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Abstract: Missing responses occur in many industrial and medical experiments,

for example in clinical trials where slow acting treatments are assessed. Finding

efficient designs for such experiments is problematic since it is not known at the

design stage which observations will be missing. The design literature mainly fo-

cuses on assessing robustness of designs for missing data scenarios, rather than

finding designs which are optimal in this situation. Imhof, Song and Wong (2002)

propose a framework for design search, based on the expected information matrix.

We develop an approach that includes Imhof, Song and Wong (2002)’s method as

special case and justifies its use retrospectively. Our method is illustrated through

a simulation study based on data from an Alzheimer’s disease trial.
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1. Introduction

In statistical studies, having missing values in the collected data sets is of-

ten unavoidable, in particular when the experimental units are humans and the

study is long-term. Consider, for example, a clinical trial where responses are

measured several months into the treatment regime for comparison with base-

line measurements. In this situation, some patients may be lost to follow-up for

various reasons, including side effects of the treatment or death.

Extracting the essential information on treatment characteristics from only

partially observed data is a key challenge. Missing values may reduce the power

of the study or increase the variability of estimation, due to smaller sample size.

Moreover, when not missing completely at random (MCAR), they can cause

bias in estimates and thus result in misleading conclusions when not analysed

appropriately, see e.g. Little and Rubin (2002), Schafer (1997), or Carpenter,

Kenward and White (2007). Several methods have been suggested in the liter-

ature to deal with this issue, for example, multiple imputation (Rubin (1987)),

maximum likelihood, weighting methods or pattern mixture models. Research
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in this area has received much attention, see for example Kenward, Molenberghs

and Thijs (2003), White, Higgins and Wood (2008) and Spratt et al. (2010).

In this article we assume the missing data problem is handled using a com-

plete case analysis. This approach discards any experimental units containing

missing values from the analysis, which is appealing for its simplicity. In addi-

tion, inferences of regression coefficients under complete case analysis are unbi-

ased provided the probability that responses are missing only depends on the

covariates and not on the response itself; regression analysis considers the con-

ditional distribution of the responses given the covariates, and so both response

and covariates should be present to contribute to the inference. See e.g. Little

and Rubin (2002) or Glynn and Laird (1986).

In the situation of completely observable data, it is well-established that a

good design can decrease the necessary sample size, and thus lower the costs of

experimentation. However, the design literature has only addressed a few special

cases involving missing data that provide only limited guidance to practitioners.

Many papers focus on assessing the robustness of standard designs, such as bal-

anced incomplete block designs, D-optimal designs, or response surface designs,

against missing observations; see e.g. Hedayat and John (1974), Ghosh (1979),

Ortega-Azurduy, Tan and Berger (2008), or Ahmad and Gilmour (2010).

Herzberg and Andrews (1976) propose to optimise the expectation of the D-

and G-objective functions, respectively, where random missing data indicators

are incorporated into the information matrix. Such a modified G-optimal design

minimises the expected maximum variance of a predicted response among all

designs where these variances exist. Hackl (1995) penalises singular information

matrices in a modified version of the D-optimality criterion, and considers only

small finite design spaces since the approach would become intractable for contin-

uous intervals or even large discrete sets. Imhof, Song and Wong (2002) develop

a framework for finding optimal designs using the expected information matrix,

where the expectation is taken with respect to the missing data mechanism. This

approach is mathematically equivalent to finding designs for heteroscedastic or

weighted regression models. Imhof, Song and Wong (2004) extend this work

by exploring different classes of probability functions for missing responses, and

study the robustness of their optimal designs against misspecification of the pa-

rameters in the probability functions. Baek et al. (2006) further extend this

approach to Bayesian optimality criteria in the context of percentile estimation

of a dose-response curve with potentially missing observations.

In the situation where all outcomes will be observed, it is common in the
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optimal design literature to use the inverse of the information matrix as an ap-

proximation to the covariance matrix, var(β̂), of the parameter estimators of

interest, held in the vector β̂. For linear models, these two matrices are the

same. For maximum likelihood estimators in non-linear or generalised linear

models, equality holds asymptotically. However, when some of the responses

may be missing, var(β̂) will not exist, and it is not clear if the inverse informa-

tion matrix will be a good approximation to the observed covariance matrix, i.e.

the covariance matrix (provided it exists) after the experiment has been carried

out. Hence it is not known if a design that is optimal with respect to some

function of the expected information matrix will actually make the (observed)

covariance matrix (or a function thereof) small. Imhof, Song and Wong (2002)

implicitly assumed that this would be the case without providing a justification.

Our research is filling this gap. We propose an approximation to the covariance

matrix that contains Imhof, Song and Wong (2002)’s method as a special case,

and thus justifies their approach retrospectively. The framework proposed in this

paper is applicable to finding optimal designs for linear regression models in the

presence of missing at random (MAR) mechanisms (or MCAR, a special case of

MAR).

The structure of the paper is as follows. In Section 2, we provide some

background on optimal design for complete data, and describe the optimal design

framework for incomplete data proposed by Imhof, Song and Wong (2002). In

Section 3, we introduce and justify an optimal design framework for a broad

class of MAR missing data mechanisms that includes the method of Imhof, Song

and Wong (2002) as a special case. Using a simple linear regression model,

the optimal design framework is illustrated for A-, c-, and D-optimal designs in

Section 4. In Section 5, we apply our framework to redesigning a clinical trial for

two Alzheimer’s drugs, and we provide a discussion of our results in Section 6.

2. Background

We briefly introduce the general linear regression model and some basic

theory on optimal design of experiments for the situation where all outcomes

are observed. Consider the general linear regression model for (p + 1) linearly

independent functions f0(x), . . . , fp(x),

Yi = β0f0(xi) + . . .+ βpfp(xi) + εi, xi ∈ X, i = 1, . . . , n, (2.1)

where Yi is the ith value of the response variable, xi is the value of the explanatory

variable (or the vector of explanatory variables) for experimental unit i, X is the
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(convex) design region, and εi
iid∼ N(0, σ2), i = 1, . . . , n. In matrix form, this can

be written as Y = Xβ+ε where the ith row ofX is fT (xi) = (f0(xi), . . . , fp(xi)).

A typical example is the polynomial regression model of degree p, i.e.

Yi = β0 + β1xi + β2x
2
i + . . .+ βpx

p
i + εi. (2.2)

Using the method of either least squares or maximum likelihood, the vector of

unknown parameters, β, is estimated by β̂ = (XTX)−1XTY, with covariance

matrix

var (β̂) = σ2(XTX)−1.

Let x∗i , i = 1, . . . ,m, m ≤ n, be the distinct values of the explanatory variable in

the experimental design, and let ni, i = 1, . . . ,m, be the number of observations

taken at xi where
∑m

i=1 ni = n. Then an exact design can be written as

ξ =

{
x∗1 · · · x∗m
w1 · · · wm

}
,

where wi = ni/n gives the proportion of observations to be made in the support

point x∗i . This concept can be generalised to approximate/continuous designs

where the restriction that win is a positive integer is relaxed to wi > 0, i =

1, . . . ,m, with
∑m

i=1wi = 1. The proportion wi is called the weight at the support

point x∗i . The latter approach avoids the problem of discrete optimisation and

is widely used in finding optimal designs for experiments. In order to run such

a design in practice, a rounding procedure which turns continuous designs into

exact designs can be applied; see, for example, Pukelsheim and Rieder (1992).

For a continuous design ξ, the Fisher information matrix for model (2.1) is

M(ξ) = n

m∑
i=1

f(x∗i )f
T (x∗i ) wi

and its inverse, M−1(ξ), is proportional to var (β̂).

The design problem is to find the values of x∗i and wi that provide maximum

information from the experiment. Let Ξ be the class of all approximate designs

on X with M = {M(ξ); ξ ∈ Ξ}. An optimality criterion is a statistically mean-

ingful, real-valued function ψ(M(ξ)), which is selected to reflect the objective of

the experiment. It is typically an increasing and convex function over M, such

that there is a critical point in the region. The technical explanation of these

properties can e.g. be found in Silvey (1980) or Pukelsheim (2006). We seek

a design ξ∗ such that ψ{M(ξ∗)} = min
ξ∈Ξ

ψ{M(ξ)}. Such a design is called a

ψ-optimal design.
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The common optimality criteria are the following.

D-optimality: ψ(M(ξ)) = |M−1(ξ)|. A D-optimal design minimises the volume

of a confidence ellipsoid for β.

A-optimality: ψ(M(ξ)) = trace(M−1(ξ)). An A-optimal design minimises the

sum of the variances of the individual elements of β̂.

c-optimality: ψ(M(ξ)) = cTM−1(ξ)c where c is a (p+1)×1 vector. A c-optimal

design minimises the variance of cT β̂, a linear combination of β̂.

2.1. Optimal design for missing values

To construct optimal designs that account for missing observations, we define

independent random missing data indicators Ri = 1, if the observation at xi is

missing; Ri = 0 otherwise, i = 1, . . . , n. Following Rubin (1976), if responses are

missing completely at random (MCAR) then

Pr(Ri = 1|xi, yi, i = 1, . . . , n) = P (Ri) ∀i = 1, . . . , n.

If we have a missing at random (MAR) mechanism the probability of missingness

may depend on the observed values of xi and yi: for i = 1, . . . , n,

Pr(Ri = 1 | xi, yi, i = 1, . . . , n) = E(Ri | observed xi, yi, i = 1, . . . , n).

In what follows, since only the design values of xi play a role in the optimal

design framework, we assume a special case of MAR mechanism where

E(Ri | observed xi, yi, i = 1, . . . , n) = P (Ri = 1 | observed xi) = P (xi).

This is necessary as we do not know which responses will be observed at the

time of designing the experiment. Henceforth the conditioning on xi is omitted

to simplify the notation of a MAR mechanism.

The Fisher information matrix containing the missing data indicators R =

{R1, R2, . . . , Rn} is given by

E(M(ξ,R)) = E

{
n∑
i=1

f(xi)f
T (xi) (1−Ri)

}

=

n∑
i=1

f(xi)f
T (xi) {1− P (xi)}

= n

m∑
i=1

f(x∗i )f
T (x∗i ) wi {1− P (x∗i )}, (2.3)

which is equivalent to M(ξ) if the responses are fully observed.

Imhof, Song and Wong (2002) proposed a general framework where a func-

tion of (2.3) is used in constructing optimal designs. For example, a D-optimal
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design maximises |E{M(ξ,R)}| as var(β̂) was implicitly assumed to be propor-

tional to [E{M(ξ,R)}]−1. The use of E{M(ξ,R)} is appealing since M(ξ,R)

is linear in the missing data indicators, and therefore taking the expectation is

straightforward. Moreover, from (2.3), we can see that this framework is analo-

gous to the optimal design framework for weighted regression models, with weight

function λ(x) = 1− P (x).

If responses may be missing, var(β̂) does not exist. Hence it is not clear if

the inverse of E{M(ξ,R)} is a good approximation to the observed covariance

matrix of an experiment. In the next section, we investigate this approximation

further.

3. Optimal Design for MAR Mechanisms with Complete Case Analysis

For an exact design ξ on X, let Cξ be the set of values ofR such thatM(ξ,R)

is non-singular, and assume that ξ is such that the probability vξ = P (R /∈ Cξ) is

negligibly small. We can write the observed covariance matrix as var(β̂|R = r)

where r is the observed outcome of the vector of missingness indicators R. This

expression exists if and only if r ∈ Cξ. Since vξ is close to zero, we consider only

those values with r ∈ Cξ to approximate the observed covariance matrix in what

follows. In practice, if a value r /∈ Cξ is observed, further experimentation is

needed, but this scenario only occurs with probability vξ, close to zero.

At the planning stage of the experiment, the observed value of r is not known,

and var(β̂|R) (where R ∈ Cξ) is a random variable, to approximate the observed

covariance matrix for design purposes we take its expectation with respect to the

conditional distribution of R, given R ∈ Cξ,

ER|R∈Cξ
(var(β̂|R)) = ER|R∈Cξ

{[M(ξ,R)−1]}. (3.1)

For notational convenience, the subscript R|R ∈ Cξ of the expectation in (3.1)

is dropped in what follows, so we write E{[M(ξ,R)−1]} instead of ER|R∈Cξ{[M
(ξ,R)−1]}.

The expectation is not normally available in closed form, so must be approx-

imated. We propose to apply a second order Taylor series expansion to approxi-

mate the elements of the inverse matrixM(ξ,R)−1, and then to take their expec-

tation; see Sections 3.1 and 5 for illustrations of this approach. The approach of

Imhof, Song and Wong (2002) can be viewed as a Taylor expansion of order one,

where they implicitly approximate E{[M(ξ,R)−1]} by [E{M(ξ,R)}]−1. They

do not consider potential non-existence of the covariance matrix, so here the

latter expectation is with respect to the (unconditional) distribution of R. For
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vξ close to zero, the conditional and the unconditional distribution are similar;

see also the case study in Section 5 where vξ is negligibly small due to the large

sample size.

The order of the approximation can be viewed as either the 0th or 1st order.

While no Taylor expansion has been applied here, it could be viewed as the 0th

order expansion. But, as we are expanding the expression about the mean of the

random variables, the first order expansion simplifies to the 0th order result. As

our approach is obtained using a second Taylor expansion about the mean, we

refer to the Imhof, Song and Wong (2002) (unconditional) approach as the 1st

order approach, for consistency.

While the first order expansion usually provides a cruder approximation to

the ‘true’ objective function, and thus somewhat less efficient designs, this ap-

proach has the advantage that established theory on optimal design, such as the

use of equivalence theorems, is applicable. Hence we can often simplify design

search considerably through analytical results. For second order approximations,

convexity of the domain and thus of the objective function is no longer guaran-

teed, which prohibits the use of equivalence theorems. Hence, while optimal

designs are more efficient, analytical results can only be established on a case by

case basis, and design search is more challenging.

Theorem 1 shows that for a large class of MAR mechanisms and polynomial

models, the D-optimal design found using a first order approximation has the

same number of support points as it has parameters. This result corresponds

to the contribution of De la Garza (1954) and Silvey (1980) in the conventional

optimal design framework for finding the number and weight of support points

of a D-optimal design. The proof of Theorem 1 can be found in Appendix A.1.

Theorem 1. Let h(x) = 1/1 − P (x) and assume that for the MAR mechanism

P (x) the equation h(2p)(x) = c has at most one solution for every constant c ∈ <.

Then a D-optimal design for the polynomial model (2.2) of degree p has exactly

p+ 1 support points, with equal weights.

Hence design search can be restricted to (p + 1)-point designs, with known

weights wi = 1/(p + 1), i = 1, . . . , p + 1. A further simplification is given in

Lemma 2.

Lemma 1. Let P (x) be a MAR mechanism that satisfies the conditions in The-

orem 1 and is monotone, and let X = [l, u], where l < u. If P (x) is strictly

increasing, then the lower bound, l, is a support point of the D-optimal design.

If P (x) is strictly decreasing, then the upper bound, u, is a support point of the
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D-optimal design.

Proof. For a continuous design ξ with p+ 1 support points, we have

|E{M(ξ,R)}| =
p+1∏
i=1

wi{1− P (x∗i )}
∏

1≤i<j≤p+1

(x∗i − x∗j )2,

where we order the support points by size:

l ≤ x∗1 < x∗2 < · · · < x∗p+1 ≤ u.

If P (x) is monotonic increasing in x, (1−P (x)) is largest at x∗1 = l and (x∗1−x∗j )2

is largest for x∗1 = l, for all values of x∗j where j = 2, . . . , p+ 1. Hence l must be

a support point. Analogously, if P (x) is monotonic decreasing, (1 − P (x)) and

(x∗i − x∗p+1)2, i = 1, . . . , p will be maximised at x∗p+1 = u.

For optimal designs based on a second order approximation to E{[M(ξ,

R)−1]}, there is no corresponding result in general, but we have a similar result

for a special case.

3.1. Illustration

To fix ideas, consider the simple linear regression model (2.2) where p = 1,

for D-, c-, and A-optimality. For a design region X = [l, u], where l < u, consider

total sample size n and two support points x∗1 and x∗2. From Theorem 1, the D-

optimal designs based on the first order approximation are two-point designs for a

large variety of MAR mechanisms P (x). Hence finding the best two-point design

for the second order approximation facilitates comparing the two approaches.

Let n1 = nw1 responses {y1, . . . , yn1
} be taken at experimental condition x∗1, and

n2 = n− n1 = nw2 responses {yn1+1, . . . , yn} at x∗2. We seek an optimal design

ξ∗ =

{
x∗1 x∗2
w1 w2

}
based on a function of the approximated expression for E{[M(ξ,R)−1]}. To

define the quantities in (3.2) and below, we need that n1 = nw1 and n2 = nw2

are integers. To facilitate the numerical computation of the optimal designs, we

only use the constraint w1 +w2 = 1 and then round nw∗1 and nw∗2 to the nearest

integers, where w∗1 and w∗2 are the resulting optimal weights. Here,

M(ξ,R)−1 =
1

(x∗1 − x∗2)2 Z1Z2

(
x∗21 Z1 + x∗22 Z2 −x∗1Z1 − x∗2Z2

−x∗1Z1 − x∗2Z2 Z1 + Z2

)
, (3.2)

where Z1 =
∑n1

i=1(1−Ri) and Z2 =
∑n

i=n1+1(1−Ri) follow binomial distributions

with parameters {nw1, 1 − P (x∗1)} and {nw2, 1 − P (x∗2)}, respectively. As
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M(ξ,R) is singular if Z1 = 0 or Z2 = 0, Cξ = {R ∈ (0, 1)n;Z1 > 0, Z2 > 0}
and vξ = P (x∗1)nw1 + P (x∗2)nw2 − P (x∗1)nw1P (x∗2)nw2 . Hence we consider the

corresponding zero truncated binomial distributions for Z1 and Z2, respectively.

We aim to approximate

E{[M(ξ,R)−1]} =
1

(x∗1 − x∗2)2
x∗21 E

(
Z1

Z1Z2

)
+ x∗22 E

(
Z2

Z1Z2

)
−x∗1E

(
Z1

Z1Z2

)
− x∗2E

(
Z2

Z1Z2

)
−x∗1E

(
Z1

Z1Z2

)
− x∗2E

(
Z2

Z1Z2

)
E

(
Z1

Z1Z2

)
+ E

(
Z2

Z1Z2

)
 (3.3)

as the distribution of Zi/(ZiZj), j = 1, 2, is intractable. Since we consider zero

truncated binomial distributions for Z1 and Z2, we can simplify E[Zi/(ZiZj)] =

E[1/Zj ]. Taking expectation (with respect to the zero truncated binomial random

variables) of a second order Taylor series expansion about E{Zj} yields

E

(
1

Zj

)
≈ 1

E(Zj)
+

V ar(Zj)

{E(Zj)}3
=
{1− P (x∗j )

nwj}2[P (x∗j ) + nwj{1− P (x∗j )}]
(nwj)2(1− P (x∗j ))

2

(3.4)

for j = 1, 2. A derivation of this result is given in Appendix A.2. If the missing

data mechanism is MCAR, this expression simplifies to

E

(
1

Zj

)
≈ (1− Pnwj )2{P + nwj(1− P )}

(nwj)2(1− P )2
(3.5)

independent of the values of the support points, where P = P (Ri = 1) is the

probability that a response is missing completely at random.

After selecting a specific missing data mechanism P (x), the optimal design

ξ∗ can be found by minimising the criterion with respect to the support points

and weights with constraints w1 + w2 = 1 and x∗2 > x∗1 ∈ X. For example, a

D-optimal design minimises the determinant of (3.3),

1

(x∗1 − x∗2)2E

(
1

Z2

)
E

(
1

Z1

)
, (3.6)

over X; a c-optimal design, where c = (0 1)T , minimises

1

(x∗1 − x∗2)2

{
E

(
1

Z2

)
+ E

(
1

Z1

)}
(3.7)

over X; an A-optimal design minimises

1

(x∗1 − x∗2)2

{
(x∗21 + 1)E

(
1

Z2

)
+ (x∗22 + 1)E

(
1

Z1

)}
(3.8)
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over X, where the expectations are approximated by (3.4) or (3.5), depending on

the form of the missing data mechanism.

The proof of the next result is in Appendix A.3.

Theorem 2. For the linear regression model (2.2) with p = 1, take E{[M(ξ,

R)−1]} to be approximated by a second order Taylor expansion (conditional on

Z1, Z2 > 0), and the design interval X = [l, u].

(a) If nwj is an integer ≥ 1, j = 1, 2, and the missing data mechanism is MAR

and monotone increasing (decreasing), then l (u) is a support point of the D-

and the c-optimal designs among two-point designs. If l ≥ 0 (u ≤ 0), this also

holds for A-optimality.

(b) If the missing data mechanism is MCAR, then the D- and the c-optimal

designs among the two-point designs are supported on l and u. If l ≥ 0 or u ≤ 0,

this also holds for the two-point A-optimal design.

Under the assumptions of Theorem 2(b), and for w1, w2 such that nwj ≥ 2,

j = 1, 2, we believe the D- and the c-optimal two-point designs are equally

weighted if P is sufficiently small relative to n. The relationship is given approx-

imately by P < 1−2/n for c-optimality, and by P < 1−2/n0.8 for D-optimality.

From Theorem 2(b), we would then see that, for realistic scenarios, the

optimal designs under MCAR are the same as for the simple linear regression

model without missing data. The lower/upper limit of the design interval is a

support point, and thus the optimal design has the same support structure as the

first order design from Lemma 2, but the weights and the other support point

may differ. In particular, second order D-optimal designs are not necessarily

equally weighted under MAR.

To have nwj ≥ 2, j = 1, 2, is sensible from a practical point of view. We

need at least one observed value yj from each support point in order to estimate

the model parameters, so the risk of non-existence of the estimates would be high

if we only took one run in any point.

In the next section, we find some optimal designs for the two approximation

strategies and illustrate their performance through simulations.

4. Simulation Study

We set the design region X = [0, 2] and sample size n = 30. For a given

design and value of σ2 > 0 we simulated response variables by Yi = 1 + xi + εi,

εi
iid∼ N(0, σ2), i = 1, . . . , n. We introduced missing values by specifying a MAR

mechanism through
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Table 1. Simulation output of 200,000 replications for two designs with w1 = 0.5,
P (x∗1) = 0.01 and n = 30. The penultimate row shows the frequency of the cases where
M(ξ,R) was singular.

ξ {0, 1} {0, 1.5}
[1, 1] element of (3.3) 0.06740 0.06740

First order Taylor series approximation 0.06736 0.06736
Second order Taylor series approximation 0.06740 0.06740

[2, 2] element of (3.3) 0.15242 0.10375
First order Taylor series approximation 0.15078 0.09628

Second order Taylor series approximation 0.15222 0.10177
[1, 2] element of (3.3) −0.06740 −0.04494

First order Taylor series approximation −0.06736 −0.04490
Second order Taylor series approximation −0.06740 −0.04493

Determinant of (3.3) 0.00573 0.00497
First order Taylor series approximation 0.00562 0.00447

Second order Taylor series approximation 0.00572 0.00484
No. of cases failed 0 23

P (x∗2) 0.20085 0.55342

P (xi) =
exp(γ0 + γ1xi)

1 + exp(γ0 + γ1xi)

with γ0 = −4.572 and γ1 = 3.191. The positive value of γ1 has the mecha-

nism monotone increasing with xi. The logistic model is commonly used for

modelling the missing data mechanism (Ibrahim and Lipsitz (1999), Bang and

Robins (2005), Mitra and Reiter (2011, 2016)) as in practical situations, it allows

the estimation of parameters in the missing data model using a logistic regres-

sion. However, there are many other models for the missing data mechanism

(Little (1995)) and our approach is compatible with any choice of missing data

model. We took a simple linear regression model fitted to the complete case data,

obtaining estimates of the coefficients, (β̂0, β̂1), and their variances.

The lower bound of X, 0, was chosen as one of the support points of the

two-point optimal design, denoted x∗1. We considered several designs of the form

ξ = (0, x∗2; 0.5, 0.5) and, under each design, compared the two approaches for

approximating elements of the matrix specified in (3.3), as well as various relevant

functions of this matrix. For each design, we repeatedly simulated incomplete

data as noted and obtained the estimates for (3.3) by averaging the elements in

M(ξ,R)−1, given in (3.2), across those replications where M(ξ,R)−1 existed.

Treating these empirical means as the true elements of the matrix of interest,

ER|R∈Cξ
{(M(ξ,R)−1)}, we compared the two approximations.
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Table 2. Optimal designs found by using 1st and 2nd order Taylor series approximations
to (3.3) respectively, for the optimality criterion denoted by the subscript, for n = 30
and logistic MAR mechanism with γ0 = −4.572 and γ1 = 3.191. The other support
point is x∗1 = 0 with w1 = 1 − w2 and P (x∗1) = 0.01. ξ is the A-, c-, and D-optimal
design that assumes fully observed responses.

ξ∗A 2nd ξ∗A 1st ξ∗c 2nd ξ∗c 1st ξ∗D 2nd ξ∗D 1st ξ

x∗2 1.4630 1.51466 1.5497 1.60059 1.3360 1.37660 2

w2 0.4664 0.4539 0.6257 0.6208 0.5110 0.5 0.5

P (x∗2) 0.5241 0.5650 0.5922 0.6308 0.4234 0.4553 0.8594

vξ 1.186 e-04 3.378 e-04 5.359 e-05 0.0001577 1.897 e-06 7.4897 e-06 0.10302

Table 1 presents the simulation results over 200,000 replications from designs

where x∗2 = 1 and x∗2 = 1.5. For when x∗2 = 1.5, we see that for the c-optimality

criterion for minimising the variance of β̂1, the first order approximation has

a bias of 7.2%, while for the second order approximation it is 1.9%. For this

same design, the trace of matrix (3.3) (A-optimality) has a bias of 4.4% and

the determinant of the matrix (D-optimality) has a bias of 10.1% when using the

first order approximation, while the biases reduce to 1.1% and 2.6%, respectively,

when using the second order approximation. In general, we can see that the

second order approximation yields considerably better approximations of the

elements of (3.3) and relevant functions of this matrix.

We found optimal values for x∗2 and w2 over X = [0, 2], with w1 = 1 − w2

and the missing mechanism defined as above, using the Minimize function in

Mathematica. Table 2 presents the optimal values when constructing A-, c-

and D-optimal designs. We see that using 2nd order approximations results in

an upper design point smaller than the upper design point when using the first

order approximation. The final row shows the probability, vξ, that the covariance

matrix was singular. For more complicated scenarios, this probability can be

calculated as follows (see Imhof, Song and Wong (2002)):

vξ =

m−1∑
j=0

∑
S⊂{1,...,k}
|S|=j

P (ni > 0 if i ∈ S;ni = 0 if i /∈ S)

=

m−1∑
j=0

∑
S⊂{1,...,k}
|S|=j

∏
i∈S

[
1− P (xi)

Nwi
]∏
i/∈S

P (xi)
Nwi .

Here vξ is consistently smaller when adopting the second order approach.

We additionally considered a design that assumes the data are fully observed
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Table 3. Probabilities vξ for D-optimal designs found using different approximations.
The MAR mechanism follows the logistic model with γ1 = 3.191; N = 30; x1 = 0 and
w1 = 1− w2.

2nd order D-optimal design 1st order D-optimal design
γ0 x∗2 w2 vξ x∗2 w2 vξ

−4.572 1.3360 0.5110 1.897 e-06 1.3766 0.5 7.490 e-06
−2.572 0.9260 0.5182 3.088 e-04 0.9830 0.5 0.001169
−1.572 0.7791 0.5162 5.4058 e-03 0.8362 0.5 0.01325

and places half the observations at the end points of the design space, here taken

to be [0, 2]. Clearly vξ is considerably higher here than for other designs, and this

is motivation for considering the potential for missing data at the design stage

of an experiment.

To investigate the issue of possible singularity of the covariance matrix fur-

ther, we considered the effect of varying the parameter values for the missing

data mechanism, resulting in different probabilities of missingness at the design

points. Table 3 shows some examples of vξ computed using the D-optimal designs

for the simple linear model found for the different approximation methods with

logistic MAR mechanisms. As the probability of a missing response increases,

the optimal designs found by the first order approach have a consistently higher

failure rate in estimating the model parameters.

To further illustrate performance, for each design given in Table 2 we re-

peatedly simulated the incomplete data 200,000 times as noted, setting σ2 = 1.

In each incomplete data set, we obtained the covariance matrix for β̂ across the

replications. Table 4 summarises the performance of the designs derived under

the different optimality criteria and approximations. The designs obtained under

A-optimality have the smallest trace of the covariance matrix for β̂, as expected,

and are smaller for the second order approximation than for the first order ap-

proximation. This pattern is repeated for the other optimality criteria. The

design obtained under c-optimality from the 2nd order approximation results in

the smallest variance for β̂1, and the design obtained under D-optimality from

the 2nd order approximation results in the smallest determinant of the covari-

ance matrix for β̂. The design that assumes fully observed outcomes performs

the worst across all optimality criteria, and has the greatest proportion of cases

where one could not estimate the regression coefficients, as expected. This high-

lights the importance of considering the potential for missing data at the design

stage. Further, the second order approximation consistently resulted in fewer
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Table 4. Simulation outputs of 200,000 replications for different designs. The numbers
in the last row indicate the frequency of the cases where M(ξ,R) becomes singular.

sample var(β̂1) tr(sample var(β̂)) |sample var(β̂)| No. of cases failed
ξ∗A 2nd 1.0690e-01 1.6992e-01 4.8805e-03 19
ξ∗A 1st 1.0823e-01 1.7123e-01 5.0880e-03 67
ξ∗c 2nd 9.7359e-02 1.8894e-01 5.4195e-03 16
ξ∗c 1st 9.8102e-02 1.8968e-01 5.7121e-03 35
ξ∗D 2nd 1.0400e-01 1.7590e-01 4.5807e-03 0
ξ∗D 1st 1.0486e-01 1.7197e-01 4.6526e-03 2

ξ 1.4029e-01 2.0063e-01 7.5657e-03 20,588

cases where it was not possible to estimate the parameters due to the missing

data. Thus, more motivation for adopting the 2nd order approximation over the

1st order here.

5. Application: Redesigning a Study on Alzheimer’s Disease

To illustrate our approach, we used data from an Alzheimer’s disease study

that investigated the benefits of administering the treatments donepezil, meman-

tine, and the combination of the two, to patients over a period of 52 weeks, on

various quality of life measures. See Howard et al. (2012) for full details of the

study. The number of patients included in the primary intention-to-treat sample

was 291, with 72 in the placebo group (Group 1), 74 in the memantine treatment

group (Group 2), 73 in the donepezil treatment group (Group 3), and 72 in the

donepezil-memantine group (Group 4).

In the per-protocol analysis, 43 patients were excluded in Group 1, 32 in

Group 2, 23 in Group 3 and 21 in Group 4. Considering these patients as data

missing at random, a logistic regression model was fitted to the data,

P (Ri = 1|xi, vi) =
exp(γ0 + γ1xi + γ2vi)

1 + exp(γ0 + γ1xi + γ2vi)
,

where xi, vi ∈ {0, 1} represent the level of donepezil and memantine respectively

(with 1 indicating the treatment is applied) for patient i. The estimated regres-

sion coefficients were γ̂0 = 0.26365, γ̂1 = −0.89888, and γ̂2 = −0.41085. We took

a linear regression model fit to the data,

Yi = β0 + β1xi + β2vi + εi, εi ∼ N(0, σ2), i = 1, . . . , n, (5.1)

with Yi corresponding to the outcome value for patient i. We took σ2 as known,

and fixed to 1 without loss of generality. The specific values of β0, β1, β2 do

not affect the performance of the different designs. We take the four groups
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Table 5. A- and D-optimal designs for the Alzheimer’s example. The numbers in paren-
theses indicate the expected number of missing values in the respective group.

n1 n2 n3 n4 n
w1 w2 w3 w4

ξ∗A 108(61.1) 64(29.6) 64(22.2) 55(14.3) 291
0.371 0.220 0.219 0.190

ξ∗D 60(33.9) 72(33.4) 78(27.0) 81(21.1) 291
0.206 0.248 0.268 0.278

G1–G4, as G1: x∗i = 0, v∗i = 0 with n1 experimental units; G2: x∗i = 0, v∗i = 1

with n2 experimental units; G3: x∗i = 1, v∗i = 0 with n3 experimental units; G4:

x∗i = 1, v∗i = 1 with n4 experimental units.

In so doing, we have fixed the design points through the values of (x, v) as

(0, 0), (0, 1), (1, 0), and (1, 1). The design problem is to find the optimal number

of patients to allocate to the four groups under the assumption the analyst fits

the linear regression model (5.1) using the complete cases. The A-optimal design

for this model minimises an appropriate approximation to

E[{M(ξ,R)−1
(1,1)}] + E[{M(ξ,R)−1

(2,2)}] + E[{M(ξ,R)−1
(3,3)}]

= E

(
Z1Z2 + Z1Z3 + 2Z1Z4 + 3Z2Z3 + 2Z2Z4 + 2Z3Z4

Z1Z2Z3 + Z1Z2Z4 + Z1Z3Z4 + Z2Z3Z4

)
,

where Zk =
∑

r∈Gk(1−Rr) is the sum of the response indicators for Group Gk,

k = 1, . . . , 4, subject to the constraints
∑4

k=1wk = 1 and wk ≥ 0, k = 1, . . . , 4.

For a design ξ, the existence set is Cξ = {R ∈ {0, 1}n; at least 3 of Z1, Z2, Z3, Z4

are positive}. See Appendix A.4 for the derivation of the objective function for

A-optimality. The corresponding expression for D-optimality is not given here,

but it can be easily obtained through the use of analytical software such as Maple

17 or Mathematica.

Setting n = 291 and using the estimated MAR mechanism, the optimal

design is found by using the Minimize function in Mathematica, subject to the

weight constraint. Table 5 shows the allocation scheme of a A- and a D-optimal

design, denoted ξ∗A and ξ∗D. In this example with its large sample size, we did

not find any significant differences between the designs obtained through the first

and second order approximations and so have not distinguished between them

here. The probability the regression coefficients cannot be estimated here is small

for both approximation approaches (less than 10−20), so there is no significant

drawback in using the 1st order approximation.

Using the procedure of Section 4, we assessed the performance of the op-
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Table 6. Simulated values for the A- and the D-objective function, respectively, for
different designs.

A-optimality D-optimality
ξ∗A 0.066327 3.722e-06
ξ∗D 0.072111 3.3028e-06
ξori 0.069416 3.3439e-06

timal designs by simulating incomplete data from the different designs using

(5.1), choosing values of β0, β1, β2 to be 1, 1, 1. The missing values were in-

troduced into the response using the MAR mechanism specified above. From

each incomplete data set, regression coefficients β̂0, β̂1, β̂2 were estimated from

the complete cases. We repeated this process 350,000 times, so as to empir-

ically obtain the covariance matrix for β̂ for each design. The original de-

sign, ξori = (n1, n2, n3, n4) = (72, 74, 73, 72), with expected missing observations

(40.7, 34.3, 25.3, 18.7) was considered here for comparison.

Table 6 presents the simulated values for the A- and the D-objective function

for the different designs. As expected, ξ∗A has the smallest value for the trace

of the simulated covariance matrix, and ξ∗D has the smallest determinant of the

simulated covariance matrix. Both designs result in an improved criterion value

over the original design used and so could potentially have improved performance

if they had been applied. For example, the A-optimal design would be expected

to achieve a similar trace of the sample covariance matrix as the original design,

while requiring only 95.55% of the overall sample size, or 13 fewer patients.

6. Discussion and Remarks

We have proposed a theoretical framework for designing experiments that

takes into account the possibility of missing values, broadening the approach

of Imhof, Song and Wong (2002). For large sample sizes, the two approaches

tend to lead to similar designs. In these situations the earlier approach might be

preferred for practical reasons. The sample size of 30 we considered in Section 4 is

typical for Phase II clinical trials, where sample sizes are normally no more than

50. Our investigation in Section 4 showed that our refinement offered benefits.

We have described our methodology for the general linear regression model,

and illustrated its benefits in one- and two-variable settings, for simplicity. The

necessary Taylor expansions could then be derived by hand. For more compli-

cated linear models, in particular if the size of the covariance matrix is large,

it is recommended to use symbolic computation software, such as Mathematica,
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for deriving the second-order approximation. Numerical computation of optimal

designs is challenging since convexity of the objective function is not guaranteed,

but is feasible e.g. using metaheuristic search algorithms such as PSO; see, e.g.,

Chen et al. (2015).

Our methodology is also applicable to nonlinear and generalised linear regres-

sion models. For nonlinear regression models with normally distributed errors,

this can readily be seen by considering linearisation of the regression function;

see e.g. Atkinson, Donev and Tobias (2007), Chapter 17.2. More generally, the

equality from (3.1) will only hold approximately. So while the framework is still

applicable, this adds another level of approximation.

We have assumed that complete case analysis is applied. While for many

types of models such as regression models under a MAR mechanism, parameter

estimates are unbiased, there are other ways to handle the missing value problem,

e.g. multiple imputation. Analysing the incomplete data in this way does not

necessarily lead to the same designs as ours; this is an interesting area for future

research. Another area for future research arises when the assumption of MAR

can no longer be expected to hold.

Supplementary Materials

More details of the discussion following Theorem 2 can be found in the online

supplement.
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Appendix

A.1. Proof of Theorem 1

We can prove that the D-optimal design has p+ 1 support points using the

general equivalence theorem. Assume ξ∗ has p+ 2 support points. Consider
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g(x) :=
fT (x) M−1(ξ∗) f(x)

p+ 1
≤ 1

1− P (x)
:= h(x),

where g(x) is a polynomial of degree 2p, which has to be less than h(x) over the

region [l, u]. We order the p+ 2 values for x by size,

l ≤ x∗1 < x∗2 < · · · < x∗p+2 ≤ u (A.1)

such that the above equality is achieved. This implies g(x∗i ) touches h(x∗i ) and

g′(x∗i ) = h′(x∗i ) for i = 2, 3, . . . , x∗p+1. From (A.1), there are values x∗′1 , . . . , x
∗′
p+1

with g′(x∗′i ) = h′(x∗′i ) such that x∗1 < x∗′1 < x∗2 < x∗′2 < x∗3 < · · · < x∗p+1 < x∗′p+1 <

x∗p+2 by the Mean Value Theorem.

Hence we have a total of 2p+ 1 values where g and h have equal derivatives,

and g′(x) is a polynomial of degree 2p − 1. Applying the Mean Value Theorem

again to g′ and h′, there must be 2p values where g′′ and h′′ are equal. By repeat-

ing this process, we find that there must be 2 values where the 2pth derivatives

g(2p) and h(2p) are equal, and g(2p)(x) is a constant since g is a polynomial of

degree 2p. This is a contradiction since we assumed that h(2p)(x) = c has at

most one solution in < for any constant c. The same contradiction occurs if we

assume ξ∗ has more than p+ 2 support points.

A.2. Second order Taylor series approximation

Let X be a discrete random variable with expectation X. We expand H(X)

= 1/X about the point X into a second order Taylor series:

H(X) ≈ 1

X
− X −X

X
2 +

(X −X)2

X
3 .

Since E{(X − X)} = 0 and E{(X − X)2} = V ar(X), E {H(X)} ≈ 1/E[X] +

V ar(X)/E[X]3. For the zero truncated binomial random variable Zj with mo-

ments

E[Zj ] =
nwj(1− P (x∗j ))

1− P (x∗j )
nwj

,

V ar(Zj) =
nwj(1− P (x∗j ))[P (x∗j )− {P (x∗j ) + nwj(1− P (x∗j ))}P (x∗j )

nwj ]

(1− P (x∗j )
nwj )2

,

we obtain

E

(
1

Zj

)
≈ 1

E{Zj}
+

V ar(Zj)

(E{Zj})3
=

(1− P (x∗j )
nwj )2{P (x∗j ) + nwj(1− P (x∗j ))}
(nwj)2(1− P (x∗j ))

2
.

A.3. Proof of part (a) of Theorem 2

Without loss of generality let x∗1 < x∗2, denote nwj by nj , j = 1, 2 where nj
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is a positive integer, and assume P (x) is monotone increasing in x.

Step 1: We show that the second order approximation to E[1/Z1] is increasing

in x∗1 for n1 ≥ 2 and constant for n1 = 1.

Denote the right hand side of (3.4) for E[1/Z1] (times n2
1) by fn1

(P ), and

note that for increasing P (x), it suffices to show that for all n1 ≥ 2, fn1
(P ) is

increasing in P ∈ (0, 1). Moreover, (1− Pn1)/(1− P ) =
∑n1−1

k=0 P k, so

fn1
(P ) =

(
n1−1∑
k=0

P k

)2

[P + n1(1− P )]

with derivative

f ′n1
(P ) = (

n1−1∑
k=0

P k)

[
2

( n1−2∑
k=0

(k + 1)P k
)
{P + n1(1− P )}+ (1− n1)

n1−1∑
k=0

P k
]
.

The first factor is positive. Rearranging the term in square brackets yields

2n1

( n1−2∑
k=0

(k + 1)P k
)

+ 2(1− n1)

( n1−1∑
k=1

kP k
)

+ (1− n1)

n1−1∑
k=0

P k

= n1 + 1 +

( n1−2∑
k=1

P k{n1 + 1 + 2k}
)

+ Pn1−1(1− n)(2n− 1)

≥ Pn1−1

[
n1 + 1 +

( n1−2∑
k=1

{n1 + 1 + 2k}
)

+ (1− n)(2n− 1)

]
= 0

since Pn1−1 ≤ 1 and Pn1−1 ≤ P k for k ≤ n1 − 2. The term in square brackets

can now easily be shown to be zero. Hence fn1
(P (x1)) is minimised when x∗1 = l.

If n1 = 1, fn1
(P ) = 1, since the zero truncated Binomial random variable Z1 can

only take the value 1.

Step 2: The second order approximation for E[1/Z2] does not depend on x∗1.

Since x∗1 = l minimises 1/(x∗1 − x∗2)2, and all expressions are non-negative, the

objective functions in (3.6) and (3.7) are both minimised when x∗1 = l. If l ≥ 0,

(x∗21 + 1) is also increasing in x∗1, and the result for A-optimality follows.

An analogous argument shows that x∗2 = u minimises (3.6), (3.7) and, for

u ≤ 0, also (3.8) if P (x) is monotone decreasing.

Proof of Theorem 2(b) The right hand side of (3.5) does not depend on the

support points. Hence the objective functions in (3.6) and (3.7), are minimised

with respect to x∗1 and x∗2 when the factor 1/(x∗1 − x∗2)2 is minimised. This is

achieved by setting x∗1 = l and x∗2 = u.

Taking partial derivatives in (3.8) with respect to x∗1 and x∗2, shows that
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regardless of the values of the expression in (3.5) the derivative with respect to

x∗1 (x∗2) is non-negative (non-positive) if l ≥ 0 or u ≤ 0. Hence the A-objective

function is minimised when x∗1 = l and x∗2 = u.

A.4. The covariance matrix from the Alzheimer’s example

[M(ξ,R)]−1 =
1

|M(ξ,R)|
Z2Z3 + Z2Z4 + Z4Z3 −(Z2 + Z4)Z3 −(Z3 + Z4)Z2

−(Z2 + Z4)Z3 (Z2 + Z4) (Z1 + Z3) −Z4Z1 − Z2Z3

−(Z3 + Z4)Z2 −Z4Z1 − Z2Z3 (Z3 + Z4) (Z1 + Z2)

 ,

where |M(ξ,R)| = Z1Z2Z3 + Z1Z2Z4 + Z1Z3Z4 + Z2Z3Z4, with trace

Z1Z2 + Z1Z3 + 2Z1Z4 + 3Z2Z3 + 2Z2Z4 + 2Z3Z4

Z1Z2Z3 + Z1Z2Z4 + Z1Z3Z4 + Z2Z3Z4
,

where Zk =
∑

i∈Gk(1−Ri) is the sum of the response indicators in Group Gk, k =

1, . . . , 4. A bivariate second order Taylor expansion of F/G about E[F ] and

E[G], where F = Z1Z2 + Z1Z3 + 2Z1Z4 + 3Z2Z3 + 2Z2Z4 + 2Z3Z4 and G =

Z1Z2Z3 + Z1Z2Z4 + Z1Z3Z4 + Z2Z3Z4, yields

E

(
F

G

)
≈ E{G2}E{F}

(E{G})3
− E{FG}

(E{G})2
+
E{F}
E{G}

.

The A-objective function can now be found by evaluating the right hand side of

this approximation. For simplicity, we used zero-truncated binomial distributions

for all Z1, Z2, Z3, and Z4, when for existence only three of them would have

needed to be truncated. This is justified due to the large sample size.
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