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Abstract: In this paper, we develop new fast algorithms for envelope estimation

that are stable and can be used in contemporary complex envelope estimation

problems. Under the sequential 1D envelope algorithm framework of Cook and

Zhang (2016), we develop an envelope coordinate descent (ECD) algorithm that is

shown to be much faster than the existing 1D algorithm without loss of accuracy.

We also propose a novel class of envelope component screening (ECS) algorithms

that serve as a screening step that can further significantly speed computation and

that shows promise as precursor methodology when n ≤ p. The ECD and ECS

algorithms have both shown promising performance in extensive simulation studies

and a data analysis.
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1. Introduction

The notion of an envelope was introduced by Cook, Li and Chiaromonte

(2010) for response reduction in multivariate linear models, subsequently studied

by Cook, Helland and Su (2013) for predictor reduction where they connected en-

velopes with partial least squares regression, and recently combined with reduced-

rank regression by Cook, Forzani and Zhang (2015). Envelope methods increase

efficiency in estimation and improve prediction by enveloping the information in

the data that is material to estimation, while excluding the information that is

immaterial. The improvement in estimation and prediction can be quite substan-

tial, as illustrated by many studies in the literature. Envelope methodology has

been adapted to allow simultaneous response and predictor reduction in mul-

tivariate linear regression (Cook and Zhang (2015b)), extended beyond linear

regression models to generic multivariate parameter estimation problems (Cook

and Zhang (2015a)), and to tensor (multi-dimensional array) regression in neu-

roimaging applications (Li and Zhang (2016); Zhang and Li (2016)).

An envelope is a subspace onto which we project the multivariate parameter

vector, matrix or tensor. For a given envelope dimension u, the construction
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of an envelope typically involves a non-convex optimization problem over a u-

dimensional Grassmannian. Such optimization requires a good starting value,

an initial guess of the manifold, and can be very expensive computationally.

Cook and Zhang (2016) proposed a relatively fast and stable envelope algorithm

called the 1D algorithm, which breaks down the u-dimensional Grassmannian

optimization to a sequence of u one-dimensional optimizations. The 1D algorithm

requires no initial guess, yields
√
n-consistent estimators under mild conditions

and was demonstrated to be much faster than a commonly used algorithm based

on direct optimization over the appropriate Grassmannian, which is the basis for

the envlp toolbox of Cook, Su and Yang (2015).

The recent advances in adapting envelopes to ever more complex settings

come with added computational burdens. While existing algorithms can be ap-

plied in these contemporary contexts, computational speed is a major obstacle.

Our overarching goal is to provide fast envelope algorithms without sacrificing

significantly on accuracy. Here, we propose a screening algorithm, called en-

velope component screening (ECS), that reduces the original dimension p to

a manageable dimension d ≤ n, without losing notable structural information

on the envelope; we design an envelope coordinate descent (ECD) algorithm

that can be incorporated into the 1D algorithm framework and that stabilizes

and significantly speeds up the existing 1D algorithm without loss of any ac-

curacy and potentially improves the accuracy. These algorithms can be imple-

mented straightforwardly, we have posted our Matlab code at the author’s web-

site (http://ani.stat.fsu.edu/~henry/Software.html), along with a simple tutorial

about how to use and modify the code (e.g. changing the tolerance level and the

maximum number of iterations).

The rest of the paper is organized as follows. In Section 2, we review the basic

definition and properties of envelopes, envelope regression, and the 1D envelope

algorithm. In Section 3, we develop the ECS and the ECD algorithms and their

variants. Section 4 contains some simulation studies and a data analysis from

near-infrared spectroscopy. Proofs are included in the Online Supplementary

Materials.

The following notations and definitions are used in our exposition. Let Rm×n

be the set of all real m × n matrices and let Sp×p be the set of all real p × p
symmetric matrices. The Grassmannian consisting of the set of all u-dimensional

subspaces of Rp, u ≤ p, is denoted as Gp,u. If M ∈ Rm×n, then span(M) ⊆ Rm

is the subspace spanned by columns of M. We use PA ≡ PA = A(ATA)−1AT

to denote the projection onto A ≡ span(A) and let QA = I − PA denote the

http://ani.stat.fsu.edu/~henry/Software.html
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projection onto the orthogonal complement subspace A⊥.

2. A Brief Review of Envelop Estimation

2.1. Definition of an envelope

In this section we briefly review definitions and some properties of reducing

subspaces and envelopes.

Definition 1. A subspace R ⊆ Rp is said to be a reducing subspace of M ∈ Rp×p

if R decomposes M as M = PRMPR + QRMQR. If R is a reducing subspace

of M, we say that R reduces M.

This definition of a reducing subspace is equivalent to the usual definition

found in functional analysis (Conway (1990)), and in the literature on invariant

subspaces, but the underlying notion of reduction is incompatible with how it

is usually understood in statistics. Nevertheless, it is common terminology in

those areas and is the basis for the definition of an envelope, see Cook, Li and

Chiaromonte (2010); Cook and Zhang (2015a) for example, which is central to

our developments.

Definition 2. Let M ∈ Sp×p and let U ⊆ span(M). Then the M-envelope of U ,

denoted by EM(U), is the intersection of all reducing subspaces of M that contain

U .

The intersection of two reducing subspaces of M is still a reducing subspace

of M. This means that EM(U), which is unique by its definition, is the smallest

reducing subspace containing U . Also, the M-envelope of U always exists because

of the requirement U ⊆ span(M). If span(U) = U for some matrix U, then we

write EM(U) := EM(U) to avoid notation proliferation. We let E⊥M(U) denote

the orthogonal complement of EM(U).

A result from Cook, Li and Chiaromonte (2010) gives a characterization of

envelopes.

Proposition 1. If M ∈ Sp×p has q ≤ p eigenspaces, then the M-envelope of U ⊆
span(M) can be constructed as EM(U) =

∑q
i=1 PiU , where Pi is the projection

onto the i-th eigenspace of M.

If the eigenvalues of M are distinct so q = p then it follows from this propo-

sition that the M-envelope of U is the sum of the eigenspaces of M that are

not orthogonal to U . This implies that when q = p the envelope is the span of

some subset of the eigenspaces of M. In the regression context, U is typically
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the span of a regression coefficient matrix or a matrix of cross-covariances, and

M is chosen as a covariance matrix which is usually positive definite.

2.2. The 1D algorithm

In this section, we review the 1D algorithm (Cook and Zhang (2016)), in

terms of estimating a generic envelope EM(U), where M > 0 and U ≥ 0 are

both in Sp×p. Then span(U) ⊆ span(M) = Rp and the envelope is well-defined.

A generic objective function F was proposed by Cook and Zhang (2016) for

estimating EM(U):

F(G) = log |GTMG|+ log |GT (M + U)−1G|, (2.1)

where G ∈ Rp×u is semi-orthogonal with given envelope dimension 0 ≤ u ≤ p.

Since F(G) = F(GO) for any orthogonal u×u matrix O, the minimizer of F(G)

is not unique and the above optimization is essentially over Gp,u. However, we

are interested only in the span of the minimizer, which is unique as shown in the

following proposition from Cook and Zhang (2016).

Proposition 2. Let Γ̃ be any minimizer of F(G). Then span(Γ̃) = EM(U).

When u is large, the minimization of (2.1) can be computationally expen-

sive and it requires a good initial value to avoid local minima. Algorithm 1

summarizes the 1D algorithm which breaks down the optimization of (2.1) to

“one-direction-at-a-time”. We review the
√
n-consistency of Algorithm 1 that

was established by Cook and Zhang (2016) and is the theoretical foundation to

the
√
n-consistency of our ECD algorithm (Corollary 2).

Algorithm 1 The 1D algorithm (Cook and Zhang, 2016).

Let gk ∈ Rp, k = 1, . . . , u, be the sequential directions obtained. Let Gk = (g1, . . . ,gk),
let (Gk,G0k) be an orthogonal basis for Rp and set initial value g0 = G0 = 0.
For k = 0, . . . , u− 1, repeat Step 1 and 2 in the following.

1. Let Gk = (g1, . . . ,gk), and let (Gk,G0k) be an orthogonal basis for Rp. Set
Nk = [GT

0k(M + U)G0k]−1, Mk = GT
0kMG0k and the unconstrained objective

function
φk(w) = log(wTMkw) + log(wTNkw)− 2 log(wTw). (2.2)

2. Solve wk+1 = arg minφk(w), then the (k + 1)-th envelope direction is gk =
G0kwk+1/‖wk+1‖.

Theorem 1. Suppose M > 0, U ≥ 0 and M̂ and Û are
√
n-consistent estimators

for M and U. Let Ĝu denote the estimator obtained from Algorithm 1 with M̂, Û
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and the true envelope dimension u. Then PĜu
is
√
n-consistent for the projection

onto EM(U).

2.3. Envelope regression and parameter estimation

In the multivariate linear regression context of Y = α+βX+ε, the envelope

EM(U) is constructed based on whether we want to reduce the predictors (Cook,

Helland and Su (2013)), or the response variables (Cook, Li and Chiaromonte

(2010)), or even both sets of variables simultaneously (Cook and Zhang (2015b)).

Then M is chosen to be the covariance matrix of X, ΣX ≡ cov(X), or the

conditional covariance of Y given X, Σ ≡ cov(Y | X) = cov(ε), or the direct sum

of the two, ΣX⊕Σ. Accordingly, U may be chosen as βTβ, ββT , or βTβ⊕ββT .

When additional structural information is available, the envelope construction

can be adjusted to gain more efficiency. For instance, a partial envelope (Su and

Cook (2011)), is used when only a subset of predictors is of special interest. A

reduced-rank envelope (Cook, Forzani and Zhang (2015)), is appropriate when

regression coefficient matrix β is rank deficient and multivariate reduced-rank

regression is preferred over ordinary least squares regression. See Cook and

Zhang (2016) for an introductory example of the working mechanism of envelope

regression and for a more detailed discussion of the connections between various

envelopes and the choice of M and U. Beyond regression models, envelope

estimation is a way to improve estimative efficiency in multivariate parameter

estimation problems, as described by Cook and Zhang (2015a). In this more

general context, the envelope can still be estimated from objective function (2.1)

with different choices for M and U.

3. Two Envelope Component-Wise Algorithms

In this section, we introduce two moment-based and model-free envelope

algorithms: an envelope component screening (ECS) algorithm and an envelope

coordinate descent (ECD) algorithm. The ECS algorithm allows for screening out

eigenvectors of M lying in E⊥M(U). Since the ECS algorithm is computationally

efficient and robust, it is applicable to situations where n . p or even n � p

and it reduces the dimension p to a lower dimension d < n such that the 1D

algorithm is applicable. The ECD algorithm, on the other hand, is a refined

algorithm that is adapted into the 1D algorithm framework and speeds up each

iteration of the 1D algorithm. In this section, we assume that M > 0 and U ≥ 0

in all the algorithmic and theoretical results.
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3.1. The ECS algorithm

Here and in later statements we use the objective function F(·) defined at

(2.1), but we no longer require the column dimension of its argument to be a

given envelope dimension.

Proposition 3. Let A be a semi-orthogonal basis matrix for any reducing sub-

space of M and let (A,A0) ∈ Rp×p be an orthogonal matrix. Then F(A0) ≤ 0,

and F(A0) = 0 if and only if span(U) ⊆ span(A). In addition, if F(A0) = 0

then EM(U) = AEAT MA(ATUA).

Proposition 3 provides support for the moment-based objective function

(2.1), and it inspired a way of detecting and eliminating components in E⊥M(U):

if we can find an A0 such that F(A0) = 0 then Proposition 3 implies that

EM(U) ⊆ span(A) and that we can find EM(U) by pursuing the lower dimen-

sion envelope EAT MA(ATUA). Thus, Proposition 3 provides a foundation for

eliminating parts of E⊥M(U) by maximizing F(A0) over the reducing subspaces

of M. In the extreme, if we can find A0 ∈ Rp×(p−u) satisfying F(A0) = 0, then

EM(U) = span(A) because u is the dimension of the envelope.

Proposition 3 inspired the ECS algorithm to facilitate envelope estimation

by enabling us to estimate a u-dimensional envelope within a smaller space Rd

instead of Rp, where u ≤ d < p. We state the population version of the ECS algo-

rithm in Algorithm 2, while the sample version uses estimators M̂ and Û instead

of M and U. Step 1 of the ECS algorithm constructs an eigen-decomposition

of M. Step 2 of the algorithm orders the eigenvectors of M by their value of

F(vi), where F is as defined in (2.1). The value fi ≡ F(vi) can be viewed as a

negative pseudo-log-likelihood, which achieves its maximum of zero if and only if

vi ∈ E⊥M(U). Hence the ordered series f(p) ≤ · · · ≤ f(1) ≤ 0 in Step 2 ranks v(i)

in terms of their “closeness” to E⊥M(U). Steps 3 and 4 of Algorithm 2 then deter-

mine a partition of (A,A0), where span(A) contains the envelope and span(A0)

lies within the orthogonal complement of the envelope. Then A0 is discarded

and we pursue envelope estimation via AEAT MA(ATUA).

Proposition 4. In the population ECS algorithm,

f(p) ≤ · · · ≤ f(p−ũ+1) < f(p−ũ) = · · · = f(1) = 0,

where ũ satisfies u ≤ ũ ≤ p and is the number of eigenvectors from the eigen-

decomposition M =
∑p

i=1 λiviv
T
i (Step 1; Algorithm 2) that are not orthogonal to

span(U). Moreover, if d ≥ ũ is used in the algorithm then AEAT MA(ATUA) =

EM(U).
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Algorithm 2 The envelope component screening (ECS) algorithm.

1. Construct an eigenvalue decomposition of M as M =
∑p

i=1 λiviv
T
i , where vT

i vj

equals 1 if i = j and 0 otherwise.

2. Evaluate fi = F(vi) = log(λi) + log(vT
i (M + U)−1vi), and then order then as

f(p) ≤ · · · ≤ f(1) ≤ 0 with corresponding v(i).

3. Let A0 = (v(1), . . . ,v(p−d))
T and A = (v(p−d+1), . . . ,v(p)) ∈ Rp×d with a pre-

specified number d.

4. Estimate EM(U) as AEAT MA(ATUA).

Proposition 4 has two implications. First, the u-dimensional envelope is

contained within the span of ũ eigenvectors of M that satisfies fi = F(vi) < 0,

whereas the other eigenvectors have fi = 0. Secondly, for d ≥ ũ, the ECS estimate

of the envelope is indeed the original envelope in the population, AEAT MA(ATU

A) = EM(U). Thus, the ECS envelope estimator is Fisher consistent as long as

the dimension d in the ECS algorithm is specified no less than the number ũ.

Since ũ ≥ u, we need to specify d such that d ≥ ũ ≥ u.

We have introduced ũ because of an identification issue related to the eigen-

vectors of M. To gain intuition about this issue, let (Γ,Γ0) ∈ Rp×p be an

orthogonal matrix, where Γ ∈ Rp×u is a basis matrix for EM(U). Then we can

write M = ΓΩΓT + Γ0Ω0Γ
T
0 and U = ΓΦΓT , where Ω,Ω0 > 0 and Φ ≥ 0.

If there is an eigenvalue of M corresponding to a two-dimensional eigenspace

spanned by eigenvectors u ∈ span(Γ) and w ∈ span(Γ0), then F(u) > 0 and

F(w) = 0. However, because the eigen-decomposition is not unique, for this par-

ticular eigenvalue we may also get eigenvectors v1 = u + w and v2 = u−w that

lie in neither span(Γ) nor span(Γ0), and thus F(v1) > 0 and F(v2) > 0. An ex-

treme case is M = Ip, if we form eigenvectors of M as columns of (Γ,Γ0) ∈ Rp×p,

(v1, . . . ,vp) = (Γ,Γ0), then F(vi) > 0 for i = 1, . . . , u and F(vi) = 0 for i =

u+ 1, . . . , p. On the other hand, any orthogonal matrix O = (o1, . . . ,op) ∈ Rp×p

forms a set of eigenvectors for M = Ip but it is possible that F(oi) > 0 for all

i = 1, . . . , p.

Proposition 5. If M has p distinct eigenvalues, or, if all eigenspaces of M

are contained completely in either EM(U) or E⊥M(U), then u = ũ for any eigen-

decomposition in the ECS algorithm. Depending on the particular eigen-decom-

position in the ECS algorithm, ũ can be any integer from {u, u+ 1, . . . , u+K},
where K is the sum of the dimensions of eigenspaces of M that intersect both

EM(U) and E⊥M(U).
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The number ũ of nonzero fi’s in the ECS algorithm is unique and equal

to u for all possible eigen-decompositions of M when all eigenspaces of M are

contained completely in either EM(U) or E⊥M(U). However, ũ is no longer unique

if some eigenspace of M intersects non-trivially with both EM(U) and E⊥M(U):

some eigen-decomposition yields ũ = u and others may get ũ > u. Since d ≥ ũ is

needed for the Fisher consistency of the ECS algorithm, the dimension reduction

achieved by the ECS algorithm can be somewhere between (p−u) and (p−u−K)

subject to the particular eigen-decompositions.

In the sample version of the algorithm, estimators M̂ and Û are substituted

into Algorithm 2. Let Â and Â0 be the estimators from the sample ECS al-

gorithm. Based on Proposition 3, we want F(Â0) → 0 as n → ∞ so that the

components to be discarded, Â0, are orthogonal to the envelope, and the remain-

ing components of span(Â) converge to a reducing subspace of M that contains

span(U). We have the sample objective function

Fn(Â0) = log |ÂT
0 M̂Â0|+ log |ÂT

0 (M̂ + Û)−1Â0|

available instead of the population objective function F(Â0), so we need to show

Fn(Â0)→ 0 as n→∞ similar to the convergence of F(Â0).

Proposition 6. Suppose M̂ and Û are
√
n-consistent estimators for M > 0 and

U ≥ 0. If d ≥ ũ is used in the sample ECS algorithm, then F(Â0) = Op(n
−1/2)

and Fn(Â0) = F(Â0) +Op(n
−1/2).

The number d serves as an upper bound for the envelope dimension and

does not have to be accurately specified. For instance, if we are estimating

a 10-dimensional envelope in R100, it is usually reasonable to choose d = 50.

In practice, we may adopt a data-driven modification to Step 3 in the sample

ECS algorithm, where the tuning parameter d is selected from the data rather

than pre-specified. Unlike selecting the envelope dimension u using information

criteria or cross-validation, the selection for d is less crucial and is performed with

negligible computational cost. Since Fn(Â0) ≤ 0 is monotonically increasing in

the number of components d, we can select d as the largest number such that

Fn(Â0) > C0 for some pre-specified cutoff value C0 < 0. Because Fn(Â0) goes to

zero at rate
√
n, we could choose C0 to have a smaller order so that no important

components is missed with high probability. Based on our experience, the cutoff

value C0 = −n−1 in Step 3 performs well. We conjecture that the ECS algorithm

is
√
n-consistent if M̂ and Û are

√
n-consistent estimators and the estimation of

E
ÂT M̂Â

(ÂT ÛÂ) at the final step is from any
√
n-consistent envelope algorithm,

1D algorithm or the ECD algorithm in Section 3.3. To further speed computation,
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Fn(Â0) can be well approximated by
∑p−d

i=1 f(i). We illustrate this data-driven

approach for selecting d in the numerical analysis in Section 4, where C0 is chosen

as −n−1 and Fn(Â0) is approximated by
∑p−d

i=1 f(i). We note that C0 = −n−1 is

quite conservative in most cases where d is much bigger than u. We also varied

C0 = −n−0.5 to C0 = −n−1.5 and the results were not sensitive to the choice of

C0.

The ECS algorithm is rather general and can be easily modified for specific

problems of interests, as we discuss in the next section.

3.2. Variations on the ECS algorithm

The following result is a useful implication of Proposition 3.

Corollary 1. Let A be a semi-orthogonal basis matrix for any reducing subspace

of M + U and let (A,A0) ∈ Rp×p be an orthogonal matrix. Then F(A0) ≤ 0,

and F(A0) = 0 if and only if span(U) ⊆ span(A). In addition, if F(A0) = 0

then EM(U) = AEAT MA(ATUA).

Corollary 1 is derived straightforwardly from Proposition 3 by noticing that

if span(A) contains span(U) then it reduces M, which is equivalent to reducing

M + U. It has two key implications. First, we can replace M with M + U in

Step 1 of the ECS algorithm (Algorithm 2), leading to these alternative Steps 1

and 2 of the ECS algorithm.

1. Construct the eigenvalue decomposition of M+U as M+U =
∑p

i=1 λiviv
T
i ,

where vT
i vj equals 1 if i = j and 0 otherwise.

2. Evaluate fi = F(vi) = log(vT
i Mvi)− log(λi), and then order then as f(p) ≤

· · · ≤ f(1) ≤ 0 with corresponding v(i).

Apparently, we no longer need to compute the inverse of M + U in Step 2 of the

ECS algorithm, which can be helpful in high-dimensional settings. Second, in

some applications the eigenvectors of M + U might be more interpretable than

those of M. For example, in multivariate linear regression Y = α + βX + ε,

the matrix M is taken as ΣX for a predictor envelope (Cook, Helland and Su

(2013)). Then the original ECS algorithm, which selects principal components

of X according to its closeness to span(βT ), is essentially a type of supervised

principal component analysis, see Bair et al. (2006); Li, Shen and Huang (2015);

Li et al. (2015) for example. If we are interested in the response envelopes of

Cook, Li and Chiaromonte (2010) then M = Σ = cov(ε) and M + U = ΣY, and

this modified ECS algorithm may be more interpretable because it selects among

principal components of Y.
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Another important variation on the ECS algorithm is for its sample version

when n < p or even n � p. Sample estimators for M and M + U, which are

typically the sample covariance matrices, are substituted in the objective function

(2.1) and in the envelope algorithms. For small sample problems where n < p, the

sample matrices M̂ and M̂ + Û are typically rank deficient with rank n or n− 1

and existing envelope algorithms fail. One easy way to get around the problem

is to follow Proposition 3 and first downsize the envelope estimation of EM(U) to

AEAT MA(ATUA), with the columns of A as nontrivial n or n−1 eigenvectors of

M̂ or M̂+Û. Then the ECS algorithm and other envelope estimation algorithms

can be applied. We demonstrate this in the simulations.

3.3. The ECD algorithm

For each direction wk+1 in the 1D algorithm, we need to minimize φk(w)

iteratively. One way to do this is by a nonlinear conjugate gradient method, for

example the Polak-Ribiere type conjugate gradient (PRCG) and the Fletcher-

Reeves type conjugate gradient (FRCG) methods. Other optimization methods

such as gradient descent, Newton-Raphson and quasi-Newton methods can be

applied as well. PRCG and FRCG methods have better performance from our

experience. If the dimension p is large, these standard methods can be expensive

and inefficient, and, since the objective function φk(w) is non-convex and has

local minima, it may be hard to find an algorithm that stably minimizes it at

each iteration. Here we propose a fast and stable envelope coordinate descent

(ECD) algorithm for solving φk(w). It is much faster than any standard nonlinear

optimization method and is guaranteed to not increase the value of the objective

function at each iteration. Since the ECD algorithm is built within the 1D

algorithm framework, we outline only the part of it for solving φk(w) in (2.2) of

Algorithm 1.

The coordinate descent algorithm can be more efficient when the objective

function is separable in coordinates. We transform the basis to canonical coor-

dinate w 7→ v so that the first term in the objective function is more separable:

log(wTMkw) 7→ log(vTΛv) = log(
∑

i λiv
2
i ). This speeds up the algorithm and

makes the optimization more accurate.

Step 5 in Algorithm 3 approximates the solution to ∂ϕk(v)/∂vj = 0, which

can be written as

2λjvj
vTΛv

+
2
∑p−k

i=1 Ñijvi

vT Ñv
− 4vj

vTv
= 0.

The approximate solution is obtained by treating the denominators vTΛv, vT Ñv
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Algorithm 3 The envelope coordinate descent (ECD) algorithm for solving φk(w).

1. Eigenvalue decomposition of Mk as Mk = VΛVT where V is an orthogonal matrix
and Λ = diag(λ1, . . . , λp−k) is a diagonal matrix.

2. Transform the original objective function into canonical coordinates: v ← VTw,
Ñ← VTNkV and

φk(w) = ϕk(v) = log(vTΛv) + log(vT Ñv)− 2 log(vTv). (3.1)

3. For t = 1, . . . , Tmax, where Tmax is the maximum number of iterations, update v(t)

following Step 4-7 and terminate iteration if ϕk(v(t))−ϕk(v(t−1)) ≤ ε, for some tol-
erance value ε > 0. At the termination, transform back to wk+1 = arg minφk(w) =
Vv.

4. Update a(t) ← (vTΛv)−1, b(t) ← (vT Ñv)−1 and c(t) ← (vvT )−1 according to
current stage v(t).

5. For j = 1, . . . , p − k, if a(t)λj + b(t)Ñjj − 2c(t) 6= 0 then consider moving each
coordinate of v as

v
(t+1)
j ←

∑p−k
i 6=j b

(t)Ñijv
(t)
i

a(t)λj + b(t)Ñjj − 2c(t)
. (3.2)

6. If the objective function is not decreased by moving v
(t)
j to v

(t+1)
j then back up

v
(t+1)
j to v

(t)
j .

7. If none of the coordinates is updated, then run one iteration of any standard
nonlinear optimization method to update v.

and vTv as constants at the current step, and solving the resulting linear equation

in vj from the numerators. Step 6 is then a back-tracking step to make sure

that the objective function is monotonically non-increasing. Step 7 guarantees

that the algorithm will converge because of basic properties of the standard

nonlinear optimization method chosen in Step 7. Thus, this ECD algorithm

has a convergence rate bounded below by the convergence rate of the standard

nonlinear optimization method chosen in Step 7. Our experience suggests that

the approximated solution in Step 5 is usually very close to the true minimizer

for the coordinate.

The
√
n-consistency of the ECD algorithm follows as a result of the 1D

algorithm consistency (Theorem 1) and also because that the ECD algorithm is

guaranteed to solve φk(w) from steps 6–7 of Algorithm 3.

Corollary 2. Suppose M > 0, U ≥ 0 and M̂ and Û are
√
n-consistent sample

estimators for M and U. Let Ĝu denote the estimator obtained from the ECD
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Table 1. Computing time in seconds for each methods with simulated matrices M and U.
Each cell of the table was averaged over 20 runs with standard error in parenthesizes.
The estimation accuracy is ‖PΓ − PΓ̂‖F < 10−6 for every methods at each of these
settings and is thus not reported the table.

ECD 1D ECS (d = u)

(I)
p = 20 3.8 (0.4) × 10−2 7.2 (0.3) 2.6 (0.3) × 10−2

p = 50 2.0 (0.1) × 10−1 2.6 (0.1) × 10 1.5 (0.1) × 10−1

p = 200 9.1 (0.1) 1.7 (0.04) × 102 1.5 (0.01) × 10

(II)
p = 20 3.4 (0.4) × 10−2 4.2 (0.1) × 10 1.0 (0.3) × 10−2

p = 50 1.9 (0.1) × 10−1 1.4 (0.01) × 102 6.8 (0.5) × 10−2

p = 200 8.2 (0.06) 7.0 (0.01) × 102 3.5 (0.02)

(III)
p = 20 4.4 (0.7) × 10−2 3.4 (0.1) × 10 1.6 (0.6) × 10−2

p = 50 2.4 (0.1) × 10−1 4.9 (0.1) × 10 8.2 (0.7) × 10−2

p = 200 8.1 (0.1) 7.2 (0.04) × 102 3.8 (0.04)

algorithm using M̂ and Û where u is the dimension of the envelope. Then PĜu

is
√
n-consistent for the projection onto EM(U).

4. Numerical Studies

In this section, we compare the 1D algorithm to our proposed algorithms. In

the simulated data studies of Section 4.1, because the true envelope structure is

known, we find that there is no significant difference among methods in terms of

accuracy in estimating envelopes and thus we compare the algorithms in terms

of their computation time. The shared estimation accuracy is summarized in

table legends. In the data analysis of Section 4.2, the true envelope structure

is unknown and we compare the methods in terms of cross-validation prediction

mean squared errors (PMSE) and also computation time. The computation was

done on a Windows 7 computer with Intel(R) Core(TM) i5-5300U CPU@2.30GHz

processor, 8.00 GB installed memory (RAM), 64-bit Operating System.

The coordinate descent algorithm can be more efficient when the objective

function is separable in coordinates. Our ECD algorithm thus takes advantage of

the canonical coordinates. However, transformation of the coordinate system has

little effect on the 1D algorithm solved by any standard nonlinear optimization

methods (such as PRCG).

4.1. Simulated data

In this section, we consider the problem of estimating a generic envelope

EM(U), where matrices were generated as
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M =


ΓΩΓT + Γ0Ω0Γ

T
0 , Model I,

ΓΓT + 0.01Γ0Γ
T
0 , Model II,

0.01ΓΓT + Γ0Γ
T
0 , Model III,

U = ΓΦΓT , for all models,

where Γ ∈ Rp×u was randomly generated by first filling in with random num-

bers from the Uniform (0, 1) distribution and then transforming so that Γ is

semi-orthogonal, Γ0 ∈ Rp×(p−u) was the completion of Γ such that (Γ,Γ0) was

orthognal, Ω was generated as AAT ≥ 0, where A had the same size of Ω and

was filled in with random numbers from Unifrom (0, 1), Ω0 and Φ were both

generated in the same way as Ω with A matching the dimensions of Ω0 and Φ.

Finally, to guarantee M > 0 in Model I, we added 0.00001Ip to M after it was

simulated.

The first set of simulations compares the methods primarily on the time it

takes to recover the envelope in the population, using the true values for M and

U in the objective function F . For each of the three models, we fixed u = 5 and

generated 20 pairs of M and U for each of the three dimensions, p = 20, 50, and

200. Three methods are to be compared here: ECD algorithm; 1D algorithm;

ECS algorithm with d = u components selected. The ECS method worked as a

stand-along method because M and U were population quantities. We recorded

the estimation error, the Frobenius norm ‖PΓ −PΓ̂‖F , and also the computing

time for each run. The results were summarized in Table 1. All three methods

had the same accuracy in these settings, since we used appropriate tolerance and

maximum iteration numbers, the estimation errors were simply due to rounding

errors in the program. In terms of computation time, ECS and ECD were equally

fast, and about a hundred times faster than the 1D algorithm.

In the next set of simulations we applied the algorithms to estimates M̂ ∼
Wp(M/n, n) and Û ∼Wp(U/n, n) instead of their population counterparts M

and U. The Wishart distribution mimics the linear regression model settings.

We chose n = 100 and varied p as 20, 50, and 2,000 to mimic the small (p < n),

moderate (p . n) and high (p� n) dimensional situations.

For p = 20, the ECS algorithm was not needed as both the ECD and 1D

algorithms are fast and accurate for relatively small p. The direct comparison of

the ECD algorithm and the 1D algorithm is summarized in Table 2 where ECD

was at least ten times faster.

For p = 50, the ECD and 1D algorithms are still applicable and the ECS

algorithm can also be used as a preparation step for both 1D and ECD algorithms.
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Table 2. Computing time in seconds using simulated matrices M̂ and Û with p = 20
and n = 100. Each cell of the table was averaged over 100 runs with standard error in
parenthesizes. The estimation accuracies ‖PΓ−PΓ̂‖F for the three models are 0.42, 1.20
and 0.14, respectively, and there was no significant difference between any two methods
at any of the three settings. Therefore, estimation accuracy is not reported the table.

Models (I) (II) (III)
ECD 0.20 (0.01) 0.09 (0.01) 0.145 (0.01)
1D 4.28 (0.07) 2.35 (0.04) 1.65 (0.02)

Table 3. Computing time in seconds using simulated matrices M̂ and Û with p = 50
and n = 100. Each cell of the table was averaged over 100 runs with standard error in
parenthesizes. The estimation accuracies ‖PΓ−PΓ̂‖F for the three models are 0.98, 1.94
and 0.29, respectively, and there was no significant difference between any two methods
at any of the three settings. Therefore, estimation accuracy is not reported the table.

Time
ECS selected d

Models ECD 1D ECS-ECD ECS-1D
(I) 0.56 (0.02) 12.19 (0.08) 0.62 (0.02) 11.94 (0.08) 47.0 (0.1)
(II) 0.45 (0.01) 9.46 (0.10) 0.42 (0.01) 8.78 (0.09) 39.9 (0.2)
(III) 0.74 (0.02) 6.59 (0.05) 0.14 (0.01) 0.14 (0.01) 5 (0)

We chose d based on the cut-off value C0 = −n−1 as discussed in Section 3.1.

The results are summarized in Table 3. Again, the ECD algorithm improved over

the 1D algorithm, with and without the preparation step by ECS algorithm. For

Models (I) and (II), the ECS algorithm only eliminated a few components so that

the results did not change much with the ECS algorithm. For Model (III), the

ECS algorithm selected d equal to the envelope dimension u every time, implying

a clear envelope structure from the data and thus estimating it as accurate as

the 1D or ECD algorithms. The results were summarized in Table 3.

For p = 2,000, the ECD and 1D algorithms are no longer straightforwardly

applicable. We used the ECS algorithm to first reduce the dimension from p =

2,000 to n = 100 and then applied the ECD and 1D algorithms on the reduced

data. We also applied the ECS-ECD and ECS-1D on the reduced data with d

selected from the data. Because the ECS step of reducing the dimension from

2,000 to 100 was the more costly step, we extracted the computing time of this

step as ECSn in Table 4. The estimation accuracy ‖PΓ−PΓ̂‖F for Model (III) was

3.16 for all methods because the immaterial part Γ0Γ
T
0 dominated the material

part 0.01ΓΓT in M and there was no estimable information from the data – the

sample version M̂ lay mostly within span(Γ0) as n < p. Therefore, the ECS

algorithm also suggested d = 0 for this situation.
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Table 4. Computing time in seconds using simulated matrices M̂ and Û with p = 2,000
and n = 100. Each cell of the table was averaged over 100 runs with standard error
in parenthesizes. The ECSn is the pre-process step of applying the ECS algorithm to
reduce the dimension from p = 2,000 to d = n = 100. Then we recorded the computing
time of the four methods (ECD, 1D, ECS-ECD and ECS-1D) applied on the reduced
data. The estimation accuracies ‖PΓ −PΓ̂‖F for the three models are 1.31, 1.45, 3.16,
respectively, and there was no significant difference between any two methods at any of
the three settings. Therefore, estimation accuracy is not reported the table.

Time
ECS selected d

Models ECD 1D ECS-ECD ECS-1D ECSn

(I) 0.92 (0.01) 5.64 (0.05) 1.15 (0.01) 5.12 (0.06) 9.20 (0.03) 86.9 (0.2)
(II) 0.86 (0.01) 4.62 (0.07) 0.54 (0.01) 1.39 (0.03) 9.45 (0.03) 40.8 (0.4)
(III) NA NA 0.72 (0.01) 62.13 (0.76) 9.24 (0.04) 0 (0)

4.2. Data analysis

We revisited the meat protein data set from Cook, Helland and Su (2013)

and Cook and Zhang (2016). Following these previous studies, we used the

protein percentage of n = 103 meat samples as the univariate response variable

Yi ∈ R1, i = 1, . . . , n, and used the corresponding p = 50 spectral measurements

from near-infrared transmittance at every fourth wavelength between 850nm and

1050nm as the predictor Xi ∈ Rp. The linear regression model was built as

Yi = α+βXi+εi with the envelope EΣx
(βT ) in the predictor space (Cook, Helland

and Su (2013)). If M = ΣX|Y = ΣX − ΣXY Σ−1Y ΣT
XY > 0 and M + U = ΣX,

then we can obtain the normal likelihood-based objective function by substituting

the corresponding sample covariance matrices M̂ and M̂ + Û into (2.1). Given

the envelope dimension u, we used M̂ and Û with various algorithms to get

estimators of an envelope basis, denoted as Γ̂. Then the envelope estimator

for the regression coefficient matrix was written as β̂T = Γ̂(Γ̂T Σ̂XΓ̂)−1Γ̂T Σ̂XY

and the response was predicted as Ŷ ∗ = µ̂Y + β̂(X∗ − µ̂X), where µ̂Y and µ̂X

are the sample means from observed data (or from the training data set) and

X∗ denotes new independently observed data. Varying envelope dimension u

from 1 to 25 and using five-fold cross-validation prediction mean squared error

and computation time as two criteria (Cook and Zhang (2016)) compared the

1D envelope estimator based on Algorithm 1 with OLS and envelope estimator

from full Grassmannian (FG) optimization. Their results showed both envelope

estimators to be uniformly superior to OLS and that the 1D envelope estimator

was superior to the FG envelope estimator on the two criteria: the computation

time for the 1D estimator was 10 to 100 times faster than the FG estimator and
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Figure 1. Meat Protein Data: prediction mean squares error comparison.

the prediction error of the 1D estimator was always less than or equal to that

of the FG estimator for all the values of u from 1 to 25. We next compare the

proposed algorithms only to the “best available” method: the 1D algorithm.

We randomly split the data into a testing sample and a training sample in

a 1:4 ratio and recorded the prediction mean squared errors (PMSE) and the

computation time for fitting each envelope basis at each of the 25 envelope di-

mensions. This procedure was then repeated 100 times and the results averaged.

Similar to the simulation studies in Table 3, we compared the four envelope es-

timators: ECD, 1D, ECS-ECD, and ECS-1D. For the ECS-ECD and ECS-1D

estimators we used the ECS algorithm to screen the 50 components down to the

data-driven d, which was 34.2 on average with 0.2 standard error.

Figure 1 summarizes the PMSE comparison. The ECD algorithm was again

proven to be the most reliable one. The differences between the 1D and the ECD

estimators were due to the convergence of algorithms on some of the 100 training

data sets. The ECD algorithm is less sensitive to peculiar local optima, while

the 1D algorithm seems often trapped in those local optima. In this data set,

there appears to be many local optima mainly due to two reasons: the number

of predictors p = 50 is close to the training set sample size 83; the correlation

among the predictors is very high. From the absolute values of the p×(p−1)/2 =

1,225 pairwise sample correlations, we find 53 of them are bigger than 0.99 where

the largest one is 0.9999. Comparing ECS-ECD to ECD, it is clear that the ECS

algorithm sacrificed accuracy for computational efficiency and fewer components

in the model. However, because of fewer components, the ECS-1D algorithm

actually improved over the 1D algorithm. For u = 2, we summarize all the PMSE

on 100 testing sets using a side-by-side boxplot in the Supplementary Materials,

where the 1D algorithm is clearly outperformed by our proposed estimators using
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Figure 2. Meat Protein Data: computing time comparison.

either means or quantiles of the 100 PMSE as criteria.

Figure 2 summarizes the computing time comparison. The ECD algorithm

was at least 10 times faster than the 1D algorithm across all the envelope dimen-

sions. The ECS algorithm improved the 1D algorithm by roughly doubling its

speed, and it improved the ECD algorithm speed even more drastically, some-

times more than 10 times faster. This can be explained by the fact that both

the ECD and the ECS algorithms work on the same envelope components or

coordinates, which were the principal components of the 50 predictors in this

application, and that variables in this data set are highly correlated leads to an

even faster convergence of the ECS-ECD algorithm.

If we consider choosing the envelope dimension from 1 to 25 using 5-fold

cross-validation, then we need 25× 5 = 125 individual envelope model fits. The

1D algorithm took a total of about 11.5 minutes to finish the optimization, while

the faster ECD algorithm needs only 0.5 minutes to reach the same conclusion.

If we choose the ECS-ECD approach, it is even faster, with just 0.067 minutes for

all the envelope estimations. While these differences might not seem very large,

applied work may often require much more computation. We may wish to use

averages over multiple five-fold cross validations to gain a more reliable picture

of relative prediction errors, we might use the bootstrap to estimate standard

errors or for estimators based on bootstrap smoothing, or we might wish to carry

out computations for all possible envelope dimensions. Iterating over alternating

envelope fits might be required in some problems, as in envelopes for simultaneous
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response and predictor reduction (Cook and Zhang (2015b)). For instance, if we

decided for the meat analysis to use averages over 10 five-fold cross validations,

250 bootstrap samples and all envelope dimensions, the computation time could

range from about 80 days for the 1D algorithm to a half day for the ECS-ECD

algorithm.

5. Discussion

In this paper, we proposed two computational tools to speed up the non-

convex Grassmannian optimization that appears in the estimation of almost all

envelope models, for example (Cook, Li and Chiaromonte (2010); Su and Cook

(2011); Cook, Helland and Su (2013); Cook and Zhang (2015a); Li and Zhang

(2016); Zhang and Li (2016)). The ECD and the ECS algorithms were developed

based on the idea that the iterative non-convex optimization steps in envelope

estimation could be replaced by crude or approximated solutions after transform-

ing the coordinates. These algorithms can also be applied to estimate a general

envelope provided the objective function F is reasonable. The general approach

may also be adapted to Grassmannian optimizations that arise in other multi-

variate statistical context like likelihood acquired directions (Cook and Forzani

(2009)).

Supplementary Materials

The online Supplementary Materials (PDF) contain technical details and

some additional numerical results.
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