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S1 Proofs of Theorem 1 and 2

Without loss of generality, in the following we let I'* = {1,--- s} and
B* = (BT, 0T)T. Correspondingly, we partition Z; and x; as
zIv o z12
Z; = and z; = (27, 270)7,
7z 72

where Z!! is an s x s symmetric matrix and Z?% is a (p — s) x (p — s)

symmetric matrix. For convenience, we also denote

n

Lo(By) =Y (yi — BT Z1 By — 2l"B1)* + Nal B
=1

and Cy = 2¢+ 34/(0%2 +1)/cy.

We first prove some lemmas.
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Lemma S1.1. Let {w,} be a sequence of real numbers and assume that

{b.} and {B,} are two sequences of positive numbers tending to infinity. If

n
ST IR A
Bn_' w; and \/_lrgi>§l|w1]—>0,

then, for any 7 > 0,

limsupb,, 210g]P’<|Zw151] > b,V B T) <——

n—o0 2

or
22

|sz—:2\>b \/_T)<exp( b2 (62))

Proof. Based on the similar method proof to that of Lemma 3.2 in Fan,

Yan and Xiu (2014), it is easy to show it and so is omitted. O

Lemma S1.2. Assume that Conditions 1-2 and 4 hold. Let {a,} be a

sequence of positive numbers satisfying (3.8) and (3.9). Then for any T > 0,

2.2

1 11 an™ 2
P(an\/_ ilelg” ZZ (ZMu+ x))eq|| > 7') <exp (- Den? +o(al)).

Proof. Let A ={v € R®: ||v]| <1} and denote 7, = 1/n. Then by Lemma
14.27 in Bithlmann and Van De Geer (2011), we have

AC [‘j B(vj, ),

J=1

where m,, = (1 + 2n)* and B(u;j,m,) = {v € R* : ||lv —v;|| < 1,05 € A}

for j=1,---,m,. By the similar method to the proof the second result of
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Lemma 5.1 in Fan, Yan and Xiu (2014), we use Lemma S1.1 with B,, = nc,

and b,, = a, to obtain that for any 7y > 0 and ¢; € (0,7,/2),

CL%(Tl — €

F + o(a2)(S1.1)

n, 20902

1 n
P(—=I1>_ (21 ut al)al > n) < myexp (-
il 2 ‘
Further, denote 7/, = C1/s/n. Again, by Lemma 14.27 of Bihlmann

and van de Geer (2011), we have

S C @ B(Uj,’f’;.b),

j=1

where B(uj,r),) = {u € R® : |lu —u;|| < 7l,u; € S} for j = 1,-++ ,m,.

Analog to (S1.1) we obtain that for any € € (0,7/2) and ¢; € (0, (7 —€)/2),

al(t —e—€)?

1 n
11»( sup || 32w + e > T) <m? exp (— o
=1

An\/T ues 2¢902

From (3.8) we conclude that a,,?logm?2 = a,*(slog(1 + 2n)) — 0, which

together with the above inequality implies that

_ _ 1 & (T—€e—€)?
2 11 1
llgl_)solip a, logIP(an\/ﬁ 31611; I Zz_;(ZZ u+x;)ei]| > 7‘) < e
Since € and €; are arbitrary, we have for large enough n,
P(—— sup | S (2 u+ ab)ail > 7) < exp (= 220 4 o(a2))
AN ues = v - 2¢90 o
O
Lemma S1.3. Under the assumptions of Lemma S1.2, there exists B =
argming, cgs Ln(B1) such that
R . 1+ c2/4)a?
Py — Bi <o) > 1—exp (= LTIy iy (g19)

2020’2
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Proof. To show the existence of minimizer Bl, we consider the level set

{1 eR*: Ln(By) < [N/n(ﬁi“)} It is apparent that

inf L,(8) = inf  La(B).
B1ER® BrE{B1ERS: L (B1)<Ln(B})}

Since Ly(-) is continuous and the level set is non-empty and closed, Ly,(-)
has at least one minimizer Bl in the level set.

Now we prove (S1.2). For notational convenience, we denote 7z =
(Z1,- ,Zy), Sn = ZZ"/n and € = (e1,--- ,e,)", where Z; = ZM(f) +
B5) +x}. Obviously, Condition 1 implies that S, is invertible. Then by the

definition of 5’1 we have I:n(ﬁl) < Zn(ﬁl) for any 3, € R®, which implies

n S
2612 + Anz ’BLP 2
i=1 j=1

n N R 2 S .
<5i — (61 — BT)TZz) + An Z ez Bl
1 j=1

%

ef =208 — B Ze+ M D lel Bl

1 j=1

+ n(B1 — 5T)T2n(31 — 1)

.

(2

and therefore

n(Br = B Sn(Br = B) <2051 — B1) Ze + A Y (el 551 — lel;51|1B1.3)

j=1

By the similar method to the proof of relation (8) in Huang, Horowitz
and Ma (2008), we conclude from Condition 1, the second convergence of

Condition 4 and the strong law of large number that for large enough n,

161 = Bl < Civ/s and |6y + Bl < Civ/s, as.
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and

A * 2 2 * 5 n
1B =817 < — 18 = Bl Zell + =
ncy

2C
1\/_sup||Z: ZMu A+ o)) +

nc
1 u€eS i—1

sEq

IN

s.,(S1.4)

where n, = A\, D77 (el ;8117 — leZ;1]9). Therefore,

2C Apscd
1 =B(: - B < Tfstij+me )

necy
2C1/sa )\sc
2 1 n n
B(I6 - Bl < =+ ) +B(

which together with Lemma S1.2 yields that

sup (Z} '+ x))e; >1>
%W%J; el

2

B(|By = Bill > 71) < exp (= 3225 + ofa2), (S1.5)

cy0?

1 _ (2Ciany/s A scd 1/2
where 7/, = ( o T e )

Since r,, — 0 as n — o0, it follows that for large enough n,
1 T 3 T ;3 3 T % .
5’687]'/81’ S ‘657jﬁ1 S 5’68,]'/81'7 j = 17... ,8,

when ||8; — f7]] < /. By the mean value theorem and Cauchy-Schwarz

inequality, we have, for large enough n,

M < 267 AV B1 — B

when ||8; — 87]] < /. Combining the above inequality, (S1.3), Cauchy-

Schwarz inequality and Condition 1, we have, for large enough n,

A * 2 5 2(_311—1)\”\/5
1B =Bl < —lZell + ———,
ncy ncy
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when ||3, — 87| < r.. Therefore it follows from the first inequality of (S1.4)

that for large enough n,

~ 2 ~ A n
12[@( g2 < 2 AN _n>
181~ 551 < 08— NI Zel +

. . 2 5 2¢17 I\, /s
<p(I6: - Bill < = 2el + 2y o

a1y,
<P(I - 57l < 2 + Z )

1 - .
IP’( sup || (Z}Pu+ x))ei|| > c1/2) + IP’(HBl — Bl > 7’;)
A/ )<y v Z:; '

Then, by Lemma S1.2 and (S1.5) we have

P(113: - 11l > 7))

3 * " cia;, 2
]P)(Hﬁl _61” Zrn) Sexp( 2 0_2 +0( )) +6Xp( @—i—o(an)),
which yields
1 c

limsup a2 log P(||3; — B > 1) < — — )
n%oop n g (Hﬁl Bl” = )— 2020'2 8620'2

Thus, we have

(1+c2/4)a?

Pl = 51 2 ra) < exp (=

which yields (S1.2). O

Proof of Theorem 1 Denote d,, = an—i— \/ﬁf and 7, = (\F—FWE)\/E

We first show that

AT bpy/ns = 0 and AT TN/ns? =0, as m— oo (S1.6)
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The first convergence of (S1.6) follows from the second convergence of Con-
dition 4 and (3.10). Since A, s*/n — 0, the inequality of Condition 2 implies

that

32 st n o Aps? 1

< —0 S1.7
- n AT n ooct4/logp ’ ( )

B

which yields

3/2
A1 s = AT, s - S — 0.
NG

For any v = (uf,u3) € RP and u; € R®, we show that there exists a

sufficiently large constant C' such that

P(Lo(Br,0) = Jint L(5 Faiz)) 2 1= exp (= Coa? + o(a2),

7 (S1.8)

which implies that with probability 1—exp (—Coa2 +o(a2)) that (57, 07)7

is a local minimizer in the ball {#* + 7,u : ||ul; < C}, so that both (3.6)
and (3.7) hold.

Denote (1; = ZM1 (287 + Tpur) + ) and (o = 2Z2(BF + Fouy) + 22 +

FnZ?us, and define event

By = {1 Gutilloo < 4((1+7%)2b,/ns ),
=1

where b, = a,, + %g For any us € RP™%, we show that under event
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Clearly, L, (8] +7yu1, Trug) = Ly (87 +7nu1,0) when ||us||; = 0. We proceed

to show (S1.9) for |lug||; > 0. It follows that

Ln(ﬁf + fnul, fn’U/Q) — Ln(ﬁik + fnul, 0)

= -2, Zu2 Coii + 72 Z 3 Cai)? + 272 Z ui Cuitid Cor + N ||ua|9

We now use the fact that |[u” Av| < ||Jug||1]|Av]|ee < [Alsollull1]|v]|1 for

any n x d matrix A and vector u € R, v € R? to discuss the bound of

| >0 uf Gyud Cal. Noting that

n n
> ut Gl il < [l flualla] Y Gidailoo,
i=1 i-1

we then estimate the upper bound of | Y7 | (1:(3;|. Recalling the definition
of | - |o, We calculate the el;(1(3e,—sx for each j = 1,---,s and k =

1,--- ,p—s. It is easy to check that

€§jC1iC27;€p—s,k
=2(267 + fnul)TZiHes,jegfs’kal(5f + Tpuy) + Zx}Tes,jegfs,kal (8] + Thuq)
2

« |\~ \Trl. T 9, AT, T
+ (287 + Taur)" Z; s jep g 1k T; T T €5 € g 1T

- ¥ | = T 11 T 22 - AT T 22
+ 7 (267 + Thuy)’ Z; €sjCpskZi Uz + TnZ; €sj€, (1 2 Us.
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So,

n
| Z ezjjgligggep—s,ﬂ
i=1
n
<2267 + Fuu) Iull (87 + Fawn) L1 Y ZH e sep i 28 oo
i=1

n
+ 20185 + Faw || Y elsaten 12 o
i=1

n n
@87+ Faun) 1] Y 2 essey g afloo + 1D wies el o

i—1 i=1
n
+ Fall 28] + o) [ullluzlh | ) ZH esen 1 28
i=1
. K2
+Fallualla] Y et es ey w2

i=1

< (2(265 + 7, C) (Ts + 7, C) + 2(s + 7,C) + (265 + 7,0) + 1

+ 7 (285 + 7 C)C o+ f,ﬁ) Jico,
where the last inequality follows from Condition 3. Since 7, — 0 as n — oo,

we conclude that for large enough n,

1> el iGuthepnl < (122°5% + 1285 + 1)v/ncy < (122° + 1)cov/ns,

=1

and therefore
> S ul Gz Gl < flualhlluzlla] D GGl
i=1 i=1
< (128 + 1)1 Cv/ns? ||ug)|;.- (S1.11)

Note that

n n
1> ud Geil < Juall 1D Geilloo
=1 =1
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and ||ug|[? > C97||ug]|1. Under the event Ej, it follows from (S1.6), (S1.10)

and (S1.11) that

Ln(ﬁ; + Tpun, fnu2) — Ly (ﬁf + Ty, 0)

> = 27| Y Gaieillolually = (128° + DerOF2 Vs fualls + C7 A7 s

i=1
>l (= 2(2(1 4+ )2 79, /s
— (126% + 1)1 CN, ' 7270 /ns® + C*q*1>
>0,
when |[Juz|]; > 0. That is, (S1.9) holds.
On the other hand, under the event {||8; — Bf|ly < rn}, we conclude
from |8y — Bl < V5l = Bill, that (1B — Bl = 18 = Bill < 75,

which yields

inf Lo (Bf + oy, Fptin) < L(B) = Ln(B1,0) < Ln(8F + Fus, 0).

[ul1<C
Combining this and (S1.9), we have Ln(/@) = inf,, <¢ L, (87 + Tpuy, Trusg)

under the event By N {{||3 — 8| < r,}. That is,

El N {{”Bl - 6;” § rn} g {B € arg inf ~ Ln(@ik + ’l:nul,fnUQ)}. (8112)

[ulli<C

To complete the proof of (S1.8), we need to verify that

2

b—”z +0(b})). (S1.13)

P(]| Z Gaigilloo > 4((1 + 62))1/2bn\/ﬁs) <exp(-— o
i=1
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Denote the jth element of (y; by (5. Since || 55 +Tpur |1 < || 551 +7nljui]1 <

¢s + 1,C, we use Cauchy-Schwarz inequality to obtain

Goisl < 2lel o Z2(B5 + Fuwn)| + || + Fulel ;27|

p=s5)"1 pP=s,)71

< 2llep ;28 loollBT + Futall + Krn + Falley s 27 ool 12l
< (224 37,C) k2 + Kin. (S1.14)

By similar calculation, we have

n

2
> Gy
=1

=5 (4(eg,s,jzflﬁf)2 + 42 (e 7)) 2+ 2 (e .z.22u2)2)
=1

p—s,071

<A (L 2 BEIR + Pl + 72 usl) + )
i=1

<a3 (NZIZ (BT + 2 l) + )

=1
<4(47* + 472C? + 1)ns>.
Write B, = 4(4¢® 4+ 472C? + 1)ns?. Since the limits (3.5) and (3.9) imply
respectively that

RonS + Rin

Vns

A71,\/5(%2718 + Kin

NG s )—>0 and an(

) =0,

it follows from (S1.14) and 7,, — 0 that

by, maxy <j<y |

VB,

— 0, asn — oo.
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We use Lemma S1.1 to obtain that,

]P(| ZCQij5i| > bn\/Bn) < exp ( _ 27:2 + O(bi)),
i=1

which combining the relation 7, — 0 leads to

2

RIS Guieilloo > A((1 + )2, /m8) < exp (— 2 + o(12)). (SL.15)

’ 20
=1

Note that the first relation of Condition 4 implies that

2¢971)\,
b, > QTn\/g > 204/logp.

Therefore we conclude that

P(I|Y " Gigilleo > A1 +2)buv/ns) < > P(1) - Gl > 4((1+2)"?b,/ns)
i=1 j=s+1 i=1

<exp ( - % + 0(bi)>.

which yields (S1.13). Further by Lemma S1.3, (S1.12) and (S1.13), we have

P(j € arg ” i”ngé Lo (B + s, Fuuz)) = P(Ey N {18 — Bi| < ral})

> 1—exp (— Coal +o(al)).

Proof of Theorem 2 It suffices to show that the sequence a, = /slogn
satisfies (3.8)-(3.10). First, it is clear that a,/v/slogn — oo. Further, it

follows from (S1.7) that
Vslogn _ (max(s,log n))?’/2
an\/_ = <
vn vn

— 0.
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Moreover, the inequality in Condition 4 and (3.4) imply that

ankinV/s  Apkipslogn \/n < Ankinslogn 1
N n An T n oc'=1/logp

— 0

and

3/2

Unkons®?  Apkons®logn \/n < AnKans? logn 1
N n Ay T n ocl~1/log p

— 0.

Therefore by the first convergence of Condition 4, we obtain

4—
a2~Inisz _ Vnis3~(logn)?~1 0
An An ’

which completes the proof.

S2 Proofs of Theorem 3 and 4

We here also use the notation in Section S1 and provide two lemmas below,

i.e., Lemmas S2.1 and S2.2, corresponding to Lemmas S1.2 and S1.3 there.

Lemma S2.1. For the model (4.1), assume that Conditions 1'-2" and 4’
hold. Let {a,} be a sequence of positive numbers satisfying (3.8) and (3.9).

Then, for any T > 0,

1 1 anT 2
P(anﬁ sup | ;(Zi weill > ) < exp (= 525+ ofa)).

where 8" =5, NS.
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Proof. First note that

S S ’ S
{ueR fulo>s -G € (J {ueR :[ulo =k},
k=[]

and Lemma 14.27 of Bithlmann and Van De Geer (2011) implies that in the

subspace R*,

. c
{veR": in lex v] > 2’ Jv]| < Civ/s}

<i<
(1+2n)F ] .
k . : T L
c U {ve®lo—ul< g min el 2 5 ol < e}
]:
Since
doCHa42n)F < (1+2n) Y CF<(2+4n)°
k=[3] k=[3]
and
fuer {1l = Y= 5— (3}
8,7 =9 - 2
S S .
—{u e R ullo = s = [5],lekul = ¢/2,j € supp(u)},
we have
(2+4n)s 1
5 < U fueR: Ju—ul <~ ues}.
J:

Then, we can use the similar method to the proof of Lemma S1.2 to get the

desired result. O

Lemma S2.2. Under the assumptions of Lemma S2.1, f)n(ﬁl) has two

MInImizers Bl and —Bl such that

P((=51) = (=B < ra) =PI = 851 < 7a)

(1+c2/4)a?

Zl_exp(_ 2C20'2
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Proof. Define
SuB1) = {u e R+ | {j el u+ el 81 = ¢/2}| 2 5 - 5]}
and
Si(—=31) = {ue R s | {5 s el u— el 81 = ¢/2}| 2 s - 5]}
We first show that
S1(AT) U Si(=p7) =R”. (52.1)
First, it is obvious that Si(57) U S1(—f;) € R®. To show the opposite
inclusion, we need the following two facts that for any u € R?,
{7+ legju+eg B > ¢/2} < [g] s {i:lesutes, B <c/2}[>s - [g]
and
{7: ’eZ:ju+ esT,]ﬂﬂ <c/2} C{j: |€sT,ju - esT,jBikl > c/2}.

It is clear that the first holds. We only need to check the second. Note that
for each j with |el u + el ;87| < ¢/2, it is easy to verify that

—2el B} —c/2 < elu—el BT < —2el 0] +c/2.
Combining this and the assumption 0 < ¢ < min{|e];3*|,j € T'*}, we have

: T % .
. o] < —3¢/2, if e, ;81 > ¢
€5t — €51

>3¢/2, ifelff > —c
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which yields |e] ;u—el;8f| > ¢/2. Therefore the second fact holds. It follows

that, for any £, ¢ S1(57), i.e.,

{J el ju+el Bl > ¢/2}| < [5], the above

two facts imply 8, € S1(—f;), which further implies that (S2.1) holds.
Note that for any 8, € S1(67), =51 € Si(—p;), and for any (5 €

S1(=057), —p1 € S1(B7). That is, the sets S1(87) and —S(—f;) are sym-

metric. Since L, (/) is an even function, it follows from (S2.1) that

min f)n = min f)n = min f)n .
min, Ln(5) B1€851(87) (B1) B1E51(=81) (%)

By the similar method to the proof of Lemma S1.3, we can show that there
exists a minimizer 5, = arg ming, es;, (57 L,(B1), such that (S1.2) holds.

Therefore the desired result follows and the proof is completed. n

Proof of Theorem 3 From Lemmas S2.1 and S2.2, we can use the similar
method for model (2.1) to prove that under the event EyN{||31 — B < rn,
(BT,0T)T is a local minimizer in the ball {8* + Fu : |july < C}, and
(—=BT,07)T is a local minimizer in the ball {—8* + 7u : ||lull; < C}. As
mentioned before, we identify vectors 3,5 € RP which satisfy g’ = £4.
Then, there exists strict local minimizer 3 such that both the results (3.6)

and (3.7) remain true. O

Proof of Theorem 4 Proof of Theorem 4 is analogous to that of Theorem

3.
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S3 Analysis of the optimization algorithm

Lemma S3.1. [Chen, Xiu and Peng (2014)] Let t € R, A > 0,q € (0,1)
be given and t* = (2 — q)(q(1 — q)q_1)\)1/(2—q)_ For any ty > t*, there
exists a unique implicit function u = hy,(t) on (t*,00) such that uy =

E\yq(to),u = E,\ﬂ(t) > 0, E,\,q(t) —t+ )\qﬁ)\7q(t)q*1 =0and u = E,\g(t) 18

1
14+Ag(g—1)hy 4 (t)a—2

continuously differentiable with hy ' (t) = > 0. For any

to < —t*, there exists a unique function u = h, ,(t) on (—oo,—t*) such that

ug = hy ,(to), u = hy ,(t) <0, hag(t) —t=Aglhy ()71 = 0 and u = hy, 4(t)

1
1+Aq(g—1)lhy 4(t)

is continuously differentiable with h, /'(t) = =z > 0.

Furthermore, the global solution u of the problem (5.2) satisfies

/

hy (1), if t< —t
—(2X\(1 — Q))Q%q or 0, if t=—t"
i =hyq(t) == ¢ 0, if —t <t <t

A1 —¢)77 or 0, if t =t

hag(t), if t>t.

\

Especially, hy1/s(t) = 2t(14cos(Z—2p(1))) with ¢(t) = arccos(3 (L) 73/2).
Lemma S3.2. Forq € (0,1),A >0, let . = arg minyepe 5 |/u—bl|5+ X|ul|?,
VbeRP. Then = Hy,4(b).

The result is an immediate consequence of Lemma S3.1 and therefore
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the proof is omitted.

Proof of Theorem 5 For any 7 > 0, define the following auxiliary problem

: 1
min F(8,0) i= ((u) + (VA(w), 6 — )+ 518 — ul + N|Bl, vu € .

(S3.1)
It is easy to check that the problem (S3.1) is equivalent to the following

minimization problem

.1 2 q
min 5”5 — (u = 7VIL(w))|3 + AT B]|2.

For any 7 > 0, let B, = {3 € R? : |||z < r} and G, = supgcp, [|[VZ(B)]]2.
For any 7 € (0,G, '] and 3,u € B,, we have

1

L(B) = fu) +(Vew), § — )+ 3(5 — w) VAE)B — w) + N8Il
= E(B.u)+ (6~ w)VUEB —w) — 5115 — ul

1 1

< Fe(Bu) + IV 3118 — wllf - 5118 — ul?
L 1

< F(fu)+ S I18 — ull - 5118 - ul?

< (B ), (S3.2)

where £ = u+a(f—u) for some a € (0, 1) and the second inequality follows
from ||&||l2 < 7.
Further, let 3 € arg mingeps FT(B,B). Since L(f) > 0 and limyg|, o0

L(B) = oo, there exists a positive constant r; such that [|3]]; < r1. Note



S3. ANALYSIS OF THE OPTIMIZATION ALGORITHMI19

that
VUB) =2 (BT ZiB + ] B — i) (2Z:B + ;) (53.3)
i=1
which implies that V/($3) is continuous differentiable. Then, take

ro =711+ sup [[VL(B)|2.

BBy,
Hence it follows from Lemma S3.2 that || 3|z < 7 for any 7 € (0, 1]. By the
definitions of B and 3, we obtain from the inequality (S3.2) that for any

7 € (0,min{G;.}, 1}),

r2

Fo(B,8) < Fr(8,8) = L(B) < L(B) < Fr(B, B,

which leads to F,.(3,3) = F.(3,3). Therefore § is also a minimizer of the

problem (S3.1) with u = 3. The results follows then from Lemma $3.2. O

Lemma S3.3. Let g, = ||VU(5")|l2, Gr = supgep, [|[V2U(B)||2 where By, =

{B R |82 < |B*]l2 + gr}- For any 6 > 0,7,a € (0,1), define

0, if v(Gr +6) < 1,

Jk
—[log, V(G +d)]+ 1, otherwise.

Then (5.4) holds.

Proof. From the definition of 7, and ji, it is easy to check that

1
Gy — — < 0. (S3.4)

Tk
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Indeed, take 7, = « which yields to

1 Gr—1
G — — = 1=k 5,
Tk v
when v(Gy +9) < 1. If v(Gy, +6) > 1,
T = Y0t < o o8 Grr) _ L
- Gr+90
which also leads to (S3.4).
Note that
k+1 : k
7 € arg min G-, (8,8%) (S3.5)

and

18 Hl2 < [18* — 7V eB)l2 < 1812 + g

which yields 851 € By. Similar to (S3.2), we obtain from (S3.4) that

LB < B8 80 + 318 - SRVl - )

< Ry (88 + 218 - BHRG - )
Tk
5
S FTk(ﬂk+17ﬁk) - EH/Bk—’—1 - /BkH%a

where & = % + o(8F1 — 8¥) for some o € (0,1) and then &, € By, leads to

the second inequality. Combining this and (S3.5), we have

L(B*) = L(B™) = Fp (8", B%) — L(B*) > Fr, (8", %) — L(B*)

)
CE — B4,

v
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which completes the proof. O]

Lemma S3.4. Let {#*} and {7} be generated by FPIA. Then,
(1) {B*} is bounded; and

(i) there is a nonnegative integer j such that 1, € [yad, ).

Proof. Lemma S3.3 implies that {L(3*)} is strictly decreasing. From this,
{(-) > 0 and the definition of L(-), it is easy to check that {3*} is bounded.
Since £(-) is a twice continuous differentiable function, it then follows from
the bound of {3*} that there exist two positive constants g and G such that
suppsofgr}t < g and supyso{Gi} < G. Define j = max(0, [—log, V(G +
§)] +1). Then, 0 < j < j which combining the definition of 7;, imply that

Tk € [704577] L

Now we consider the convergence of the sequence {3*}. To this end we

slightly modify h) 4(-) as follows

(

Q)\’q(t), if t<—t%

hag(t) =< 0, if |t <t (S3.6)

hag(t), if t >t

\

Then we have the following result.

Theorem S3.1. Let {8*} be the sequence generated by FPIA. Then,

(i) {L(B*)} converges to L(B), where B is any accumulation point of
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k1.
{5},

(i1) limp_o

k+1_ pk
18 . Bl 0;

k

(ii1) any accumulation point of {B*} is a stationary point of the min-

N

)

imization problem (5.1) when v < (mgfl)lﬂ ()\(1 — q))ﬁ and g =

SUPysg || VE(BY) [2-

Proof. (i) Since {8%} is bounded, it has at least one accumulation point.
Since {L(/3%)} is monotonically decreasing and L(-) > 0, {L(*)} converges
to a constant L(> 0). Since L(J) is continuous, we have {L(¥)} — L =

L(53), where E is an accumulation point of {3*} as k — oc.

(ii) From the definition of ¥ and (5.4), we have

[L(8%) = L(B™ )] < SL(B").

[SOIN )
[STIN )

n 2 n
SOIB = B < 5 Y IL(BY) - L8] =
k=0 k=0
Hence, > 77, |85 — B¥||2 < oo and ||BF+* — B¥||s — 0 as k — oo. Then
the second result of Lemma S3.4 leads to the result (i7).
(iii) Since {8*} and {r;} have convergent sequences, without loss of

generality, assume that

¥ = Band 1, = 7, as k — oo. (S3.7)
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It suffices to prove that 3 and 7 satisfy (5.3). Note that

15 — Hoz g (B —7VEB))l2
< B = B o + [Hanea (8" — mVE(BY)) — Haz o (B — FVEUB)) 12

- L + L. (S3.8)

The result (i¢) and (S3.7) imply that [; — 0 as k — 0.
To complete the proof, we need show I, — 0 for ¢ € (0,1). For i =

1,---,p, denote

of = e, (B*=mVU(BY)). T = ey (B-TVUB)) 1] = zfquq) [2A7(1—¢)]"/

and §3; = (227 (1 — q))l/(%q). Then it suffices to prove that
Rrg (V) = P q(W) (53.9)

when v — ©; as k — oo. We only give the proof of (S3.9) as v; > 0 because
the case of v; < 0 can be similarly proved.

For v; < tf, the limit (S3.7) and the definition of h,,, imply that
Par,.q(VF) = 0 = hyz,(0;). For v; > tf, one can conclude from (S3.7) and
the continuity of hy,, on (£;,00) that hy,, ,(vF) — hyz,(0;). For v; = ¢,
we show that any subsequence of {vf} converging to ©;, without loss of

generality, say {vF}, must satisfy

ol <

T — )

for large enough k. (S3.10)
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We prove the above inequality by contradiction. Denote A = ﬁ ()\(1 —

q)) =7 and §; = t;;@. Note that t* > 3; implies that d; = ﬁA(??)ﬁ >
0. The second limit of (S3.7) implies 7 > 7, and hence §; > 2A(Tk)ﬁ for
large enough k. Since T,E’;ZA_l < V%A_l < (71, for large enough k, we
have

nlIVUEe < AmdA~ < S Finga < 2

and therefore

1
e B = vf + T[VE(BE)] = vf — | [VE(e);8)) |2 > vf — §6i'

Dyt

Combining this, the result (ii) and vf — ¢}, we have

e, B > el BF— %51- > oF — 6, > tF — 26, = B;+26;, for large enough k.

($3.11)
Note that hy,, is continuous on (£, 00) and lim, o Ay, 4(VF) = B; For
large enough k, we have e} ;551! = hy,, o (vF) € [B; — 0:, Bi + 6;], which is in

contradiction with (53.11). So (S3.10) holds. By the definition of hy (),

we have hy,, ,(vF) =0 = hyz,(0;). O
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