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Abstract: We propose a doubly robust estimation method for the optimal treatment

regime based on an additive hazards model with censored survival data. Specifically,

we introduce a new semiparametric additive hazard model which allows flexible

baseline covariate effects in the control group and incorporates marginal treatment

effect and its linear interaction with covariates. In addition, we propose a time-

dependent propensity score to construct an A-learning type of estimating equations.

The resulting estimator is shown to be consistent and asymptotically normal when

either the baseline effect model for covariates or the propensity score is correctly

specified. The asymptotic variance of the estimator is consistently estimated using

a simple resampling method. Simulation studies conducted to evaluate the finite-

sample performance of the estimators are reported, and an application to AIDS

clinical trial data is given to illustrate the methodology.

Key words and phrases: A-learning estimating equations, additive hazards model,

doubly robust, optimal treatment regime, time-dependent propensity score.

1. Introduction

Different patients may respond differently to the same treatment due to in-

dividual heterogeneity; a new treatment may be more beneficial to some patients

compared with a standard treatment, but it may have no effect or even worse

effects for others. Personalized medicine, which targets tailored treatment based

on patients’ individual prognostic information, has recently attracted consider-

able attention. The main goal of personalized medicine is to find the optimal

treatment regime to achieve the best expected clinical outcome of interest if the

whole population is treated accordingly.

There have been extensive studies on estimating the optimal treatment regimes

for uncensored data. For example, Q-learning (Watkins (1989); Watkins and

Dayan (1992)) and A-learning (Murphy (2003); Robins (2004)) are commonly

used methods for estimating optimal dynamic treatment regimes, where treat-

ments may be given at multiple stages. Q-learning uses a parametric approach

https://doi.org/10.5705/ss.202016.0543


1540 KANG, LU AND ZHANG

to model the outcome of interest given treatment and covariates and derives its

associated Q-function. A-learning uses a semiparametric approach that directly

models the contrast function needed for a treatment decision. A-learning has the

double robustness property; the estimating equations are consistent when either

the baseline effect model or the propensity score model is correctly specified.

Zhang et al. (2012a) proposed a doubly robust augmented inverse probability

weighted estimator for the mean response given a treatment regime. Instead of

directly maximizing the value function, Zhao et al. (2012) proposed to estimate

the optimal treatment regime by outcome weighted support vector machines in a

weighted classification framework. Zhang et al. (2012b) proposed a general clas-

sification framework for estimating the optimal treatment regime. These studies

mainly focus on uncensored data.

For censored survival data, Goldberg and Kosorok (2012) studied Q-learning

for estimating the optimal dynamic treatment regime based on the inverse prob-

ability of censoring weighted (IPCW) estimation. Zhao et al. (2015) extended

the outcome weighted learning approach of Zhao et al. (2012) based on IPCW

estimation and estimated the optimal treatment regime for the restricted mean

survival time. Jiang et al. (2016) proposed Kaplan-Meier type estimators for

the regime-specific survival curve and estimated the optimal treatment regime

by maximizing the t-year survival probability over a prespecified class of linear

decision rules.

In this paper, we adapt the A-learning approach that is mainly studied for

uncensored data to estimate optimal treatment regimes. A-learning is appealing

due to its doubly robust property. We study the optimal treatment regime es-

timation for survival data based on a flexible additive hazards regression model

and propose a doubly robust estimation method in the A-learning framework.

The proposed additive hazard model allows unspecified baseline covariate effects

in the control group and thus has more flexibility in modeling covariate effects

than the classical additive hazards model. Moreover, it gives a closed form esti-

mator for the optimal treatment regime, which can be stably computed by the

form of least squares with computational efficiency. The standard A-learning

estimating equation for uncensored data, as studied in Robins (2004), cannot be

used here since the corresponding estimating equations adjusted for the constant

propensity score are not consistent when the baseline effect model is misspecified.

To tackle this problem and obtain a doubly robust estimator, we propose using

a time-dependent propensity score for constructing A-learning type estimating

equations. In our method, the time-dependent propensity score is the probability



OPTIMAL TREATMENT ESTIMATION IN ADDITIVE HAZARDS MODEL 1541

that patients still at risk receive the treatment given their covariate information

and is estimated nonparametrically using a kernel method. We show that af-

ter properly adjusting for the time-dependent propensity scores, the proposed

estimator has the desired double robustness property as in A-learning. A sim-

ple resampling method is proposed to estimate the asymptotic variance of the

estimator.

The remainder of the paper is organized as follows. In Section 2, we propose

a new additive hazard model and review the estimating equation approaches

of Lin and Ying (1994) for the additive hazards model and Robins (2004) for

A-learning with uncensored data. In Section 3, we propose a time-dependent

propensity score, derive the doubly robust estimating equations, and establish

the asymptotic properties of the resulting estimator. Section 4 is devoted to

numerical studies. Some conclusions and discussions are given in Section 5.

Derivations are contained in the Appendix.

2. Model and A-Learning

2.1. The proposed additive hazards model

Consider n independent subjects in a clinical trial or an observational study.

For the ith subject, let Zi be the p-dimensional vector of covariates and Ai
be the observed treatment assignment. Let the Ai adopt the values 0 and 1 for

control and treatment, respectively. Let Ti and Ci denote the failure time and the

censoring time, respectively. Then n independently and identically distributed

observations are {(Zi, Ai, T̃i, δi), i = 1, . . . , n}, where T̃i = min(Ti, Ci) and δi =

I(Ti ≤ Ci). The corresponding counting process is Ni(t) = I(T̃i ≤ t, δi = 1), and

the at-risk process is Yi(t) = I(T̃i ≥ t).
We consider the additive hazards model

λ(t|Zi) = λ(t) + φ(Zi) +Ai(Z̃
′
iβ), (2.1)

where λ(t) is an unspecified baseline hazard function and φ(Zi) is an unspec-

ified baseline covariate effect model in the control group. For the treatment-

covariate interaction effect, we consider the linear form with Z̃i = (1, Zi)
′ and

β = (β1, β2, . . . , βp+1)
′. At (2.1), the primary interest is to estimate the in-

teraction effect β with the corresponding optimal treatment regime given by

dopt(z) = I(z̃′β < 0) where z̃ = (1, z′)′.

If φ(·) were known, following Lin and Ying (1994), unadjusted estimating

equations for β and λ are given by,
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n∑
i=1

∫ ∞
0

AiZ̃i[dNi(t)− Yi(t){λ(t) + φ(Zi) +AiZ̃
′
iβ}]dt = 0, (2.2)

n∑
i=1

[dNi(t)− Yi(t){λ(t) + φ(Zi) +AiZ̃
′
iβ}] = 0, (2.3)

respectively.

2.2. A-learning estimating equations

In general, the baseline covariate effect φ(·) is unknown in practice. To use

(2.2) and (2.3), we need to assume a parametric model for φ(·), such as linear.

To improve the robustness of the estimation method, one would like to derive

a doubly robust estimation method incorporating the propensity score in the

estimating equations.

For an uncensored response Yi, consider the model E(Yi|Ai, Zi) = φ(Zi) +

Ai(Z̃
′
iβ). Robins (2004) proposed an A-learning estimating equation for β,

n∑
i=1

g(Zi){Ai − π(Zi)}{Yi − h(Zi)−AiZ̃ ′iβ} = 0, (2.4)

where π(Zi) = P (Ai = 1|Zi) is the propensity score, g(Zi) and h(Zi) are arbi-

trary functions of Zi only, and g(Zi) is of the same dimension as β. He showed

that the resulting estimator is consistent and asymptotically normal when either

the posited baseline effect model h(·) or the propensity score π(·) is correctly

specified. In addition, it was shown that if Var(Yi|Zi, Ai) is constant, choosing

g(Zi) = Z̃i and h(Zi) = φ(Zi) yields the most efficient estimating equation for β.

In practice, the propensity score and the baseline effect models are not known

and need to be estimated. The posited models for π(Zi) and φ(Zi) are denoted

by π(Zi; γ) and φ(Zi; θ), respectively. For example, a logistic regression can be

used for π(Zi; γ) and a linear model can be used for φ(Zi; θ). Following Robins

(2004), for the proposed additive hazards model, it is natural to consider an

A-learning type estimating equation for β,
n∑
i=1

∫ ∞
0

Z̃i{Ai− π(Zi; γ)}[dNi(t)− Yi(t){λ(t) + φ(Zi; θ) +AiZ̃
′
iβ}]dt = 0. (2.5)

However, this equation is generally biased when the baseline effect model is mis-

specified. To see this, it can be shown that the left-hand side of (2.5) multiplied

by n−1 converges in probability to

E

(
Z̃i {φ(Zi)− φ(Zi; θ)}E

[
{Ai − π(Zi; γ)}Yi(t)

∣∣∣∣Zi]) .
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When the baseline effect model φ(Zi; θ) is misspecified, the above expectation

is not zero even when the propensity score model π(Zi; γ) is correctly specified,

since E[{Ai−π(Zi; γ)}Yi(t)|Zi] 6= 0 due to the dependence between Ai and Yi(t)

conditional on Zi. To tackle this, we propose a new A-learning type of estimating

equations by adjusting the time-dependent propensity score.

3. Proposed Estimation Method

3.1. Doubly robust estimating equations

The time-dependent propensity score is

πZ(t) ≡ P{Ai = 1|Z, Yi(t) = 1} =
P{Yi(t) = 1|Ai = 1, Zi}

P{Yi(t) = 1|Zi}
π(Zi). (3.1)

Let P (t;Zi) = P{Yi(t) = 1|Ai = 1, Zi}/P{Yi(t) = 1|Zi} and πZ(t; γ) = P (t;Zi)π

(Zi; γ), where π(Zi; γ) is a posited model for π(Zi). Similarly, let φ(Zi; θ) de-

note the posited model for φ(Zi). When either φ(Zi; θ) or π(Zi; γ) is correctly

specified,

E

(∫ ∞
0

Z̃i{Ai − πZ(t; γ∗)}
[
dNi(t)− Yi(t){λ0(t) + φ(Zi; θ

∗) +AZ̃ ′iβ0}dt
])

= 0,

(3.2)

where λ0(·) and β0 are the true values of λ(·) and β, respectively, and θ∗ and γ∗

are the corresponding population parameters for θ and γ based on the posited

models φ(Zi; θ) and π(Zi; γ), respectively.

To prove (3.2), we first consider the case when φ(Zi; θ) is correctly specified

but π(Zi; γ) may not be. Then, φ(Zi) = φ(Zi; θ
∗) and we have

E

(∫ ∞
0

Z̃i{Ai − πZ(t; γ∗)}
[
dNi(t)− Yi(t){λ0(t) + φ(Zi; θ

∗) +AZ̃ ′iβ0}dt
])

= E

[ ∫ ∞
0

Z̃i{Ai − πZ(t; γ∗)}dMi(t)

]
= 0,

where Mi(t) = Ni(t)−
∫ t
0 Yi(s){λ0(s) +φ(Zi) +Ai(Z̃

′
iβ0)}ds is a mean-zero mar-

tingale process.

When π(Zi; γ) is correctly specified but φ(Zi; θ) is not, π(Zi) = π(Zi; γ
∗)

and πZ(t; γ∗) = πZ(t). Then, we have

E

(∫ ∞
0

Z̃i{Ai − πZ(t; γ∗)}
[
dNi(t)− Yi(t){λ0(t) + φ(Zi; θ

∗) +AZ̃ ′iβ0}dt
])

= E

(
Z̃i {φ(Zi)− φ(Zi; θ)}E

[
{Ai − πZ(t)}Yi(t)

∣∣∣∣Zi]) = 0,

because
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E[{Ai − πZ(t)}Yi(t)|Z] = E[{Ai − πz(t)}|Yi(t) = 1, Zi]P{Yi(t) = 1|Zi}
= [P{Ai = 1|Yi(t) = 1, Zi} − πZ(t)]P{Yi(t) = 1|Zi} = 0.

This motivates us to consider a doubly robust estimating equation for β,
n∑
i=1

∫ ∞
0

Z̃i{Ai−π̂Z(t; γ)}
[
dNi(t)− Yi(t){λ(t) + φ(Zi; θ) +AiZ̃

′
iβ}dt

]
= 0, (3.3)

where π̂Z(t; γ) is a consistent estimator of πZ(t; γ). To nonparametrically esti-

mate P{Yi(t) = 1|Ai = 1, Zi} and P{Yi(t) = 1|Zi} in πZ(t; γ), we use a kernel

smoothing technique. Specifically, the kernel estimators for P{Yi(t) = 1|Ai =

1, Zi} and P{Yi(t) = 1|Zi} are given by

Pn1(t;Zi) =

∑n
j=1 Yj(t)AjKh(Zj − Zi)∑n

j=1AjKh(Zj − Zi)
,

Pn2(t;Zi) =

∑n
j=1 Yj(t)Kh(Zj − Zi)∑n

j=1Kh(Zj − Zi)
,

respectively, where Kh(·) is a kernel function with the bandwidth h. Let Pn(t;Zi)

= Pn1(t;Zi)/Pn2(t;Zi) and π̂Z(t; γ) = Pn(t;Zi)π(Zi; γ). In the Appendix, we

prove Pn(t;Zi)
p−→ P (t;Zi) uniformly as n → ∞. Accordingly, πZ(t; γ) is consis-

tently estimated by π̂Z(t; γ).

In general, the kernel function Kh(·) can be taken as a p-variate density

function with h as a symmetric positive definite p × p matrix as discussed in

Wand and Jones (1993). In practice, for simplicity, Kh(·) can be taken as the

product of component-wise kernel functions with component-specific bandwidths.

For a discrete variable, such as binary, we can set the corresponding h to be 0,

and thus the kernel function reduces to an indicator function. We adopted this

choice in our numerical implementations. For the derivation, following Zeng and

Lin (2014), we consider a single bandwidth parameter h for notational simplicity.

Specifically, we take Kh(z) = K(‖z‖/h), where z is a p-dimensional vector with

L2-norm ‖z‖ and K is a univariate density function.

The estimating equations for θ, λ, and γ are, respectively,
n∑
i=1

∫ ∞
0

∂φ(Zi; θ)

∂θ

[
dNi(t)− Yi(t){λ(t) + φ(Zi; θ) +AiZ̃

′
iβ}dt

]
= 0, (3.4)

n∑
i=1

[
dNi(t)− Yi(t){λ(t) + φ(Zi; θ) +AiZ̃

′
iβ}
]

= 0, (3.5)

n∑
i=1

Z̃i{Ai − π(Zi; γ)} = 0. (3.6)
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In our implementation, for simplicity, we posit a logistic regression for the propen-

sity score, π(Zi; γ) = exp(γ′Z̃i)/{1+exp(γ′Z̃i)}, and a linear model for the base-

line covariates effect, φ(Zi; θ) = Z ′iθ. Other parametric models can be easily

accommodated.

From (3.5), given β and θ, the baseline cumulative hazard function can be

estimated by

Λ̂(t;β, θ) =

∫ t

0

∑n
i=1{dNi(u)− Yi(u)(Z ′iθ +AiZ̃

′
iβ)du}∑n

i=1 Yi(u)
.

Plugging this estimator into (3.3) and (3.4), we get estimating equations for β

and θ, respectively, as

U1(β, θ, γ̂) =

n∑
i=1

∫ ∞
0

[Z̃i{Ai−π̂Z(t; γ̂)}−Z∗(t; γ̂)]{dNi(t)−Yi(t)(Z ′iθ +AiZ̃
′
iβ)dt}

= 0, (3.7)

U2(β, θ) =

n∑
i=1

∫ ∞
0
{Zi − Z̄(t)}{dNi(t)− Yi(t)(Z ′iθ +AiZ̃

′
iβ)dt} = 0, (3.8)

where γ̂ is the solution to (3.6), Z∗(t; γ̂)=
∑n

j=1Yj(t)Z̃j{Aj−π̂Z(t; γ̂)}/
∑n

j=1Yj(t)

and Z̄(t) =
∑n

j=1 Yj(t)Zj/
∑n

j=1 Yj(t). Solving (3.7) and (3.8) jointly, we obtain

the closed-form doubly robust estimator for β as

β̂D = (A−BC−1D)−1(h1 −BC−1h2),

and the closed-form estimator for θ as

θ̂ = (C −DA−1B)−1(h2 −DA−1h1),

where

A =

n∑
i=1

∫ ∞
0

Yi(t)[Z̃i{Ai − π̂Z(t; γ̂)} − Z∗(t; γ̂)]⊗2dt,

B =

n∑
i=1

∫ ∞
0

Yi(t)[Z̃i{Ai − π̂Z(t; γ̂)} − Z∗(t; γ̂)]Z ′idt,

h1 =

n∑
i=1

∫ ∞
0

[Z̃i{Ai − π̂Z(t; γ̂)} − Z∗(t; γ̂)]dNi(t).

Here C =
∑n

i=1

∫∞
0 Yi(t){Zi − Z̄(t)}⊗2dt, D =

∑n
i=1

∫∞
0 Yi(t){Zi − Z̄(t)}Z̃ ′iAidt,

h2 =
∑n

i=1

∫∞
0 {Zi − Z̄(t)}dNi(t), and a⊗2 = aa′.

The estimators β̂D and θ̂ depend on the estimated baseline cumulative hazard

function Λ̂(·;β, θ), which may not be monotonically increasing. This can affect

the empirical performance of β̂D. Based on our conducted simulations, the effect
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is mostly negligible.

3.2. Asymptotic properties

In this section, we establish the asymptotic properties of the estimators β̂D,

θ̂ and γ̂. Given β = β0, the true value of β, consider the limiting estimating

equations

E

(∫ ∞
0

∂φ(Zi; θ)

∂θ

[
dNi(t)− Yi(t){λ(t) + φ(Zi; θ) +AiZ̃

′
iβ0}dt

])
= 0,

E
[
dNi(t)− Yi(t){λ(t) + φ(Zi; θ) +AiZ̃

′
iβ0}

]
= 0,

E[Z̃i{Ai − π(Zi; γ)}] = 0.

We assume they have unique solutions, denoted by λ∗(·), θ∗, and γ∗. These are

least false parameters under possible model misspecification for φ(·) and π(·).
The estimation and theoretical properties of the least false parameters under

model misspecification have been widely studied in the literature (e.g White

(1982); Li and Duan (1989); Lin and Wei (1989)).

If we take

dM∗0i (t;Zi) = dNi(t)− Yi(t){λ∗(t) + Z ′iθ
∗ +AiZ̃

′
iβ0}dt,

then E{dM∗0i (t;Zi)|Zi} = 0. In addition, let

q1i =

∫ ∞
0

[
Z̃i{Ai − πZ(t; γ∗)} − µZ(t; γ∗)

]
dM∗0i (t;Zi)− v1i + v2i + v3i − v4i,

q2i =

∫ ∞
0
{Zi − µZ(t; γ∗)}dM∗0i (t;Zi),

q3i = Z̃i{Ai − π(Zi; γ
∗)},

A1β = −E
(∫ ∞

0
Y1(t)[Z̃1{A1 − πZ(t; γ∗)} − µZ(t; γ∗)]Z̃ ′1A1dt

)
,

A1θ = −E
(∫ ∞

0
Y1(t)[Z̃1{A1 − πZ(t; γ∗)} − µZ(t; γ∗)]Z ′1dt

)
,

A2β = −E
[ ∫ ∞

0
Y1(t){Z1 − µZ(t)}A1Z̃1dt

]
,

A2θ = −E
[ ∫ ∞

0
Y1(t){Z1 − µZ(t; γ∗)}⊗2dt

]
,

A3γ = −E
{
Z̃1
∂π(Z1; γ)

∂γ

}
,

where µZ(t) = E{Y1(t)Z1}/E{Y1(t)}, µZ(t; γ∗) = E[Y1(t)Z̃1{A1 − πZ(t; γ∗)}]/
E{Y1(t)}, and v1i, v2i, v3i, and v4i are independent mean zero random vectors
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with definitions given in the Appendix.

Theorem 1. Under the regularity conditions given in the Appendix, as n→∞,

h → 0, and nh → ∞, we have that for any Z, Pn(t;Z) converges uniformly to

P (t;Z) almost surely for t ∈ [0, τ ], τ a fixed constant.

Theorem 2. Assume that either the propensity score or the baseline covariate

effect model is correctly specified. Under the regularity conditions given in the

Appendix, as n→∞, nh2 →∞ and nh4 → 0, we have

√
n

β̂D − β0θ̂ − θ∗

γ̂ − γ∗

 = A−1

−
∑n

i=1 q1i
−
∑n

i=1 q2i
−
∑n

i=1 q3i

+ op(1),

where

A =

A1β A1θ 0

A2β A2θ 0

0 0 A3γ

 .

By the Multivariate Central Limit Theorem and Slutsky’s Theorem, {
√
n(β̂D

− β0)
′,
√
n(θ̂ − θ∗)′,

√
n(γ̂ − γ∗)′}′ converges in distribution to a multivariate

normal with zero mean and variance-covariance matrix A−1Σ(A−1)′, where

Σ =

E(q1q
′
1) E(q1q

′
2) E(q1q

′
3)

E(q2q
′
1) E(q2q

′
2) E(q2q

′
3)

E(q3q
′
1) E(q3q

′
2) E(q3q

′
3)

 .

3.3. Estimation of the asymptotic variance

We obtain a closed-form expression of the asymptotic variance. The matrix

Σ has a complicated form and it may not be easy to obtain the stable variance

estimator based on the usual plug-in method. Therefore, we adopt a resampling

scheme here, as in Jin, Ying and Wei (2001), to approximate the asymptotic

distribution of β̂D.

First, we generate n iid standard exponential random variables {Gi, i =

1, . . . , n}. Then we solve the following while fixing the data at their observed

values:
n∑
i=1

Gi

∫ ∞
0

Z̃i{Ai−π̃Z(t; γ)}
[
dNi(t)− Yi(t){λ(t) + Z ′iθ +AiZ̃

′
iβ}dt

]
= 0, (3.9)

n∑
i=1

Gi

∫ ∞
0

Zi

[
dNi(t)− Yi(t){λ(t) + Z ′iθ +AiZ̃

′
iβ}dt

]
= 0, (3.10)
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n∑
i=1

Gi

[
dNi(t)− Yi(t){λ(t) + Z ′iθ +AiZ̃

′
iβ}dt

]
= 0, (3.11)

n∑
i=1

GiZ̃i{Ai − π(Zi; γ)} = 0, (3.12)

where π̃Z(t; γ) =
(∑n

j=1GjYj(t)AjKh(Zj−Zi)
)
/
(∑n

j=1GjAjKh(Zj−Zi)
)(∑n

j=1

GjKh(Zj −Zi)
)
/
(∑n

j=1GjYj(t)Kh(Zj −Zi)
)
π(Zi; γ) is the perturbed version of

π̂Z(t; γ). Let (β̃, θ̃, λ̃, γ̃) be the resulting solutions. By generating {Gi, i =

1, . . . , n} M times, we can obtain a large set of resampled estimates, {β̃l, l =

1, . . . ,M}. Following Jin, Ying and Wei (2001), it can be shown that, given

the observed data, the conditional distribution of
√
n(β̃ − β̂D) is asymptotically

equivalent to that of
√
n(β̂D − β0), and the variance of β̂D can be estimated by

the empirical variance of β̃.

4. Numerical Studies

4.1. Simulation studies

We carried out simulation studies to assess the performance of the proposed

doubly robust estimator. The failure time T was generated from the additive

hazard model (2.1). Two independent covariates were considered, where Z1 was

Bernoulli with success probability of 0.5, and Z2 was uniform on [−2, 2]. We

chose the regression parameter β = (β0, β1, β2)
′ = (0, 1, 1)′ and the baseline

hazard function λ0(t) = 3. The censoring time C was uniform on U [0, c0], where

c0 was chosen to yield 15% or 40% censoring rates.

For estimation, we considered both correctly specified and misspecified mod-

els for φ(Zi; θ) and π(Zi; γ). We considered three baseline effect models for φ(Zi;

θ): φ1(Zi; θ1) = Z ′iθ1; φ2(Zi; θ) = 0.5(Z ′iθ1)(Z
′
iθ2); and φ3(Zi; θ) = sin(πZ ′iθ1) +

0.1(1+Z ′iθ2)
2. The first poisited linear model is correctly specified while the other

two are misspecified. We set θ1 = (0.5, 0.5), θ2 = (1, 0.5). For the propensity

score, we considered the π1(Zi; γ1) = 0.5; π2(Zi; γ1) = exp(Z̃ ′iγ1)/{1+exp(Z̃ ′iγ1)};
and π3(Zi; γ) = exp{(Z̃ ′iγ1)(Z̃ ′iγ2)}/[1 + exp{(Z̃ ′iγ1)(Z̃ ′iγ2)}]. For the first two,

the posited logistic regression model is correctly specified while for the last, it is

not. We set γ1 = (0, 0.5, 0.5) and γ2 = (0.6,−0.1, 0). We compared the proposed

doubly robust estimator (denoted by DR) with the unadjusted estimator of Lin

and Ying (1994) as the solutions to (2.2) and (2.3) (denoted by YL), and the

adjusted estimator with the time-invariant propensity score as the solutions to

(2.5) (denoted by YL(π)). For each scenario, we conducted 500 runs of sample
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Table 1. Simulation results: censoring rate 15%.

DR YL YL(π)
Estimator SD SE CP Estimator SD Estimator SD

B1, P1
β0 −0.02 0.46 0.47 0.96 −0.02 0.43 −0.02 0.43
β1 1.03 0.40 0.41 0.96 1.01 0.38 1.01 0.39
β2 1.02 0.36 0.36 0.95 1.00 0.33 1.00 0.33

B1, P2
β0 −0.01 0.47 0.48 0.96 −0.03 0.44
β1 0.99 0.44 0.44 0.95 0.98 0.41
β2 1.02 0.37 0.38 0.95 0.98 0.34

B1, P3
β0 0.02 0.47 0.48 0.95 −0.01 0.47
β1 0.99 0.41 0.41 0.95 0.91 0.40
β2 1.00 0.36 0.36 0.94 0.92 0.35

B2, P1
β0 −0.02 0.47 0.48 0.96 −0.09 0.46 0.09 0.47
β1 1.03 0.42 0.43 0.96 1.15 0.42 0.86 0.42
β2 1.02 0.39 0.38 0.94 1.15 0.37 0.86 0.35

B3, P1
β0 −0.01 0.48 0.50 0.96 0.03 0.43 −0.11 0.48
β1 1.03 0.42 0.43 0.95 0.83 0.42 1.14 0.43
β2 1.02 0.38 0.38 0.96 0.88 0.35 1.05 0.38

†B, Baseline effect model; B1 = φ1(Zi; θ), B2 = φ2(Zi; θ), B3 = φ3(Zi; θ). P,
Propensity score model; P1 = π1(Zi; γ), P2 = π2(Zi; γ), P3 = π3(Zi; γ). Est, mean
of the estimates; SD, sample standard deviation of the estimates; SE, mean of the
estimated standard errors; CP, empirical coverage probability of Wald-type 95%
confidence intervals.

size N = 500.

For the bandwidth parameter h for the continuous covariate in the kernel esti-

mator for our method, we took the optimal bandwidth h = 41/3σn−1/3, following

Jones (1990), where σ is the standard deviation of Z2 and n is the sample size.

To estimate the asymptotic variance of the estimator, we generated M = 500

sets of {Gi, i = 1, . . . , n} for each simulated data and estimated the asymptotic

variance of β̂D using the sample variance of β̃’s.

The results for 15% and 40% censoring are summarized in Tables 1 and 2,

respectively. The proposed doubly robust estimators are nearly unbiased for all

scenarios, showing the double robustness as established in Theorem 2. Lin and

Ying (1994)’s unadjusted estimators are biased when the baseline covariate effect

model φ(Zi; θ) is misspecified. The time-invariant propensity score-adjusted es-

timators are also biased when either the baseline effect model or the propensity

score model is misspecified. The doubly robust estimators lose some efficiency

due to the additional estimation for the time-dependent propensity score func-

tion, but the extent of the efficiency loss is negligible. The estimated standard

errors (SE) based on the resampling method are all close to the sample standard
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Table 2. Simulation results: censoring rate 40%.

DR YL YL(π)
Estimator SD SE CP Estimator SD Estimator SD

B1, P1
β0 −0.03 0.56 0.56 0.94 −0.04 0.54 −0.04 0.55
β1 1.03 0.49 0.48 0.95 1.03 0.47 1.04 0.47
β2 1.02 0.43 0.42 0.95 1.00 0.40 1.00 0.41

B1, P2
β0 −0.01 0.57 0.56 0.96 −0.02 0.56
β1 0.99 0.51 0.50 0.95 0.98 0.49
β2 1.02 0.42 0.45 0.97 0.99 0.41

B1, P3
β0 0.02 0.57 0.57 0.96 −0.02 0.59
β1 0.98 0.49 0.49 0.95 0.92 0.47
β2 1.00 0.42 0.43 0.95 0.94 0.44

B2, P1
β0 −0.04 0.60 0.58 0.95 −0.15 0.59 0.05 0.58
β1 1.04 0.51 0.50 0.95 1.18 0.51 0.89 0.51
β2 1.02 0.46 0.45 0.96 1.20 0.42 0.92 0.42

B3, P1
β0 −0.03 0.59 0.60 0.95 0.14 0.59 −0.10 0.58
β1 1.04 0.50 0.50 0.95 0.77 0.50 1.11 0.49
β2 1.02 0.45 0.44 0.95 0.86 0.44 1.05 0.44

†B, Baseline effect model; B1 = φ1(Zi; θ), B2 = φ2(Zi; θ), B3 = φ3(Zi; θ). P,
Propensity score model; P1 = π1(Zi; γ), P2 = π2(Zi; γ), P3 = π3(Zi; γ). Est, mean
of the estimates; SD, sample standard deviation of the estimates; SE, mean of the
estimated standard errors; CP, empirical coverage probability of Wald-type 95%
confidence intervals.

Table 3. Computational times (In seconds).

M 100 250 500
Mean 39.64 109.426 227.08
SD 3.672 2.098 9.149

deviations of the estimates (SD). The Wald-type 95% confidence intervals of β̂D
have proper empirical coverage probabilities.

To assess the computational cost of the proposed resampling method for

variance estimation, we report the average (in seconds) and standard deviation

of the computation time over 500 simulation runs for different numbers of resam-

pling sets. We considered the simulation settings with B1 and P1. The values

are given in Table 3. The computation time linearly increases with the number of

resampling sets. For M = 500, it takes less than 4 minutes, and has a moderate

computational cost.

Additional simulations were conducted to compare the proposed method

with the methods of Goldberg and Kosorok (2012) (denoted by Q-survival) and

Zhao et al. (2015) (denoted by OWL). We considered the same simulation set-
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Table 4. Simulation results for comparisons with Goldberg and Kosorok (2012) and Zhao
et al. (2015) under the additive hazards model.

DR Q-Survival OWL
Mean SD Mean SD Mean SD

B1, P1
PCD 0.882 0.085 0.744 0.113 0.717 0.131
MST 0.270 0.006 0.259 0.015 0.244 0.019

B1, P2
PCD 0.881 0.088 0.732 0.131 0.692 0.156
MST 0.269 0.007 0.254 0.019 0.229 0.012

B1, P3
PCD 0.876 0.093 0.736 0.125 0.674 0.178
MST 0.269 0.006 0.257 0.017 0.237 0.019

B2, P1
PCD 0.878 0.091 0.729 0.117 0.713 0.138
MST 0.255 0.006 0.244 0.014 0.233 0.016

B3, P1
PCD 0.880 0.085 0.766 0.106 0.730 0.115
MST 0.262 0.005 0.256 0.012 0.242 0.016

tings as before with the censoring rate of 15%. To evaluate the accuracy of the

estimated optimal treatment regimes, we computed both the percentage of cor-

rect decision (PCD) and the value of the estimated treatment regimes. Here,

the PCD for each simulation run was defined as 1 −
∑N

i=1 |d̂opt(z) − dopt(z)|/N ,

where dopt(z) = I(z̃′β < 0); while the value was computed as the mean survival

time (MST) under the estimated optimal treatment regime obtained using 10,000

independently generated subjects. The results are given in Table 4. Under all

scenarios, the proposed method yields higher accuracy in terms of PCD and gives

larger MST than the other methods.

We studied the performance of the proposed method when the assumed

additive hazards model was violated. Specifically, we conducted additional sim-

ulations under the proportional hazards model with the same combinations of

the baseline effect and propensity score models as before. We compared the pro-

posed method with the methods of Goldberg and Kosorok (2012) and Zhao et al.

(2015), and report both the percentage of correct decision (PCD) and the value

of the estimated treatment regimes in terms of MST. The results for the 15%

censoring rate are given in Table 5. Under all scenarios, the proposed method

gives larger PCD and MST than other methods. This implies that the proposed

method performs competitively for estimating the optimal treatment regime even

when the assumed additive hazards model is violated.

4.2. Application to AIDS study (ACTG175)

We applied the proposed estimation method to a data set from AIDS Clinical

Trials Group Protocol 173 (ACTG175). The study enrolled 2139 HIV-infected
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Table 5. Simulation results for comparisons with Goldberg and Kosorok (2012) and Zhao
et al. (2015) under the proportional hazards model.

DR Q-Survival OWL
mean sd mean sd mean sd

B1, P1
PCD 0.811 0.148 0.612 0.153 0.671 0.183
MST 1.464 0.033 1.436 0.037 1.429 0.038

B1, P2
PCD 0.811 0.156 0.674 0.151 0.697 0.153
MST 1.465 0.034 1.436 0.039 1.424 0.032

B1, P3
PCD 0.819 0.153 0.667 0.148 0.661 0.189
MST 1.467 0.034 1.435 0.038 1.426 0.039

B2, P1
PCD 0.799 0.148 0.685 0.156 0.657 0.193
MST 1.503 0.034 1.479 0.037 1.467 0.045

B3, P1
PCD 0.822 0.158 0.629 0.138 0.689 0.163
MST 1.536 0.043 1.493 0.057 1.487 0.051

patients who were randomly assigned to four different antiretroviral treatment

regimes; Zidovudine (ZDV) plus monotherapy, ZDV plus didanosine (ddI), ZDV

plus zalcitabine (zal), and ddI monotherapy (Hammer et al. (1996)). In our

analysis, we focus on two groups: ZDV+ddI as treatment 1 and ZDV+zal as

treatment 0. The treatment 1 group has n1 = 522 patients and the treatment 0

group has n0 = 524 patients, thus π(Zi) = 0.5. A primary endpoint of interest

is the time until one of the following events occur; having a larger than 50%

decline in the CD4 count, progressing to AIDS, or death. Among n = 1,046

patients, about 21% of them have experienced the outcome of interest. Based

on Lu, Zhang and Zeng (2013), we include the baseline covariates age after log

transformation and homosexual activity (0 = no, 1 = yes) in the model.

We checked the goodness-of-fit of an additive hazards model with the lin-

ear baseline and treatment-covariate interaction effects for the AIDS data. The

martingale residual plot of the fitted model is given in Figure 1, which shows no

systemic patterns or trends. This implies that the additive hazard model fits the

data reasonably well. We also considered smoothed estimates of the conditional

hazard functions based on the local Nelson-Aalen estimators of the conditional

cumulative hazard functions. The estimated smoothed conditional hazard func-

tions are rather additive than multiplicative. This implies an additive hazard

model may give a better fit than a proportional hazards model. The correspond-

ing plots are not given here. The graphical evidences give some justifications for

using the additive hazards model for the AIDS data. We applied the proposed

method to the data and obtained the doubly robust estimator for the optimal

treatment regime. For standard error estimation, we used the resampling ap-
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Figure 1. Martingale residuals of the additive hazard model for age.

Table 6. Application to AIDS study.

DR YL
Estimator Est SE Est SE
intercept 0.341 0.164 0.338 0.178
age −0.104 0.047 −0.103 0.051
homo 0.033 0.024 0.034 0.022

proach with M = 500 sets of {Gi, i = 1, . . . , n}. For comparison, we considered

Lin and Ying (1994)’s unadjusted estimator. The estimation results are given in

Table 6. From the results, the two meethods give comparable results. A possible

explanation for this is that the linear baseline effect model may be a proper fit

to the data as shown by the martingale residual plot given in Figure 1. In the

simulation study, we observed that when the baseline model is correctly speci-

fied, both methods give similar results. The estimated optimal treatment regime

is dopt(z) = I(0.341 − 0.104 age + 0.033 homo < 0). Under both methods, age

and intercept are significant while homosexual activity is close to significant. In

addition, treatment 1 is more beneficial than treatment 0 for older patients while

treatment 0 is more favorable for younger patients with homo = 1. The results

agree with previous findings in Lu, Zhang and Zeng (2013).

5. Discussion

In this paper, we propose a doubly robust estimation method for the opti-

mal treatment regime in an additive hazards model with censored survival data.

By incorporating time-dependent propensity scores, the proposed estimator has
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an improved robustness against misspecification of the baseline covariate effect

model as in A-learning. We can extend our method to other survival models, for

example, the Cox PH model. The corresponding estimation is much more com-

plicated due to the multiplicative hazard function of the Cox model. A further

investigation is warranted.

As the dimension of the covariates increases, the kernel estimation used to

estimate the time-dependent propensity scores can suffer the curse of dimension-

ality. In addition, not all the covariates are related to the treatment decision.

Variable selection can be incorporated to identify important covariates associ-

ated with treatment decision. Following Martinussen and Scheike (2009), the

corresponding least-square loss can be written as

L(β) = β′(A−BC−1D)β − 2β′(h1 −BC−1h2),

where A, B, C, D, h1, and h2 are given in Section 3.1. Then, penalized estima-

tion, such as Lasso and SCAD, can be easily incorporated.

Appendix

To establish the asymptotic results given in Theorems 1-2, we assume the

following regularity conditions.

(C1) The covariate Z has bounded support; the density function of Z is contin-

uously differentiable in the support of Z and is bounded away from 0; If

Z̃ ′v = 0 for some constant vector v with probability one, then v = 0.

(C2) The probability P{Y (τ) = 1} > 0, where τ is a fixed constant; the function

Λ0(t) is continuously differentiable with Λ0(τ) <∞.

(C3) The true parameter vector β0 is an interior point of a known compact set

B in Rp.

(C4) The true propensity score π(Z) is bounded away from zero and one for all

possible values of Z.

(C5) The kernel function Kh(·) is thrice-continuously differentiable with bounded

variations.

(C6) The matrices A1β, A1θ, A2β, A2θ, A3γ , and A are positive definite.

Conditions (C1)-(C3) are standard in survival analysis and are used to es-

tablish the consistency of the estimator of β. Conditions (C4)-(C5) are used to

establish the uniform consistency and convergence rate of the kernel estimator of
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the time-dependent propensity score. Condition (C6) is required for establishing

the asymptotic normality of the estimator of β.

Proof of Theorem 1. Under the assumed regularity conditions, by Lemma 2.4 of

Schuster (1969), we have

supt∈[0,τ ]

∣∣∣∣(1/n)
∑n

j=1 Yj(t)AjKh(Zj − Zi)
(1/n)

∑n
j=1AjKh(Zj − Zi)

−P{Y (t)=1, A=1|Z=Zi}fZ(Zi)

P (A = 1|Z = Zi)fZ(Zi)

∣∣∣∣→ 0,

supt∈[0,τ ]

∣∣∣∣(1/n)
∑n

j=1 Yj(t)Kh(Zj − Zi)
(1/n)

∑n
j=1Kh(Zj − Zi)

− P{Y (t) = 1|Z = Zi}fZ(Zi)

fZ(Zi)

∣∣∣∣→ 0,

where fZ(·) is the density function of Z. Therefore,

supt∈[0,τ ]

∣∣∣∣(1/n)
∑n

j=1 Yj(t)AjKh(Zj − Zi)
(1/n)

∑n
j=1AjKh(Zj − Zi)

(1/n)
∑n

j=1Kh(Zj − Zi)
(1/n)

∑n
j=1 Yj(t)Kh(Zj − Zi)

− P (A = 1|Z, Y (t) = 1)

∣∣∣∣→ 0.

This proves Theorem 1.

Proof for Theorem 2. By a Taylor expansion and some empirical process approx-

imation techniques, we have

0 =
1√
n
U1(β̂, θ̂, γ̂) =

1√
n
U1(β0, θ̂, γ̂) +A1β

√
n(β̂ − β0) + op(1)

=
1√
n
U1(β0, θ

∗, γ∗)+A1β

√
n(β̂ − β0)+A1γ

√
n(γ̂ − γ∗)+A1θ

√
n(θ̂ − θ∗) + op(1)

=
1√
n

n∑
i=1

∫ ∞
0

[
Z̃i{Ai − π(Zi, γ

∗)P (t;Zi)} − µZ(t; γ∗)
]
dM∗0i (t;Zi)

− 1√
n

n∑
i=1

∫ ∞
0

Z̃iπ(Zi; γ
∗){Pn(t;Zi)− P (t;Zi)}dM∗0i (t;Zi)

− 1√
n

n∑
i=1

∫ ∞
0
{Z∗(t; γ∗)− µZ(t; γ∗)}dM∗0i (t;Zi)

+A1β

√
n(β̂ − β0) +A1γ

√
n(γ̂ − γ∗) +A1θ

√
n(θ̂ − θ∗) + op(1), (A.1)

where

A1γ = − 1

n

n∑
i=1

∫ ∞
0

Z̃iπ̇(Zi; γ
∗)Pn(t;Zi)dM

∗0
i (t;Zi)

− 1

n

n∑
i=1

∫ ∞
0

∑n
j=1 Z̃j{Aj − π̇(Zj ; γ

∗)Pn(t;Zi)}∑n
j=1 Yj(t)

dM∗0i (t;Zi) = op(1),

and π̇(Zi; γ) = ∂π(Zi; γ)/∂γ.
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For (A.1), if we write

Z∗(t; γ∗) =
(1/n)

∑n
j=1 Yj(t)Z̃jAj − Pn(t;Zi){(1/n)

∑n
j=1 Yj(t)Z̃jπ(Zj ; γ

∗)}
(1/n)

∑n
j=1 Yj(t)

≡ Gn(t)

Hn(t)
,

µZ(t; γ∗) =
E[Y1(t)Z̃1{A1 − π(Z1; γ

∗)P (t;Zi)}]
E{Y1(t)}

≡ G(t)

H(t)
,

then

1√
n

n∑
i=1

∫ ∞
0
{Z∗(t; γ∗)− µZ(t; γ∗)}dM∗0i (t;Zi)

=
1√
n

n∑
i=1

∫ ∞
0

{
Gn(t)

Hn(t)
− G(t)

H(t)

}
dM∗0i (t;Zi)

=
1√
n

n∑
i=1

∫ ∞
0

[
Gn(t)−G(t)

H(t)
− G(t){Hn(t)−H(t)}

H(t)2

]
dM∗0i (t;Zi) + op(1)

=
1√
n

n∑
i=1

∫ ∞
0

1

H(t)
{Gn(t)−G(t)}dM∗0i (t;Zi) + op(1).

Applying kernel techniques, and after some algebra, we have

1√
n

n∑
i=1

∫ ∞
0
{Z∗(t; γ∗)− µZ(t; γ∗)}dM∗0i (t;Zi)

=
1√
n

n∑
i=1

∫ ∞
0

1

H(t)

(
1

n

n∑
j=1

Yj(t)Z̃j{Aj − π(Zj ; γ
∗)Pn(t;Zi)}

− E[Y1(t)Z̃1{A1 − π(Z1; γ
∗)P (t;Zi)}]

)
dM∗0i (t;Zi) + op(1)

= − 1√
n

n∑
i=1

∫ ∞
0

1

H(t)
E{Y1(t)Z̃1π(Z1, γ

∗)}{Pn(t;Zi)− P (t;Zi)}dM∗0i (t;Zi)

+ op(1).

In combination, we have

1√
n

n∑
i=1

∫ ∞
0

[
Z̃iπ(Zi; γ

∗)− 1

H(t)
E{Y1(t)Z̃1π(Z1, γ

∗)}
]
{Pn(t;Zi)− P (t;Zi)}

dM∗0i (t;Zi). (A.2)

To simplify the notation, write Pn(t;Zi) = An(t)/Bn(t) and P (t;Zi) = A(t)/B(t).

Then
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An(t) =
(1/n)

∑n
j=1AjYj(t)Kh(Zj−Zi)

(1/n)
∑n

j=1AjKh(Zj−Zi)
p−→ A(t) = P{Y1(t)=1|A1=1, Z1=Zi},

Bn(t) =
(1/n)

∑n
j=1 Yj(t)Kh(Zj − Zi)

(1/n)
∑n

j=1Kh(Zj − Zi)
p−→ B(t) = P{Y1(t) = 1|Z1 = Zi}.

In addition, we have

Cn(t) ≡ 1

n

n∑
j=1

AjYj(t)Kh(Zj−Zi)
p−→ C(t) = P{A1=1, Y1(t) = 1|Z1 = Zi}fZ(Zi),

Dn =
1

n

n∑
j=1

AjKh(Zj − Zi)
p−→ D = P (A1 = 1|Z1 = Zi)fZ(Zi),

En(t) =
1

n

n∑
j=1

Yj(t)Kh(Zj − Zi)
p−→ E(t) = P (Y1(t) = 1|Z1 = Zi)fz(Zi),

Fn =
1

n

n∑
j=1

Kh(Zj − Zi)
p−→ F = fz(Zi).

Therefore, (A.2) can be written as

1√
n

n∑
i=1

∫ ∞
0

[
Z̃iπ(Zi; γ

∗) +
1

H(t)
E{Y1(t)Z̃1π(Z1, γ

∗)}
]
An(t)−A(t)

Bn(t)
dM∗0i (t;Zi)

− 1√
n

n∑
i=1

∫ ∞
0

[
Z̃iπ(Zi; γ

∗)− 1

H(t)
E{Y1(t)Z̃1π(Z1, γ

∗)}
]
A(t){Bn(t)−B(t)}

Bn(t)B(t)

dM∗0i (t;Zi)

=
1

n

n∑
i=1

∫ ∞
0

1

B(t)

[
Z̃iπ(Zi; γ

∗)− 1

H(t)
E{Y1(t)Z̃1π(Z1, γ

∗)}
]√

n
Cn(t)− C(t)

D(t)

dM∗0i (t;Zi)

− 1

n

n∑
i=1

∫ ∞
0

1

B(t)

[
Z̃iπ(Zi; γ

∗)− 1

H(t)
E{Y1(t)Z̃1π(Z1, γ

∗)}
]√

n
C(t)(Dn −D)

D(t)2

dM∗0i (t;Zi)

− 1

n

n∑
i=1

∫ ∞
0

[
Z̃iπ(Zi; γ

∗)− 1

H(t)
E{Y1(t)Z̃1π(Z1, γ

∗)}
]
A(t)

B(t)2
√
n
En(t)− E(t)

F (t)

dM∗0i (t;Zi)

+
1

n

n∑
i=1

∫ ∞
0

[
Z̃iπ(Zi; γ

∗)− 1

H(t)
E{Y1(t)Z̃1π(Z1, γ

∗)}
]
A(t)

B(t)2
√
n
E(t)(Fn − F )

F (t)2

dM∗0i (t;Zi) + op(1).
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By some empirical process approximation and kernel estimation techniques, the

first term in the last expression can be written as

1√
n

n∑
i=1

1

n

n∑
j=1

∫ ∞
0

H1(t;Zi)

[
AjYj(t)Kh(Zj − Zi)−E{A1Y1(t)|Z1 = Zi}f(Zi)

]
dM∗0i (t;Zi) + op(1)

=
1√
n

n∑
i=1

1

n

n∑
j=1

∫ ∞
0

H1(t;Zi)AjYj(t)Kh(Zj − Zi)dM∗0i (t;Zi)

− 1√
n

n∑
j=1

1

n

n∑
i=1

∫ ∞
0

H1(t;Zi)E{A1Y1(t)|Z1 = Zi}f(Zi)dM
∗0
i (t;Zi) + op(1)

=
1√
n

n∑
i=1

∫ ∞
0

H1(t;Zi)E{A1Y1(t)|Z1 = Zi}f(Zi)dM
∗0
i (t;Zi)

− 1√
n

n∑
j=1

E

[ ∫ ∞
0

H1(t;Zi)E{A1Y1(t)|Z1 = Zi}f(Zi)dM
∗0
i (t;Zi)

]
+ op(1)

=
1√
n

n∑
i=1

∫ ∞
0

H1(t;Zi)E{A1Y1(t)|Z1 = Zi}f(Zi)dM
∗0
i (t;Zi) + op(1)

≡ 1√
n

n∑
i=1

v1i + op(1),

where H1(t;Zi) = 1/(B(t)D(t))[Z̃iπ(Zi; γ
∗)− 1/H(t)E{Y1(t)Z̃1π(Z1, γ

∗)}].
Here the v1i’s are i.i.d. mean-zero vectors. Similarly, after some calculations,

the remaining terms can be asymptotically represented as a summation of i.i.d.

mean-zero vectors, which are denoted by v2i, v3i, and v4i, respectively. Therefore,

we have

0 =
1√
n
U1(β̂, θ̂, γ̂)

=
1√
n

n∑
i=1

(∫ ∞
0

[
Z̃i{Ai − π(Zi; γ

∗)P (t;Zi)} − µZ(t; γ∗)
]
dM∗0i (t;Zi)− v1i

+v2i + v3i − v4i
)

+A1β

√
n(β̂ − β0) +A1θ

√
n(θ̂ − θ∗) + op(1)

=
1√
n

n∑
i=1

q1i +A1β

√
n(β̂ − β0) +A1θ

√
n(θ̂ − θ∗) + op(1). (A.3)

Following similar arguments for studying the estimates of the least false

parameters in misspecified models, we have
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0 =
1√
n
U2(β̂, θ̂) =

1√
n

n∑
i=1

∫ ∞
0
{Zi − µZ(t)}dM∗0i (t;Zi) +A2β

√
n(β̂ − β0)

+A2θ

√
n(θ̂ − θ∗) + op(1)

=
1√
n

n∑
i=1

q2i+A2β

√
n(β̂ − β0)+A2θ

√
n(θ̂ − θ∗)+op(1), (A.4)

0 =
1√
n

n∑
i=1

Z̃i{Ai − π(Zi; γ
∗)}+A3γ

√
n(γ̂ − γ∗) + op(1)

=
1√
n

n∑
i=1

q3i + +A3γ

√
n(γ̂ − γ∗) + op(1). (A.5)

Putting (A.3), (A.4), and (A.5) together gives the representationA1β A1θ 0

A2β A2θ 0

0 0 A3γ

√n
β̂ − β0θ̂ − θ∗

γ̂ − γ∗

 =

−
∑n

i=1 q1i
−
∑n

i=1 q2i
−
∑n

i=1 q3i

+ op(1).

Theorem 2 then follows.
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