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S1 Proofs of Theorem 1 and 2

Without loss of generality, in the following we let Γ∗ = {1, · · · , s} and

β∗ = (β∗T1 , 0T )T . Correspondingly, we partition Zi and xi as

Zi =

 Z11
i Z12

i

Z21
i Z22

i

 and xi = (x1T
i , x

2T
i )T ,

where Z11
i is an s × s symmetric matrix and Z22

i is a (p − s) × (p − s)

symmetric matrix. For convenience, we also denote

L̃n(β1) :=
n∑
i=1

(yi − βT1 Z11
i β1 − x1T

i β1)2 + λn‖β1‖qq

and C1 = 2c+ 3
√

(σ2 + 1)/c1.

We first prove some lemmas.
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Lemma S1.1. Let {wn} be a sequence of real numbers and assume that

{bn} and {Bn} are two sequences of positive numbers tending to infinity. If

Bn ≥
n∑
i=1

w2
i and

bn√
Bn

max
1≤i≤n

|wi| → 0,

then, for any τ > 0,

lim sup
n→∞

b−2
n logP

(
|

n∑
i=1

wiεi| > bn
√
Bnτ

)
≤ − τ 2

2σ2
,

or

P
(
|

n∑
i=1

wiεi| > bn
√
Bnτ

)
≤ exp

(
− b2

nτ
2

2σ2
+ o(b2

n)
)
.

Proof. Based on the similar method proof to that of Lemma 3.2 in Fan,

Yan and Xiu (2014), it is easy to show it and so is omitted.

Lemma S1.2. Assume that Conditions 1-2 and 4 hold. Let {an} be a

sequence of positive numbers satisfying (3.8) and (3.9). Then for any τ > 0,

P
( 1

an
√
n

sup
u∈S
‖

n∑
i=1

(Z11
i u+ x1

i )εi‖ > τ
)
≤ exp

(
− a2

nτ
2

2c2σ2
+ o(a2

n)
)
.

Proof. Let A = {v ∈ Rs : ‖v‖ ≤ 1} and denote rn = 1/n. Then by Lemma

14.27 in Bühlmann and Van De Geer (2011), we have

A ⊆
mn⋃
j=1

B(vj, rn),

where mn = (1 + 2n)s and B(uj, rn) = {v ∈ Rs : ‖v − vj‖ ≤ rn, vj ∈ A}

for j = 1, · · · ,mn. By the similar method to the proof the second result of



S1. PROOFS OF THEOREM 1 AND 2

Lemma 5.1 in Fan, Yan and Xiu (2014), we use Lemma S1.1 with Bn = nc2

and bn = an to obtain that for any τ1 > 0 and ε1 ∈ (0, τ1/2),

P
( 1

an
√
n
‖

n∑
i=1

(Z11
i u+ x1

i )εi‖ > τ1

)
≤ mn exp

(
− a2

n(τ1 − ε1)2

2c2σ2
+ o(a2

n)
)
.(S1.1)

Further, denote r′n = C1

√
s/n. Again, by Lemma 14.27 of Bühlmann

and van de Geer (2011), we have

S ⊆
mn⋃
j=1

B(uj, r
′
n),

where B(uj, r
′
n) = {u ∈ Rs : ‖u − uj‖ ≤ r′n, uj ∈ S} for j = 1, · · · ,mn.

Analog to (S1.1) we obtain that for any ε ∈ (0, τ/2) and ε1 ∈ (0, (τ − ε)/2),

P
( 1

an
√
n

sup
u∈S
‖

n∑
i=1

(Z11
i u+ x1

i )εi‖ > τ
)
≤m2

n exp
(
− a2

n(τ − ε− ε1)2

2c2σ2
+ o(a2

n)
)
.

From (3.8) we conclude that a−2
n logm2

n = a−2
n

(
s log(1 + 2n)

)
→ 0, which

together with the above inequality implies that

lim sup
n→∞

a−2
n logP

( 1

an
√
n

sup
u∈S
‖

n∑
i=1

(Z11
i u+ x1

i )εi‖ > τ
)
≤ −(τ − ε− ε1)2

2c2σ2
.

Since ε and ε1 are arbitrary, we have for large enough n,

P
( 1

an
√
n

sup
u∈S
‖

n∑
i=1

(Z11
i u+ x1

i )εi‖ > τ
)
≤ exp

(
− a2

nτ
2

2c2σ2
+ o(a2

n)
)
.

Lemma S1.3. Under the assumptions of Lemma S1.2, there exists β̂1 =

arg minβ1∈Rs L̃n(β1) such that

P
(
‖β̂1 − β∗1‖ ≤ rn

)
≥ 1− exp

(
− (1 + c2

1/4)a2
n

2c2σ2
+ o(a2

n)
)
. (S1.2)
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Proof. To show the existence of minimizer β̂1, we consider the level set{
β1 ∈ Rs : L̃n(β1) ≤ L̃n(β∗1)

}
. It is apparent that

inf
β1∈Rs

L̃n(β1) = inf
β1∈{β1∈Rs:L̃n(β1)≤L̃n(β∗1 )}

L̃n(β1).

Since L̃n(·) is continuous and the level set is non-empty and closed, L̃n(·)

has at least one minimizer β̂1 in the level set.

Now we prove (S1.2). For notational convenience, we denote Ẑ =

(Ẑ1, · · · , Ẑn), Σ̂n = ẐẐT/n and ε = (ε1, · · · , εn)T , where Ẑi = Z11
i (β̂1 +

β∗1) +x1
i . Obviously, Condition 1 implies that Σ̂n is invertible. Then by the

definition of β̂1 we have L̃n(β̂1) ≤ L̃n(β1) for any β1 ∈ Rs, which implies

n∑
i=1

ε2
i + λn

s∑
j=1

|β∗1j|q ≥
n∑
i=1

(
εi − (β̂1 − β∗1)T Ẑi

)2

+ λn

s∑
j=1

|eTs,jβ̂1|q

=
n∑
i=1

ε2
i − 2(β̂1 − β∗1)T Ẑε+ λn

s∑
j=1

|eTs,jβ̂1|q

+ n(β̂1 − β∗1)T Σ̂n(β̂1 − β∗1)

and therefore

n(β̂1 − β∗1)T Σ̂n(β̂1 − β∗1) ≤ 2(β̂1 − β∗1)T Ẑε+ λn

s∑
j=1

(|eTs,jβ∗1 |q − |eTs,jβ̂1|q).(S1.3)

By the similar method to the proof of relation (8) in Huang, Horowitz

and Ma (2008), we conclude from Condition 1, the second convergence of

Condition 4 and the strong law of large number that for large enough n,

‖β̂1 − β∗1‖ ≤ C1

√
s and ‖β̂1 + β∗1‖ ≤ C1

√
s, a.s.
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and

‖β̂1 − β∗1‖2 ≤ 2

nc1

‖β̂1 − β∗1‖‖Ẑε‖+
ηn
nc1

≤ 2C1

√
s

nc1

sup
u∈S
‖

n∑
i=1

(Z11
i u+ x1

i )εi‖+
λnsc

q

nc1

, a.s.,(S1.4)

where ηn = λn
∑s

j=1(|eTs,jβ∗1 |q − |eTs,jβ̂1|q). Therefore,

1 =P
(
‖β̂1 − β∗1‖2 ≤ 2C1

√
s

nc1

sup
u∈S
‖

n∑
i=1

(Z11
i u+ x1

i )εi‖+
λnsc

q

nc1

)
≤P
(
‖β̂1 − β∗1‖2 ≤ 2C1

√
san

c1

√
n

+
λnsc

q

nc1

)
+ P

( 1

an
√
n

sup
u∈S
‖

n∑
i=1

(Z11
i u+ x1

i )εi‖ > 1
)
,

which together with Lemma S1.2 yields that

P(‖β̂1 − β∗1‖ > r′n) ≤ exp
(
− a2

n

2c2σ2
+ o(a2

n)
)
, (S1.5)

where r′n =
(

2C1an
√
s

c1
√
n

+ λnscq

nc1

)1/2
.

Since r′n → 0 as n→∞, it follows that for large enough n,

1

2
|eTs,jβ∗1 | ≤ |eTs,jβ̂1| ≤

3

2
|eTs,jβ∗1 |, j = 1, · · · , s,

when ‖β̂1 − β∗1‖ ≤ r′n. By the mean value theorem and Cauchy-Schwarz

inequality, we have, for large enough n,

ηn ≤ 2cq−1λn
√
s‖β̂1 − β∗1‖

when ‖β̂1 − β∗1‖ ≤ r′n. Combining the above inequality, (S1.3), Cauchy-

Schwarz inequality and Condition 1, we have, for large enough n,

‖β̂1 − β∗1‖ ≤
2

nc1

‖Ẑε‖+
2cq−1λn

√
s

nc1

,
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when ‖β̂1−β∗1‖ ≤ r′n. Therefore it follows from the first inequality of (S1.4)

that for large enough n,

1 =P
(
‖β̂1 − β∗1‖2 ≤ 2

nc1

‖(β̂1 − β∗1)T‖‖Ẑε‖+
ηn
nc1

)
≤P
(
‖β̂1 − β∗1‖ ≤

2

nc1

‖Ẑε‖+
2cq−1λn

√
s

c1n

)
+ P

(
‖β̂1 − β∗1‖ > r

′

n

)
≤P
(
‖β̂1 − β∗1‖ ≤

an√
n

+
2cq−1λn

√
s

c1n

)
+ P

( 1

an
√
n

sup
‖u‖≤C1

√
s

‖
n∑
i=1

(Z11
i u+ x1

i )εi‖ > c1/2
)

+ P
(
‖β̂1 − β∗1‖ > r′n

)
.

Then, by Lemma S1.2 and (S1.5) we have

P(‖β̂1 − β∗1‖ ≥ rn) ≤ exp
(
− a2

n

2c2σ2
+ o(a2

n)
)

+ exp
(
− c2

1a
2
n

8c2σ2
+ o(a2

n)
)
,

which yields

lim sup
n→∞

a−2
n logP(‖β̂1 − β∗1‖ ≥ rn) ≤ − 1

2c2σ2
− c2

1

8c2σ2
.

Thus, we have

P(‖β̂1 − β∗1‖ ≥ rn) ≤ exp
(
− (1 + c2

1/4)a2
n

2c2σ2
+ o(a2

n)
)
,

which yields (S1.2).

Proof of Theorem 1 Denote bn = an+2cq−1λn
√
s√

c1n
and r̃n =

(
an√
n
+2cq−1λn

√
s

c1n

)√
s.

We first show that

λ−1
n r̃1−q

n bn
√
ns→ 0 and λ−1

n r̃2−q
n

√
ns2 → 0, as n→∞. (S1.6)
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The first convergence of (S1.6) follows from the second convergence of Con-

dition 4 and (3.10). Since λns
2/n→ 0, the inequality of Condition 2 implies

that

s3/2

√
n
≤ λns

2

n
·
√
n

λn
≤ λns

2

n

1

σc1−q
√

log p
→ 0, (S1.7)

which yields

λ−1
n r̃2−q

n

√
ns2 = λ−1

n r̃1−q
n bn

√
ns · s

3/2

√
n
→ 0.

For any u = (uT1 , u
T
2 ) ∈ Rp and u1 ∈ Rs, we show that there exists a

sufficiently large constant C̃ such that

P
(
Ln(β̂1, 0) = inf

‖u‖1≤C̃
Ln(β∗1 + r̃nu1, r̃nu2)

)
≥ 1− exp

(
− C0a

2
n + o(a2

n)
)
,

(S1.8)

which implies that with probability 1−exp
(
−C0a

2
n+o(a2

n)
)

that (β̂T1 , 0
T )T

is a local minimizer in the ball {β∗ + r̃nu : ‖u‖1 ≤ C̃}, so that both (3.6)

and (3.7) hold.

Denote ζ1i = Z11
i (2β∗1 + r̃nu1) + x1

i and ζ2i = 2Z21
i (β∗1 + r̃nu1) + x2

i +

r̃nZ
22
i u2, and define event

E1 :=
{
‖

n∑
i=1

ζ2iεi‖∞ ≤ 4((1 + c2))1/2bn
√
ns
}
,

where bn = an + 2cq−1λn
√
s√

c1n
. For any u2 ∈ Rp−s, we show that under event
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E1,

Ln(β∗1 + r̃nu1, r̃nu2) ≥ Ln(β∗1 + r̃nu1, 0). (S1.9)

Clearly, Ln(β∗1 + r̃nu1, r̃nu2) = Ln(β∗1 + r̃nu1, 0) when ‖u2‖1 = 0. We proceed

to show (S1.9) for ‖u2‖1 > 0. It follows that

Ln(β∗1 + r̃nu1, r̃nu2)− Ln(β∗1 + r̃nu1, 0)

= −2r̃n

n∑
i=1

uT2 ζ2iεi + r̃2
n

n∑
i=1

(uT2 ζ2i)
2 + 2r̃2

n

n∑
i=1

uT1 ζ1iu
T
2 ζ2i + λnr̃

q
n‖u2‖qq

≥ −2r̃n

n∑
i=1

uT2 ζ2iεi + 2r̃2
n

n∑
i=1

uT1 ζ1iu
T
2 ζ2i + λnr̃

q
n‖u2‖qq. (S1.10)

We now use the fact that |uTAv| ≤ ‖u1‖1‖Av‖∞ ≤ |A|∞‖u‖1‖v‖1 for

any n × d matrix A and vector u ∈ Rn, v ∈ Rd to discuss the bound of

|
∑n

i=1 u
T
1 ζ1iu

T
2 ζ2i|. Noting that

|
n∑
i=1

uT1 ζ1iu
T
2 ζ2i| ≤ ‖u1‖1‖u2‖1|

n∑
i=1

ζ1iζ
T
2i|∞,

we then estimate the upper bound of |
∑n

i=1 ζ1iζ
T
2i|∞. Recalling the definition

of | · |∞, we calculate the eTs,jζ1iζ
T
2iep−s,k for each j = 1, · · · , s and k =

1, · · · , p− s. It is easy to check that

eTs,jζ1iζ
T
2iep−s,k

=2(2β∗1 + r̃nu1)TZ11
i es,je

T
p−s,kZ

21
i (β∗1 + r̃nu1) + 2x1T

i es,je
T
p−s,kZ

21
i (β∗1 + r̃nu1)

+ (2β∗1 + r̃nu1)TZ11
i es,je

T
p−s,kx

2
i + x1T

i es,je
T
p−s,kx

2
i

+ r̃n(2β∗1 + r̃nu1)TZ11
i es,je

T
p−s,kZ

22
i u2 + r̃nx

1T
i es,je

T
p−s,kZ

22
i u2.
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So,

|
n∑
i=1

eTs,jζ1iζ
T
2iep−s,k|

≤2‖(2β∗1 + r̃nu1)‖1‖(β∗1 + r̃nu1)‖1|
n∑
i=1

Z11
i es,je

T
p−s,kZ

21
i |∞

+ 2‖β∗1 + r̃nu1‖1|
n∑
i=1

eTs,jx
1
i e
T
p−s,kZ

21
i |∞

+ ‖(2β∗1 + r̃nu1)‖1|
n∑
i=1

Z11
i es,je

T
p−s,kx

2
i |∞ + |

n∑
i=1

x1T
i es,je

T
p−s,kx

2
i |∞

+ r̃n‖(2β∗1 + r̃nu1)‖1|‖u2‖1|
n∑
i=1

Z11
i es,je

T
p−s,kZ

22
i |∞

+ r̃n‖u2‖1|
n∑
i=1

x1T
i es,je

T
p−s,kZ

22
i |∞

≤
(

2(2cs+ r̃nC̃)(cs+ r̃nC̃) + 2(cs+ r̃nC̃) + (2cs+ r̃nC̃) + 1

+ r̃n(2cs+ r̃nC̃)C̃ + r̃nC̃
)√

nc0,

where the last inequality follows from Condition 3. Since r̃n → 0 as n→∞,

we conclude that for large enough n,

|
n∑
i=1

eTs,jζ1iζ
T
2iep−s,k| ≤ (12c2s2 + 12cs+ 1)

√
nc0 ≤ (12c2 + 1)c0

√
ns2,

and therefore

|
n∑
i=1

uT1 ζ1iu
T
2 ζ2i| ≤ ‖u1‖1‖u2‖1|

n∑
i=1

ζ1iζ
T
2i|∞

≤ (12c2 + 1)c1C
√
ns2‖u2‖1. (S1.11)

Note that

|
n∑
i=1

uT2 ζ2iεi| ≤ ‖u2‖1‖
n∑
i=1

ζ2iεi‖∞
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and ‖u2‖qq ≥ C̃q−1‖u2‖1. Under the event E1, it follows from (S1.6), (S1.10)

and (S1.11) that

Ln(β∗1 + r̃nu1, r̃nu2)− Ln(β∗1 + r̃nu1, 0)

≥− 2r̃n‖
n∑
i=1

ζ2iεi‖∞‖u2‖1 − (12c2 + 1)c1Cr̃
2
n

√
ns2‖u2‖1 + C̃q−1λnr̃

q
n‖u2‖1

≥λnr̃qn‖u2‖1

(
− 2(2(1 + c2))1/2λ−1

n r̃1−q
n bn

√
ns

− (12c2 + 1)c1Cλ
−1
n r̃2−q

n

√
ns2 + C̃q−1

)
>0,

when ‖u2‖1 > 0. That is, (S1.9) holds.

On the other hand, under the event {‖β̂1 − β∗1‖1 ≤ rn}, we conclude

from ‖β̂1 − β∗1‖1 ≤
√
s‖β̂1 − β∗1‖, that ‖β̂ − β∗‖1 = ‖β̂1 − β∗1‖1 ≤ r̃n

√
s,

which yields

inf
‖u‖1≤C̃

Ln(β∗1 + r̃nu1, r̃nu2) ≤ Ln(β̂) = Ln(β̂1, 0) ≤ Ln(β∗1 + r̃nu1, 0).

Combining this and (S1.9), we have Ln(β̂) = inf‖u‖1≤C̃ Ln(β∗1 + r̃nu1, r̃nu2)

under the event E1 ∩ {{‖β̂1 − β∗1‖ ≤ rn}. That is,

E1 ∩
{
{‖β̂1 − β∗1‖ ≤ rn} ⊆

{
β̂ ∈ arg inf

‖u‖1≤C̃
Ln(β∗1 + r̃nu1, r̃nu2)

}
. (S1.12)

To complete the proof of (S1.8), we need to verify that

P
(
‖

n∑
i=1

ζ2iεi‖∞ > 4((1 + c2))1/2bn
√
ns
)
≤ exp

(
− b2

n

4σ2
+ o(b2

n)
)
. (S1.13)
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Denote the jth element of ζ2i by ζ2ij. Since ‖β∗1 +r̃nu1‖1 ≤ ‖β∗1‖1+r̃n‖u1‖1 ≤

cs+ r̃nC̃, we use Cauchy-Schwarz inequality to obtain

|ζ2ij| ≤ 2|eTp−s,jZ21
i (β∗1 + r̃nu1)|+ |xij|+ r̃n|eTp−s,jZ22

i u2|

≤ 2‖eTp−s,jZ21
i ‖∞‖β∗1 + r̃nu1‖1 + κ1n + r̃n‖eTp−s,jZ22

i ‖∞‖u2‖1

≤
(
2c+ 3r̃nC̃

)
κ2ns+ κ1n. (S1.14)

By similar calculation, we have

n∑
i=1

ζ2
2ij

≤4
n∑
i=1

(
4
(
eTp−s,jZ

21
i β

∗
1

)2
+ 4r̃2

n

(
eTp−s,jZ

21
i u1

)2
+ x2

ij + r̃2
n

(
eTp−s,jZ

22
i u2

)2
)

≤4
n∑
i=1

(
4‖eTp,jZi‖2

∞
(
‖β∗1‖2

1 + r̃2
n‖u1‖2

1 + r̃2
n‖u2‖2

1

)
+ x2

ij

)
≤4

n∑
i=1

(
4‖Zi‖2

∞
(
‖β∗1‖2

1 + r̃2
n‖u‖2

1

)
+ x2

ij

)
≤4(4c2 + 4r̃2

nC̃
2 + 1)ns2.

Write Bn = 4(4c2 + 4r̃2
nC̃

2 + 1)ns2. Since the limits (3.5) and (3.9) imply

respectively that

λn
√
s√
n

(κ2ns+ κ1n√
ns

)
→ 0 and an

(κ2ns+ κ1n√
ns

)
→ 0,

it follows from (S1.14) and r̃n → 0 that

bn max1≤i≤n |ζ2ij|√
Bn

→ 0, as n→∞.



JUN FAN, LINGCHEN KONG, LIQUN WANG AND NAIHUA XIU

We use Lemma S1.1 to obtain that,

P
(
|

n∑
i=1

ζ2ijεi| > bn
√
Bn

)
≤ exp

(
− b2

n

2σ2
+ o(b2

n)
)
,

which combining the relation r̃n → 0 leads to

P
(
‖

n∑
i=1

ζ2iεi‖∞ > 4((1 + c2))1/2bn
√
ns
)
≤ exp

(
− b2

n

2σ2
+ o(b2

n)
)
. (S1.15)

Note that the first relation of Condition 4 implies that

bn >
2cq−1λn

√
s√

n
≥ 2σ

√
log p.

Therefore we conclude that

P
(
‖

n∑
i=1

ζ2iεi‖∞ > 4((1 + c2))1/2bn
√
ns
)
≤

p∑
j=s+1

P
(
|

n∑
i=1

ζ2ijεi| > 4((1 + c2))1/2bn
√
ns
)

≤ exp
(
− b2

n

4σ2
+ o(b2

n)
)
.

which yields (S1.13). Further by Lemma S1.3, (S1.12) and (S1.13), we have

P
(
β̂ ∈ arg inf

‖u‖1≤C̃
Ln(β∗1 + r̃nu1, r̃nu2)

)
≥ P

(
E1 ∩ {‖β̂1 − β∗1‖ ≤ rn}

)
≥ 1− exp

(
− C0a

2
n + o(a2

n)
)
.

�

Proof of Theorem 2 It suffices to show that the sequence an =
√
s log n

satisfies (3.8)-(3.10). First, it is clear that an/
√
s log n → ∞. Further, it

follows from (S1.7) that

an
√
n =

√
s log n√
n
≤
(

max(s, log n)
)3/2

√
n

→ 0.
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Moreover, the inequality in Condition 4 and (3.4) imply that

anκ1n

√
s√

n
=
λnκ1ns log n

n
·
√
n

λn
≤ λnκ1ns log n

n
· 1

σc1−q
√

log p
→ 0

and

anκ2ns
3/2

√
n

=
λnκ2ns

2 log n

n
·
√
n

λn
≤ λnκ2ns

2 log n

n
· 1

σc1−q
√

log p
→ 0.

Therefore by the first convergence of Condition 4, we obtain

a2−q
n n

q
2 s

4−q
2

λn
=

√
nqs3−q(log n)2−q

λn
→ 0,

which completes the proof. �

S2 Proofs of Theorem 3 and 4

We here also use the notation in Section S1 and provide two lemmas below,

i.e., Lemmas S2.1 and S2.2, corresponding to Lemmas S1.2 and S1.3 there.

Lemma S2.1. For the model (4.1), assume that Conditions 1′-2′ and 4′

hold. Let {an} be a sequence of positive numbers satisfying (3.8) and (3.9).

Then, for any τ > 0,

P
( 1

an
√
n

sup
u∈S
‖

n∑
i=1

(Z11
i u)εi‖ > τ

)
≤ exp

(
− a2

nτ
2

2c2σ2
+ o(a2

n)
)
,

where S ′ = S1 ∩ S.
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Proof. First note that

{
u ∈ Rs : ‖u‖0 ≥ s− [

s

2
]} ⊆

s⋃
k=[ s

2
]

{u ∈ Rs : ‖u‖0 = k
}
,

and Lemma 14.27 of Bühlmann and Van De Geer (2011) implies that in the

subspace Rk,{
v ∈ Rk : min

1≤l≤k
|eTk,lv| ≥

c

2
, ‖v‖ ≤ C1

√
s
}

⊆
(1+2n)k⋃
j=1

{
v ∈ Rk : ‖v − vj‖ ≤

1

n
, min

1≤l≤k
|eTk,lvj| ≥

c

2
, ‖vj‖ ≤ C1

√
s
}
.

Since
s∑

k=[ s
2

]

Ck
s (1 + 2n)k ≤ (1 + 2n)s

s∑
k=[ s

2
]

Ck
s ≤ (2 + 4n)s

and {
u ∈ Rs : |

{
j : |eTs,ju| ≥

c

2

}
| ≥ s− [

s

2
]
}

=
{
u ∈ Rs : ‖u‖0 ≥ s− [

s

2
], |eTs,ju| ≥ c/2, j ∈ supp(u)

}
,

we have

S ′ ⊆
(2+4n)s⋃
j=1

{
u ∈ Rs : ‖u− uj‖ ≤

1

n
, uj ∈ S ′

}
.

Then, we can use the similar method to the proof of Lemma S1.2 to get the

desired result.

Lemma S2.2. Under the assumptions of Lemma S2.1, L̃n(β1) has two

minimizers β̂1 and −β̂1 such that

P
(
‖(−β̂1)− (−β∗1)‖ ≤ rn

)
=P
(
‖β̂1 − β∗1‖ ≤ rn

)
≥1− exp

(
− (1 + c2

1/4)a2
n

2c2σ2
+ o(a2

n)
)
.
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Proof. Define

S1(β∗1) =
{
u ∈ Rs :

∣∣∣{j : |eTs,ju+ eTs,jβ
∗
1 | ≥ c/2

}∣∣∣ ≥ s− [
s

2
]
}

and

S1(−β∗1) =
{
u ∈ Rs :

∣∣∣{j : |eTs,ju− eTs,jβ∗1 | ≥ c/2
}∣∣∣ ≥ s− [

s

2
]
}
.

We first show that

S1(β∗1) ∪ S1(−β∗1) = Rs. (S2.1)

First, it is obvious that S1(β∗1) ∪ S1(−β∗1) ⊆ Rs. To show the opposite

inclusion, we need the following two facts that for any u ∈ Rs,

∣∣{j : |eTs,ju+ eTs,jβ
∗
1 | ≥ c/2}

∣∣ ≤ [
s

2
]⇔

∣∣{j : |eTs,ju+ eTs,jβ
∗
1 | < c/2}

∣∣ ≥ s− [
s

2
]

and

{j : |eTs,ju+ eTs,jβ
∗
1 | < c/2} ⊆ {j : |eTs,ju− eTs,jβ∗1 | ≥ c/2}.

It is clear that the first holds. We only need to check the second. Note that

for each j with |eTs,ju+ eTs,jβ
∗
1 | < c/2, it is easy to verify that

−2eTs,jβ
∗
1 − c/2 < eTs,ju− eTs,jβ∗1 < −2eTs,jβ

∗
1 + c/2.

Combining this and the assumption 0 < c ≤ min{|eTp,jβ∗|, j ∈ Γ∗}, we have

eTs,ju− eTs,jβ∗1


< −3c/2, if eTs,jβ

∗
1 > c;

> 3c/2, if eTs,jβ
∗
1 > −c.
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which yields |eTs,ju−eTs,jβ∗1 | ≥ c/2. Therefore the second fact holds. It follows

that, for any β1 /∈ S1(β∗1), i.e.,
∣∣{j : |eTs,ju+ eTs,jβ

∗
1 | ≥ c/2}

∣∣ ≤ [ s
2
], the above

two facts imply β1 ∈ S1(−β∗1), which further implies that (S2.1) holds.

Note that for any β1 ∈ S1(β∗1), −β1 ∈ S1(−β∗1), and for any β1 ∈

S1(−β∗1), −β1 ∈ S1(β∗1). That is, the sets S1(β∗1) and −S1(−β∗1) are sym-

metric. Since L̃n(β1) is an even function, it follows from (S2.1) that

min
β1∈Rs

L̃n(β1) = min
β1∈S1(β∗1 )

L̃n(β1) = min
β1∈S1(−β∗1 )

L̃n(β1).

By the similar method to the proof of Lemma S1.3, we can show that there

exists a minimizer β̂1 = arg minβ1∈S1(β∗1 ) L̃n(β1), such that (S1.2) holds.

Therefore the desired result follows and the proof is completed.

Proof of Theorem 3 From Lemmas S2.1 and S2.2, we can use the similar

method for model (2.1) to prove that under the event E1∩{‖β̂1−β∗1‖ ≤ rn,

(β̂T1 , 0
T )T is a local minimizer in the ball {β∗ + r̃nu : ‖u‖1 ≤ C̃}, and

(−β̂T1 , 0T )T is a local minimizer in the ball {−β∗ + r̃nu : ‖u‖1 ≤ C̃}. As

mentioned before, we identify vectors β, β′ ∈ Rp which satisfy β′ = ±β.

Then, there exists strict local minimizer β̂ such that both the results (3.6)

and (3.7) remain true. �

Proof of Theorem 4 Proof of Theorem 4 is analogous to that of Theorem

3.
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S3 Analysis of the optimization algorithm

Lemma S3.1. [Chen, Xiu and Peng (2014)] Let t ∈ R, λ > 0, q ∈ (0, 1)

be given and t∗ = (2 − q)
(
q(1 − q)q−1λ

)1/(2−q)
. For any t0 > t∗, there

exists a unique implicit function u = h̄λ,q(t) on (t∗,∞) such that u0 =

hλ,q(t0), u = hλ,q(t) > 0, hλ,q(t) − t + λqhλ,q(t)
q−1 = 0 and u = hλ,q(t) is

continuously differentiable with hλ,q
′(t) = 1

1+λq(q−1)hλ,q(t)q−2 > 0. For any

t0 < −t∗, there exists a unique function u = hλ,q(t) on (−∞,−t∗) such that

u0 = hλ,q(t0), u = hλ,q(t) < 0, hλ,q(t)− t−λq|hλ,q(t)|q−1 = 0 and u = hλ,q(t)

is continuously differentiable with hλ,q
′(t) = 1

1+λq(q−1)|hλ,q(t)|q−2 > 0.

Furthermore, the global solution û of the problem (5.2) satisfies

û = hλ,q(t) :=



hλ,q(t), if t < −t∗;

−(2λ(1− q))
1

2−q or 0, if t = −t∗;

0, if − t∗ < t < t∗;

(2λ(1− q))
1

2−q or 0, if t = t∗;

hλ,q(t), if t > t∗.

Especially, hλ,1/2(t) = 2
3
t
(
1+cos

(
2π
3
−2

3
φλ(t)

))
with φλ(t) = arccos(λ

4
( |t|

3
)−3/2

)
.

Lemma S3.2. For q ∈ (0, 1), λ > 0, let û = arg minu∈Rp
1
2
‖u− b‖2

2 +λ‖u‖qq,

∀ b ∈ Rp. Then û = Hλ,q(b).

The result is an immediate consequence of Lemma S3.1 and therefore
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the proof is omitted.

Proof of Theorem 5 For any τ > 0, define the following auxiliary problem

min
β∈Rp

Fτ (β, u) := `(u) + 〈∇`(u), β − u〉+
1

2τ
‖β − u‖2

2 + λ‖β‖qq, ∀u ∈ Rp.

(S3.1)

It is easy to check that the problem (S3.1) is equivalent to the following

minimization problem

min
β∈Rp

1

2
‖β − (u− τ∇`(u))‖2

2 + λτ‖β‖qq.

For any r > 0, let Br = {β ∈ Rp : ‖β‖2 ≤ r} and Gr = supβ∈Br ‖∇2`(β)‖2.

For any τ ∈ (0, G−1
r ] and β, u ∈ Br, we have

L(β) = `(u) + 〈∇`(u), β − u〉+
1

2
(β − u)T∇2`(ξ)(β − u) + λ‖β‖qq

= Fτ (β, u) +
1

2
(β − u)T∇2`(ξ)(β − u)− 1

2τ
‖β − u‖2

2

≤ Fτ (β, u) +
1

2
‖∇2`(ξ)‖2‖β − u‖2

2 −
1

2τ
‖β − u‖2

2

≤ Fτ (β, u) +
L

2
‖β − u‖2

2 −
1

2τ
‖β − u‖2

2

≤ Fτ (β, u), (S3.2)

where ξ = u+α(β−u) for some α ∈ (0, 1) and the second inequality follows

from ‖ξ‖2 ≤ r.

Further, let β̄ ∈ arg minβ∈Rp Fτ (β, β̂). Since L(β) ≥ 0 and lim‖β‖2→∞

L(β) = ∞, there exists a positive constant r1 such that ‖β̂‖2 ≤ r1. Note
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that

∇`(β) = 2
m∑
i=1

(βTZiβ + xTi β − yi)(2Ziβ + xi) (S3.3)

which implies that ∇`(β) is continuous differentiable. Then, take

r2 = r1 + sup
β∈Br1

‖∇`(β)‖2.

Hence it follows from Lemma S3.2 that ‖β̄‖2 ≤ r2 for any τ ∈ (0, 1]. By the

definitions of β̂ and β̄, we obtain from the inequality (S3.2) that for any

τ ∈
(
0,min{G−1

r2
, 1}
)
,

Fτ (β̄, β̂) ≤ Fτ (β̂, β̂) = L(β̂) ≤ L(β̄) ≤ Fτ (β̄, β̂),

which leads to Fτ (β̂, β̂) = Fτ (β̄, β̂). Therefore β̂ is also a minimizer of the

problem (S3.1) with u = β̂. The results follows then from Lemma S3.2. �

Lemma S3.3. Let gk = ‖∇`(βk)‖2, Gk = supβ∈Bk ‖∇
2`(β)‖2 where Bk =

{β ∈ Rp : ‖β‖2 ≤ ‖βk‖2 + gk}. For any δ > 0, γ, α ∈ (0, 1), define

jk =


0, if γ(Gk + δ) ≤ 1;

−[ logα γ(Gk + δ)] + 1, otherwise.

Then (5.4) holds.

Proof. From the definition of τk and jk, it is easy to check that

Gk −
1

τk
≤ −δ. (S3.4)
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Indeed, take τk = γ which yields to

Gk −
1

τk
=
γGk − 1

γ
≤ −δ,

when γ(Gk + δ) ≤ 1. If γ(Gk + δ) > 1,

τk = γαjk ≤ γα− logα γ(Gk+δ) =
1

Gk + δ

which also leads to (S3.4).

Note that

βk+1 ∈ arg min
β∈Rp

Gτk(β, β
k) (S3.5)

and

‖βk+1‖2 ≤ ‖βk − τk∇`(βk)‖2 ≤ ‖βk‖2 + gk,

which yields βk+1 ∈ Bk. Similar to (S3.2), we obtain from (S3.4) that

L(βk+1) ≤ Fτk(β
k+1, βk) +

1

2
‖βk+1 − βk‖2

2

(
‖∇2`(ξk)‖2 −

1

τk

)
≤ Fτk(β

k+1, βk) +
1

2
‖βk+1 − βk‖2

2(Gk −
1

τk
)

≤ Fτk(β
k+1, βk)− δ

2
‖βk+1 − βk‖2

2,

where ξk = βk + %(βk+1− βk) for some % ∈ (0, 1) and then ξk ∈ Bk leads to

the second inequality. Combining this and (S3.5), we have

L(βk)− L(βk+1) = Fτk(β
k, βk)− L(βk+1) ≥ Fτk(β

k+1, βk)− L(βk+1)

≥ δ

2
‖βk+1 − βk‖2

2,
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which completes the proof.

Lemma S3.4. Let {βk} and {τk} be generated by FPIA. Then,

(i) {βk} is bounded; and

(ii) there is a nonnegative integer j̄ such that τk ∈ [γαj̄, γ].

Proof. Lemma S3.3 implies that {L(βk)} is strictly decreasing. From this,

`(·) ≥ 0 and the definition of L(·), it is easy to check that {βk} is bounded.

Since `(·) is a twice continuous differentiable function, it then follows from

the bound of {βk} that there exist two positive constants ḡ and Ḡ such that

supk≥0{gk} ≤ ḡ and supk≥0{Gk} ≤ Ḡ. Define j̄ = max(0, [− logα γ(Ḡ +

δ)] + 1). Then, 0 ≤ jk ≤ j̄ which combining the definition of τk imply that

τk ∈ [γαj̄, γ].

Now we consider the convergence of the sequence {βk}. To this end we

slightly modify hλ,q(·) as follows

hλ,q(t) :=


hλ,q(t), if t < −t∗;

0, if |t| ≤ t∗;

hλ,q(t), if t > t∗.

(S3.6)

Then we have the following result.

Theorem S3.1. Let {βk} be the sequence generated by FPIA. Then,

(i) {L(βk)} converges to L(β̃), where β̃ is any accumulation point of
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{βk};

(ii) limk→∞
‖βk+1−βk‖2

τk
= 0;

(iii) any accumulation point of {βk} is a stationary point of the min-

imization problem (5.1) when γ ≤
(

q
16(1−q) ḡ

−1
) 2−q

1−q
(
λ(1 − q)

) 1
1−q and ḡ =

supk≥0 ‖∇`(βk)‖2.

Proof. (i) Since {βk} is bounded, it has at least one accumulation point.

Since {L(βk)} is monotonically decreasing and L(·) ≥ 0, {L(βk)} converges

to a constant L̃(≥ 0). Since L(β) is continuous, we have {L(βk)} → L̃ =

L(β̃), where β̃ is an accumulation point of {βk} as k →∞.

(ii) From the definition of βk+1 and (5.4), we have

n∑
k=0

‖βk+1 − βk‖2
2 ≤

2

δ

n∑
k=0

[L(βk)− L(βk+1)] =
2

δ
[L(β0)− L(βn+1)] ≤ 2

δ
L(β0).

Hence,
∑∞

k=0 ‖βk+1 − βk‖2
2 < ∞ and ‖βk+1 − βk‖2 → 0 as k → ∞. Then

the second result of Lemma S3.4 leads to the result (ii).

(iii) Since {βk} and {τk} have convergent sequences, without loss of

generality, assume that

βk → β̃ and τk → τ̃ , as k →∞. (S3.7)
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It suffices to prove that β̂ and τ̃ satisfy (5.3). Note that

‖β̃ −Hλτ̃ ,q

(
β̃ − τ̃∇`(β̃)

)
‖2

≤ ‖β̃ − βk+1‖2 + ‖Hλτk,q

(
βk − τk∇`(βk)

)
−Hλτ̃ ,q

(
β̃ − τ̃∇`(β̃)

)
‖2

= I1 + I2. (S3.8)

The result (ii) and (S3.7) imply that I1 → 0 as k →∞.

To complete the proof, we need show I2 → 0 for q ∈ (0, 1). For i =

1, · · · , p, denote

vki = eTp,i
(
βk−τk∇`(βk)

)
, ṽi = eTp,i

(
β̃−τ̃∇`(β̃)

)
, t∗i =

2− q
2(1− q)

[2λτ̃(1−q)]1/(2−q)

and β̃i =
(
2λτ̃(1− q)

)1/(2−q)
. Then it suffices to prove that

hλτk,q(v
k
i )→ hλτk,q(ṽi) (S3.9)

when vki → ṽi as k →∞. We only give the proof of (S3.9) as ṽi > 0 because

the case of ṽi < 0 can be similarly proved.

For ṽi < t∗i , the limit (S3.7) and the definition of hλτ,q imply that

hλτk,q(v
k
i ) = 0 = hλτ̃ ,q(ṽi). For ṽi > t∗i , one can conclude from (S3.7) and

the continuity of hλτ,q on (t∗i ,∞) that hλτk,q(v
k
i ) → hλτ̃ ,q(ṽi). For ṽi = t∗i ,

we show that any subsequence of {vki } converging to ṽi, without loss of

generality, say {vki }, must satisfy

vki ≤ t∗i , for large enough k. (S3.10)
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We prove the above inequality by contradiction. Denote ∆ = q
16(1−q)

(
λ(1−

q)
) 1

2−q and δi =
t∗i−β̃i

4
. Note that t∗i > β̃i implies that δi = p

16(1−q)∆(2τ̃)
1

2−q >

0. The second limit of (S3.7) implies τ̃ ≥ 1
2
τk and hence δi ≥ 2∆(τk)

1
2−q for

large enough k. Since τ
1−q
2−q
k ∆−1 ≤ γ

1−q
2−q∆−1 ≤ ¯̀−1, for large enough k, we

have

τk‖∇`(βk)‖2 ≤ ∆τk ¯̀∆−1 ≤ δi
2
τ
− 1

2−q
k τk ¯̀∆−1 ≤ δi

2

and therefore

eTp,iβ
k = vki + τk[∇`(βk)]i ≥ vki − τk‖[∇`

(
eTp,iβ

k)
)
‖2 ≥ vki −

1

2
δi.

Combining this, the result (ii) and vki → t∗i , we have

eTp,iβ
k+1 ≥ eTp,iβ

k − 1

2
δi ≥ vki − δi ≥ t∗i − 2δi = β̃i + 2δi, for large enough k.

(S3.11)

Note that hλτ,q is continuous on (t∗i ,∞) and limn→∞ hλτk,q(v
k
i ) = β̃i. For

large enough k, we have eTp,iβ
k+1 = hλτk,q(v

k
i ) ∈ [β̃i − δi, β̃i + δi], which is in

contradiction with (S3.11). So (S3.10) holds. By the definition of hλ,q(·),

we have hλτk,q(v
k
i ) = 0 = hλτ̃ ,q(ṽi).
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