet procedure in two cases: (a) the edge-out estimate yields exact recovery

of S , and (b) it yields a superset of S.
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Let w1, . . . , wp ∈ (0,∞] be any feature weights derived from X. (Setting

wi = ∞ corresponds to ‖(B̂eo)i,.‖2 = 0, a hard constraint that requires βi = 0.)

Define

ρ :=
wmax(S)

wmin(SC)
, wmin(Sc) := min

i∈Sc
wi, wmax(S) := max

i∈S
wi,

with the convention ∞/∞ =∞. We consider the following conditions as n, p→
∞.

Assumption 5. There exists η ∈ (0, 1] such that with probability approaching 1,

ρ

√
s

Cmin

(
1 +

√
12 log p

n

)
≤ 1− η.

Assumption 6. The minimum predictor strength βmin = mini∈S |β∗i | satisfies

βmin � σ

√
s log p

n

(
1 +

log p

n

)
.

Then, under our model (2.1) and (2.2), the following result holds for the

adaptive lasso.

Theorem 2. Let n, p → ∞ such that s � n and Assumption 1 holds. Let

w1, . . . , wp ∈ (0,∞] be weights (depending on X) such that Assumption 5 holds.

Denote by β̂0, β̂ the estimator minimizing the adaptive lasso objective (1.4), and

let Ŝ = {i : β̂i 6= 0}.

(a) With λn = λ/n, if the tuning parameter λ of the adaptive lasso is chosen

such that

λn �
1

wmin(SC)
σ

√
log p

n

(
1 +

log p

n

)
with probability approaching 1, then P (Ŝ ⊆ S)→ 1.

(b) If, in addition, Assumption 6 holds and λn � βmin/(wmax(S)
√
s) with prob-

ability approaching 1, then P (Ŝ = S)→ 1.

This result holds for any procedure that selects w1, . . . , wp using X. As-

sumption 6 is comparable to the beta-min condition in Theorem 3 of Wainwright

(2009) for the standard lasso procedure, if
√
s is replaced by ‖Σ−1/2SS ‖2∞. In

the context of hubNet, Assumption 5 should be interpreted as a weakening of

the conditions required for selection consistency of S by the edge-out procedure

alone: If the edge-out procedure successfully recovers S, then wmin(Sc) =∞ and

wmax(S) <∞, so Assumption 5 holds. More generally, Assumption 5 holds when
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there is a separation in size between the rows of B̂eo belonging to S and to SC ,

even if the rows belonging to SC are not identically 0.

Proofs for Theorems 1 and 2 are given in the supplementary material. The

proof of Theorem 2 is a simple application of the Sign Recovery Lemma in Zhou,

van de Geer and Bühlmann (2009) for the adaptive lasso procedure. A more

refined statement of Theorem 2 in terms of the quantities ‖ΓT ‖∞ and ‖Σ−1SS‖∞,

similar to that of Theorem 1, is possible, although we have stated the present

version for simplicity and interpretability.

5. Further Topics

5.1. Adaptive, non-linear models

We can extend our basic model (2.2) to allow the dependence of Y on the

core set of predictors to be of a more general form:

Y = f(XS) + ε, (5.1)

Xj = XSΓj + εj , j /∈ S. (5.2)

Here f(·) is a general, non-linear function. For this model, we can estimate hub

weights sj as before and then apply a more flexible prediction procedure, such as

random forests or gradient boosting, using the sj as feature weights. With ran-

dom forests, the candidate predictors for splitting are chosen at random. Hence it

is natural to implement feature weighting by using the weights to determine the

probabilities in this sampling. For example, the ranger package in R provides

this option.

We tried this idea in the example of Figure 2, with additional interactions

.5x1x2 and −2x2x3 added to the mean of Y , so that there were interactions for

the random forest to find. We used sampling probabilities proportional to s2j . In

Figure 6 we show the ratio of the mean squared error of the hubNet/RF over

that for the vanilla random forest, as the error standard deviation σ is varied.

We see that the hub weights can decrease the mean squared error by as much as

15%.

5.2. Random forests: a drug discovery application

We consider classification data collected by the NCI, described in Feng et al.

(2003) and analyzed further in Chipman, George and McCulloch (2010). It

consists of p = 266 molecular characteristics of n = 29,374 compounds, of which

542 were classified as active (Y = 1). These predictors represent topological
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Figure 6. MSE ratio of the hub-weighted random forest to the standard random forest,
for varying error standard deviation.

Figure 7. Results for drug discovery dataset. Left panel show out-of-bag error and
test error for vanilla random forest (horizontal lines), and the same for hubNet/RF as
a function of the number of features having non-zero hub weights (by varying θ in the
edge-out model). We see that the error increases very little, even as the number of
number of features is reduced to about one-tenth (28) of the total number. These 28
features are indicated by the green lines in the right panel, superimposed on the RF
impurity importance scores for all features.

aspects of molecular structure. We randomly created training and test sets of

equal size, and for computational reasons we downsampled the class 0 cases to a

set of size 2,000 out of the 14,687 class 0s in the training set. We applied both

random forests and hubNet/RF, using the ranger package in R. The results in

Figure 7 show that the hubNet weighting can reduce the number of features by

a factor of about 10 (down to 28) with barely any loss in accuracy, and these
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28 features would not be detectable from standard RF importance scores (right

panel).

6. Discussion

We have proposed a procedure, hubNet, that is applicable to many super-

vised learning problems. The procedure estimates “hub weights” from the matrix

of predictor values and then uses these weights in a supervised learning method

such as the lasso or random forest.

HubNet provides a way of utilizing structural information in the predictors,

and it can yield more accurate prediction and support recovery in certain situ-

ations known to be hard if we neglect such knowledge. Since the estimation of

weights is done in an unsupervised manner, both standard cross-validation and

recently developed post-selection inference tools can be applied in the weighted

fitting step. We observe in practice that this new procedure can sometimes yield

lower prediction error than the unweighted approach, or give similar prediction

error using fewer features. Moreover, the estimation of the hub structure can

also be useful for interpretation.

Further work is needed in making the edge-out algorithm for hub estimation

more efficient, so that it can be applied to very large datasets. An R language

for hubNet will soon be available on the public CRAN repository.

Supplementary Materials

This material contains: (i) the optimization algorithm for the edge-out

model; (ii) proofs for Theorems 1 and 2; (iii) simulation comparisons between

hubNet and other methods; (iv) comparisons between the edge-out model and

hglasso.
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