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Abstract: Variable selection is central to sparse modeling, and many methods have

been proposed under various model assumptions. Most existing methods are based

on an explicit functional relationship, while we are concerned with a model-free

variable selection method that attempts to identify informative variables that are

related to the response by simultaneously examining the sparsity in multiple condi-

tional quantile functions. It does not require specification of the underlying model

for the response. The proposed method is implemented via an efficient comput-

ing algorithm that couples the majorize-minimization algorithm and the proximal

gradient descent algorithm. Its asymptotic estimation and variable selection con-

sistencies are established, without explicit model assumptions, that assure the truly

informative variables are correctly identified with high probability. The effective-

ness of the proposed method is supported by a variety of simulated and real-life

examples.
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1. Introduction

With the rapid development of modern technology, it is much easier to collect

a large number of observations and variables at a relatively low cost. Among the

collected variables, it is generally believed that only a small number of them are

truly informative for the analysis. Thus, sparse modeling that identifies the truly

informative variables is critical for subsequent data analysis.

In the literature, one popular framework of sparse modeling is the regular-

ization method, where sparsity-induced regularization terms are used so that the

resultant sparse models keep only the informative variables. For linear models, a

number of regularization terms have been proposed, including the least absolute

shrinkage and selection operator (Lasso; Tibshirani (1996)), the smoothly clipped

absolute deviation (SCAD; Fan and Li (2001)), the adaptive Lasso (Zou (2006)),
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the truncated `1 penalty (TLP; Shen, Pan and Zhu (2012)), and so on. These

methods mainly focus on the conditional mean regression, and the informative

variables are defined based on the corresponding regression coefficients. Similar

regularization terms have also been applied to conditional quantile regression

(QR) (Zhou (2007); Li and Zhu (2008); Wu and Liu (2009); and Kato (2017)).

To extend variable selection to a more general nonparametric context, additive

models are popularly used (Shively, Kohn and Wood (1999); Xue (2009); Huang,

Horowitz and Wei (2010)). A further extension is the component selection and

smoothing operator method (Cosso; Lin and Zhang (2006)), where the number

of functional components may increase exponentially with the dimension. Re-

cently, Ye and Xie (2012) and Yang, Lv and Wang (2016) proposed a model-free

variable selection method in the framework of gradient learning, where a vari-

able is regarded as truly informative if the corresponding gradient of the mean

function is significantly non-zero. All the aforementioned variable selection meth-

ods focus on a single conditional mean or quantile regression function, and their

performance largely relies on the validity of the functional relationship.

Another popular framework of sparse modeling is variable screening (Fan

and Lv (2008)), which examines each individual variable separately to attain

the sure screening properties. More recently, a number of model-free screening

schemes (Zhu et al. (2011); He, Wang and Hong (2013)) have been developed

under general model settings. Yet as pointed out in He, Wang and Hong (2013),

a potential weakness of the marginal screening methods is the ignorance of the

marginally unimportant but jointly important variables. To overcome this diffi-

culty, a higher-order screening method was developed (Hao and Zhang (2014)).

We propose a new model-free variable selection method in a regularized

gradient learning framework. The proposed method attempts to identify the

informative variables that are related to the response by fully exploiting the un-

derlying distribution. To fully characterize dependence between the variables

and the response, multiple conditional quantile functions are simultaneously ex-

amined, and a variable is deemed informative if it contributes to any of the

conditional quantile functions. Thus the proposed method is formulated as a

gradient learning framework associated with the composite quantile functions

(Zou and Yuan (2008)) on a flexible reproducing kernel Hilbert space (RKHS;

Wahba (1999)). Gradient learning can be traced to Härdle and Gasser (1985)

and Müller, Standtmuller and Schmitt (1987), and some of its recent develop-

ments include Jarrow, Ruppert and Yu (2004) and Brabante, Brabanter and

Moor (2013). The proposed method equips the gradient learning framework
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with a group lasso penalty that can be viewed as an extension of the classical

finite-dimensional Lasso penalty in a functional space. An efficient computing

algorithm is developed, which combines the MM algorithm (Hunter and Lange

(2000)) and the proximal gradient descent algorithm (Rockafellar (1970)). The

performance of the proposed method is supported by a variety of simulations

and data examples, as well as its asymptotic estimation and variable selection

consistencies. In particular, our results assure that the proposed method recovers

the truly informative variables with probability tending to one, and converges to

the true gradient function.

The proposed method aims to finding variables that may contribute to not

only the conditional mean or quantile function, but the conditional distribution

of the response. Thus the identified non-informative variables by the proposed

method can be regarded as independent of the response given other variables.

Asymptotic variable selection consistency is obtained without assuming any ex-

plicit model, a contrast to most existing theoretical results based on model

assumptions. Yet, as in many nonparametric variable selection methods (Xue

(2009); Huang, Horowitz and Wei (2010); Yang, Lv and Wang (2016)), the

asymptotic results for the proposed method are established in the scenario of

a fixed dimension.

The rest of the article is organized as follows. Section 2 presents the general

framework of the proposed model-free variable selection method, as well as its

computing algorithm. Section 3 establishes asymptotic estimation and variable

selection consistencies. Section 4 contains the numerical results on simulations

and data examples, followed by a concluding summary. The computational de-

tails are provided in the appendix, and proofs are contained in the online sup-

plemental materials.

2. Methodology

2.1. Variable selection and conditional independence

Suppose that a training set consists of Z = (xi, yi); i = 1, . . . , n, where

xi = (xi1, . . . , xip)
T ∈ X ⊂ Rp and yi ∈ R are independently sampled as (X, Y )

with X = (X1, . . . , Xp)T supported on a compact metric space X . Most variable

selection methods are based on an additive model y = µ+
∑p

j=1 f
∗
j (xj) + ε, and

define the uninformative variables as those with corresponding f∗j ≡ 0. In a

model-free fashion, we regard X l as uninformative if

Y ⊥⊥ X l | X−l,
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where X−l denotes all variables except for X l. To characterize the conditional

dependence, we note that Y and X l are conditional independent if and only if

∇Q∗τ,l(x) = ∂Q∗τ (x)/∂xl ≡ 0, for any x and τ ∈ (0, 1), (2.1)

where Q∗τ (X) is the τ -th conditional quantile function of Y given X. This moti-

vates the proposed variable selection method in a framework of learning sparse

gradient functions. Let g∗
τ (x) = {g∗τ,1(x), . . . , g∗τ,p(x)}T with g∗τ,l(x) = ∇Q∗τ,l(x)

as the true gradient function, and Qτ (x) and gτ (x) as estimates of Q∗τ (x) and

g∗
τ (x), respectively. In this paper we restrict Qτ to be contained in a RKHS HK

with a pre-specified kernel function K(·, ·). Due to the reproducing properties of

the gradient functions, it can be shown under some smoothness conditions that

gτ = ∇Qτ is contained in HpK with HpK being a p-fold of HK (Zhou (2007)).

2.2. Proposed formulation

At a given quantile level τ , the proposed method is formulated as

argmin
Qτ∈HK ,gτ∈HpK

1

n(n− 1)

n∑
i,j=1

wijLτ{yi −Qτ (xj)− gτ (xi)
T (xi − xj)}+ J(Qτ ,gτ ),

(2.2)

where Lτ (u) = u{τ − I(u < 0)} is known as the check loss for the τ -th quantile,

wij = w(xi,xj) is a weight function, and J(Qτ ,gτ ) is a penalty term. The first

term in (2.2) is an empirical version of

E(Qτ ,gτ ) =

∫∫
w(x,u)Lτ{y −Qτ (u)− gτ (x)T (x−u)}dρX(u)dρ(x, y),

where ρ and ρX are the joint distribution function of (x, y) and the marginal

distribution function of x, respectively. Here, Qτ (u) + gτ (x)T (x−u) can be

regarded as an approximation of Qτ (x) at a neighboring point u, and w(x,u) is

used to ensure the local neighborhood of x contributing more to the estimation

of Qτ (x) and gτ (x). Typically, we set w(x,u) = e−‖x−u ‖2/σ2
n , where σ2

n is a

pre-specified scale parameter.

To make use of (2.1) for variable selection, we consider multiple quantile

functions simultaneously, in order to identify the variables that may contain

information about the conditional distribution at any quantile level. Let 0 <

τ1 < · · · < τm < 1 be a pre-specified sequence of quantile levels. Let Q = (Qτ1 ,

. . . , Qτm) and g = (g1, . . . , gp) with gl = (glτ1 , . . . , g
l
τm), with

E(Q,g) =
1

m

m∑
k=1

∫∫
w(x,u)Lτk{y −Qτk(u)− gτk(x)T (x−u)}dρX(u)dρ(x, y),
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and its empirical version as

EZ(Q,g) =
1

mn(n− 1)

m∑
k=1

n∑
i,j=1

wijLτk{yi −Qτk(xj)− gτk(xi)
T (xi − xj)}.

The proposed method is then formulated as

argmin
Q,g

EZ(Q,g) +
λ0

m

m∑
k=1

‖Qτk‖2HK + λ1

p∑
l=1

πl‖gl‖HmK . (2.3)

Here ‖gl‖HmK =
√

(1/m)
∑m

k=1 ‖glτk‖
2
HK is a group Lasso penalty (Yuan and Lin

(2006)) that has the effect of pushing all or none of elements in ‖gl‖HmK to be

exactly 0, thus achieving the purpose of variable selection. The weight πl is

adaptively assigned to different ‖gl‖HmK to achieve better selection performance

following the suggestion of Zou and Yuan (2008), the penalty term ‖Qτk‖2Hk is a

standard RKHS-norm penalty, and λ0 and λ1 are two tuning parameters.

2.3. Computing algorithm

In this section, we develop an efficient computing algorithm to solve (2.3) ,

which couples the MM algorithm and the proximal gradient descent algorithm.

The algorithm proceeds in an iterative fashion. Given the current estimate (Q̃, g̃)

and õij = yi − Q̃τk(xj) − g̃τk(xi)
T (xi − xj), we first approximate the check loss

Lτk(oij) with a smooth loss function Lετk(oij) = Lτk(oij) − ε/2 ln(ε + |oij |) and

then majorize it with

L̃ετk(oij |õij) =
1

4

{
o2
ij

ε+ |õij |
+ (4τk − 2)oij + c

}
,

where c is a constant such that L̃ετk(õij |õij) = Lετk(õij). The minimization step is

then to solve

argmin
Q,g

R(Q,g) +
λ0

m

m∑
k=1

‖Qτk‖2HK + Ω(g), (2.4)

where Ω(g) = λ1
∑p

l=1 πl‖g
l‖HmK and

R(Q,g) =
1

mn(n− 1)

m∑
k=1

n∑
i,j=1

wijL̃
ε
τk

{
yi −Qτk(xj)− gτk(xi)

T (xi − xj)
∣∣∣õij}.

The obtained solution of (2.4) is used to update õij , and the iteration is stopped

when some termination condition is met.

To solve the sub-optimization in (2.4), we employ a proximal gradient descent

algorithm. Specifically, at the t-th iteration with solution (Qt,gt),
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Qt+1 = arg min
Q

{
R(Q,gt) +

λ0

m

m∑
k=1

‖Qτk‖2HK

}
, (2.5)

gt+1 = prox1/DΩ

{
gt − 1

D
∇gR(Qt+1,gt)

}
, (2.6)

here prox 1

D
Ω is a proximal operator (Moreau (1962)), defined as

prox 1

D
Ω(g) = argmin

f∈HmpK

{
1

2
‖f − g ‖2HmpK +

1

D
Ω(f)

}
,

where D is an upper bound of the maximum eigenvalues of ∇2
gR(Q,g).

To solve (2.5), we can solve for each Qτk separately. By the representer theo-

rem of RKHS, the solution of (2.5) must be of the form Qτk(x) =
∑n

i=1 c
k
iK(xi,x)

with ck = (ck1, . . . , c
k
n) ∈ Rn. Then ck can be obtained by solving the equation

system

ck
{

(ek,1K
T
x1
, . . . , ek,nK

T
xn) + 2λ0In

}
= (zk,1, . . . , zk,n), (2.7)

where Kx = (K(x1,x), . . . ,K(xn,x))T , and ek,i and zk,i are defined as in the

appendix.

The representer theorem of RKHS also implies that the solution of (2.6)

must be of the form glτk(x) = KT
x αkl =

∑n
i=1 α

kl
i K(xi,x). If ḡt = gt − 1/D∇g

R(Qt+1,gt) and g̃t+1
= ([g̃

t+1
]1, . . . , [g̃

t+1
]p), then

[g̃
t+1

]l =
[ḡt]l

‖[ḡt]l‖HmK

(
‖[ḡt]l‖HmK −

λl
D

)
+

,

with λl = λ1πl and ∇gR(Qt+1,gt) defined in (A.2) of the Appendix.

Algorithm 1

given parameters λ0, λ1, πl; l = 1, 2, . . . , p, ε, c, and quantile vector τ > 0
initialize g0 = Q0 = 0, t = 1
repeat

Qt = arg min
Q

{
R(Q,gt−1) +

λ0

m

m∑
k=1

‖Qτk‖2HK

}

gt = prox 1
DΩ

{
gt−1 − 1

D
∇R(Qt,gt−1)

}
õ← o(Qt,gt)

t← t+ 1

until (Qt,gt) converges.

The complexity of the proposed variable selection method is linear in m,
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which is not much different than conducting variable selection for m separate

quantile regression models. A possible drawbacks is that the Lipschitz constant

D in the proximal gradient algorithm is not always computable. For large-scale

problem, this quantity is intractable computationally, and a backtracking scheme

(Beck and Teboulle (2009)) can be used to approximate the value of D.

3. Asymptotic Consistencies

This section establishes the asymptotic estimation and variable selection con-

sistencies of the proposed method. Let (Q̂, ĝ) be the minimizer of (2.3), (Q∗,g∗)

be the true quantile and true gradient functions, and A∗ = {X1, X2, . . . , Xp0}
be, with p0 < p, the true active set.

Assumption 1. The support X is a non-degenerate compact subset of Rp. For

any τ ∈ (0, 1), there exists a positive constant c1 such that supx∈X ‖H∗τ (x)‖2 ≤
c1, where H∗τ (x) = ∇2Q∗τ (x) is a Hessian matrix for any given x and ‖ · ‖2 is the

matrix 2-norm.

Assumption 2. For some positive constants c2 and θ, the marginal density p(x)

exists and satisfies |p(x)− p(u)| ≤ c2dX(x,u)θ, for any x,u ∈ X , where dX(·, ·)
is the Euclidean distance.

Assumption 3. There exist positive constants c3 and c4 such that c3 ≤ limn→∞
min1≤l≤p0 πl ≤ limn→∞max1≤l≤p0 πl ≤ c4.

Assumption 1 gives regularity conditions on the support X . The bounded-

ness assumption on the largest eigenvalues of H∗τ (x) is necessary to prevent the

loss function from diverging (Ye and Xie (2012)). Assumption 2 characterizes

the smoothness of underlying distribution of x by introducing a Lipschitz condi-

tion on its density. It follows from Assumptions 1 and 2 that there exists some

constant c5 such that supx∈X p(x) ≤ c5. Assumption 3 restricts the behavior of

the adaptive weights when n diverges.

Theorem 1. Suppose Assumptions 1-3 are hold and Q∗ ∈ HmK . If λ0 = n−1/4,

λ1 = n−θ/(2(p+2+2θ)), and σn = n−θ/(2(p+2+2θ)), then there exists some constant

c6 such that with probability at least 1− δ,∣∣E(Q̂, ĝ)− E(Q∗,g∗)
∣∣ ≤ c6

{
log

(
4

δ

)}1/2

n−Θ,

with Θ = min[(p+ 2)/{4(p+ 2 + 2θ)}, θ/{2(p+ 2 + 2θ)}].

Theorem 1 establishes the weak convergence of (Q̂, ĝ) with the convergence

rate that depends on the choice of λ0, λ1 and σn. This might be improved
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with a more involved derivation. The assumption Q∗ ∈ HmK can be relaxed by

considering the approximation error between Q∗ and HmK (Ye and Xie (2012)).

The proposed method can also be improved by considering the weighted average

of the selected quantile levels, which might lead to a smaller constant in the

upper bound of
∣∣E(Q̂, ĝ)− E(Q∗,g∗)

∣∣.
Let the estimated active set be Â = {X l :

∑m
k=1 ‖ĝlτk‖1 6= 0}, where ‖ĝlτk‖1 =∫

X |ĝ
l
τk(x)|dρX(x). We need some assumptions.

Assumption 4. As n diverges, n−1/2ψ
−1/2
max ψminλ1 minl>p0 πl →∞, where ψmax

and ψmin are the largest and smallest eigenvalues of K = {K(xi,xj)}ni,j=1, re-

spectively.

Assumption 5. There exist positive constants c7, c8, and q ∈ (0, 2), such that

inf
(Q,g)∈Frn

|E(Q,g)− E(Q∗,g∗)| ≥ c7

m

m∑
k=1

‖Qτk −Q∗τk‖
2
q +

c8

m

m∑
k=1

‖gτk − g∗τk‖
2
q ,

where Frn = {(Q,g) ∈ Hm(p+1)
K : (λ0/m)

∑m
k=1 ‖Qτk‖2HK ≤ rn and λ1

∑p
l=1 πl

‖glτ‖HK ≤ rn}, with rn ≥ [1/{mn(n− 1)}]
∑m

k=1

∑n
i,j=1wij |yi| and ‖gτ‖q =

(
∫
X
∑p

l=1 |g
l
τ (x)|qdρX(x))1/q is the norm induced by LqρX.

Assumption 6. For some positive constants c9 and ζ, the true gradient function

satisfies

sup
x,l
|g∗lτ ′(x)− g∗lτ (x)| ≤ c9|τ ′ − τ |ζ , for any τ ′, τ ∈ (0, 1). (3.1)

When l > p0, g∗l
τ (x) ≡ 0 for any τ ∈ (0, 1) and x ∈ X almost surely, and when

l ≤ p0, there exist t > 0 and τ0 such that
∫
X\Xt{g

∗l
τ0(x)}2dρX(x) > 0, where

Xt = {x ∈ X : dX(x, ∂X ) < t}, dX(x, ∂X ) = infu∈∂X dX(x,u), and ∂X is the

boundary of X .

Assumption 4 further quantifies the asymptotic behavior of the adaptive

weights. When the second-order Sobolev kernel is used, ψmax and ψmin are of

order Op(n) and Op(n
−1) (Braun (2006); Raskutti, Wainwright and Yu (2012)).

Then Assumption 4 is satisfied with πl = ‖g̃l‖−γ2 , where γ is determined by the

given ψmax, ψmin, λ1, and g̃l is the solution of (2.3) with λ0 = λ1 = 0. The veri-

fication can be done similar to the proof of Theorem 1. Assumption 5 connects

the strong convergence
∑m

k=1 ‖gτk − g∗
τk‖q with the weak convergence measured

by the difference of E(Q,g) and E(Q∗,g∗). It is similar to that used in Stein-

wart and Christmann (2011) and Lv, He and Wang (2017) in proving the strong

convergence of nonparametric function estimation. Assumption 6 quantifies the
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smoothness of the true gradient functions. Similar Lipschitz conditions are also

used in Belloni and Chernozhukov (2011) for parametric cases. Assumption 6

requires the gradient functions with respect to the truly informative variables

be significantly away from 0, and those with respect to the non-informative vari-

ables be 0. This discriminates between informative and non-informative variables

without imposing an explicit model assumption.

Theorem 2. If the assumptions in Theorem 1 and Assumptions 4-6 hold, then

P (Â = A∗)→ 1 as m,n→∞ .

4. Numerical Experiments

In this section, the effectiveness of the proposed method is compared against

some existing nonparametric variable selection methods. Specifically, the ran-

dom forest (Breiman (2001)) can be adjusted to conduct nonparametic variable

selection; Xue (2009) assumes an additive model for the conditional mean func-

tion to conduct variable selection; Lin and Zhang (2006) conduct component

selection and a smoothing operator for the nonparametric mean regression; a

modified formulation of (2.3) with τ = 0.5 conducts variable selection for the

conditional median regression function; He, Wang and Hong (2013) consider

the independent sure screening method. We denote these methods as MF, RF,

Add, Cosso, Median, and QaSIS, respectively. The quantile levels were set as

τ = (0.01, 0.25, 0.75, 0.99) for the proposed MF, and τ = 0.75 for QaSIS.

For all methods, the kernel function was set as the radial basis kernel for

computational convenience, K(s, t) = e−‖s−t‖
2/σ2

, where σ2 was set as the median

of all pairwise distances among the training sample (Jaakkola, Diekhans and

Haussler (1999)). The performance of all methods was tuned through a stability-

based selection criterion (Sun, Wang and Fang (2013)). One randomly splits

the training set into two subsets, and applies any variable selection method to

them to generate two estimated active sets. A measure of the agreement of

these two estimated active sets is defined as the variable selection stability, and

the selection criterion looks for the tuning parameter corresponding the largest

stability measure. The search was conducted via a grid search, where the grid

was set as {10−2+0.1s : s = 0, . . . , 40}.

4.1. Simulated examples

Two simulations were done. In the first, only the mean function relied on

the variables, whereas in the second both the mean function and the error term
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relied on the variables.

Example 1. We generated xi = (xi1, . . . , xip)
T ∈ Rp with xij = (Wij + ηUi)/(1

+ η), where Wij and Ui are independently generated from U(−0.5, 0.5). We took

f∗(xi) = 6f1(xi1) + 4f2(xi2)f3(xi3) + 6f3(xi4) + 5f5(xi5), with f1(u) = u, f2(u) =

2u + 1, f3(u) = 2u − 1, f4(u) = 0.1 sin(πu) + 0.2 cos(πu) + 0.3{sin(πu)}2 +

0.4(cos(πu))3 + 0.5(sin(πu))3 and f5(u) = sin(πu)/{2 − sin(πu)}. The response

yi was generated as yi = f∗(xi) + εi, with εi’s independently N(0, 1). Here the

true regression function is additive and contains a interaction term. The first five

variables are the informative variables.

Example 2. The generating scheme was similar to that of Example 1, except

that Wij and Ui were independently U(0, 1) and the response yi was generated

as yi = 4xi1xi2 + 3|xi3|εi. Here, (X1, X2, X3) were the all informative variables.

For each example, we considered scenarios with (n, p) = (200, 10), (200, 20)

and (400, 100). In each scenario, η = 0 and η = 0.1 were examined. When

η = 0, the data was completely independent, whereas when η = 0.1, correlation

structure had been added among the variables. Each scenario was replicated

50 times. The averaged performance measures are summarized in Tables 1 and

2, where Size is the averaged number of selected informative variables, TP is

the number of truly informative variables selected, FP is the number of truly

non-informative variables selected, and C, U, O are the times of correct-fitting,

under-fitting, and over-fitting, respectively.

It is evident that MF outperforms the other competitors in most scenarios.

In Example 1, MF yields similar performance as Median and ADD, but outper-

forms the other methods. In Example 2, MF delivers a much larger advantage

against the other five methods. Those methods focus on a single mean or quantile

function, and miss the X3 that affects the response through the variance, while,

MF is able to identify X3 in most replications. In both examples with η = 0.1,

the correlation structure increases the difficulty of identifying the informative

variables, and here MF outperforms its competitors in most scenarios.

4.2. Japanese industrial chemical firm data

This section reports on the application of MF to a dataset on Japanese

industrial chemical firms (Yafeh and Yosha (2003)). The dataset includes 186

Japanese industrial chemical firms listed on the Tokyo stock exchange, and the

goal is to check whether concentrated shareholding is associated with lower ex-

penditure on activities with scope for managerial private benefits. The dataset
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Table 1. The averaged performance measures of various variable selection methods in
Example 1.

(n, p, η) Method Size TP FP C U O
(200, 10, 0) MF 5.06 4.98 0.08 45 1 4

Median 5.02 4.98 0.04 47 1 2
Cosso 3.88 3.88 0.00 36 14 0
Add 4.96 4.96 0.00 48 2 0
RF 5.48 5.00 0.48 31 0 19

QaSIS 4.68 4.54 0.14 27 19 4
(200, 20, 0) MF 5.12 4.94 0.18 40 3 7

Median 5.22 4.96 0.26 41 2 7
Cosso 4.22 4.22 0.00 40 10 0
Add 4.96 4.96 0.00 48 2 0
RF 5.62 5.00 0.62 24 0 26

QaSIS 4.82 4.42 0.40 20 22 8
(400, 100, 0) MF 5.16 5.00 0.16 44 0 6

Median 5.10 5.00 5.00 45 0 5
Cosso 5.10 4.46 0.64 27 13 10
Add 5.00 5.00 0.00 50 0 0
RF 5.92 5.00 0.92 30 0 20

QaSIS 4.82 4.80 0.02 39 10 1
(200, 10, 0.1) MF 5.10 4.98 0.12 43 1 6

Median 5.06 4.98 0.08 45 1 4
Cosso 3.18 3.18 0.00 27 23 0
Add 5.00 5.00 0.00 50 0 0
RF 5.44 5.00 0.44 30 0 20

QaSIS 4.24 4.20 0.04 19 30 1
(200, 20, 0.1) MF 5.06 4.96 0.10 43 2 5

Median 5.16 4.94 0.22 36 3 11
Cosso 4.18 4.18 0.00 39 11 0
Add 4.96 4.96 0.00 48 2 0
RF 5.70 5.00 0.70 22 0 28

QaSIS 4.36 4.24 0.08 22 28 3
(400, 100, 0.1) MF 5.14 5.00 0.14 44 0 6

Median 5.14 5.00 0.14 45 0 5
Cosso 4.62 4.38 0.24 31 14 5
Add 5.00 5.00 0.00 50 0 0
RF 6.36 5.00 1.36 14 0 36

QaSIS 4.56 4.54 0.02 30 19 1

consists of a response variable MH5 (the general sales and administrative ex-

penses deflated by sales), and 12 covariates: ASSETS (log(assets)), AGE (the

age of the firm), LEVERAGE (ratio of debt to total assets), VARS (variance

of operating profits to sales), OPERS (operating profits to sales), TOP10 (the
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Table 2. The averaged performance measures of various variable selection methods in
Example 2.

(n, p, η) Method Size TP FP C U O
(200, 10, 0) MF 3.14 2.92 0.22 38 4 8

Median 2.26 2.02 0.24 2 47 1
Cosso 1.82 1.72 0.10 2 48 0
Add 2.06 1.72 0.34 1 47 2
RF 3.46 2.34 1.12 5 33 12

QaSIS 2.68 2.44 0.22 20 23 7
(200, 20, 0) MF 3.24 2.76 0.48 24 9 17

Median 2.26 2.00 0.26 0 49 1
Cosso 1.64 1.60 0.04 0 50 0
Add 1.90 1.38 0.52 1 49 0
RF 4.24 2.36 1.88 1 32 17

QaSIS 3.22 2.38 0.84 9 26 15
(400, 100, 0) MF 3.16 2.96 0.20 38 2 10

Median 2.12 2.04 0.08 2 48 0
Cosso 1.60 1.60 0.00 0 50 0
Add 1.56 1.56 0.00 0 48 2
RF 4.46 2.28 2.18 2 36 12

QaSIS 2.64 2.48 0.16 22 24 4
(200, 10, 0.1) MF 3.22 2.76 0.46 27 9 14

Median 2.38 2.02 0.36 2 46 2
Cosso 1.80 1.70 0.10 3 46 1
Add 1.98 1.60 0.38 2 44 4
RF 3.16 2.28 0.88 5 34 11

QaSIS 2.10 1.94 0.16 9 36 5
(200, 20, 0.1) MF 3.22 2.72 0.50 20 8 22

Median 2.30 1.92 0.38 1 49 0
Cosso 1.44 1.42 0.02 0 50 0
Add 3.60 1.62 1.98 0 42 8
RF 3.84 2.20 1.64 0 40 10

QaSIS 2.74 2.30 0.44 14 27 9
(400, 100, 0.1) MF 3.32 2.80 0.54 28 8 14

Median 2.08 1.96 0.12 0 50 0
Cosso 1.64 1.60 0.04 0 50 0
Add 4.72 1.72 3.00 0 48 2
RF 4.38 2.12 1.26 1 44 5

QaSIS 2.26 2.16 0.10 14 34 2

percentage of ownership held by the 10 largest shareholders), TOP5 (the per-

centage of ownership held by the 5 largest shareholders), OWNIND (ownership

Herfindahl index), AOLC (amount owed to largest creditor), SHARE (share of

debt held by largest creditor), BDHIND (bank debt Herfindahl index) and BDA
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Table 3. The selected variables, as well as the corresponding averaged prediction errors,
by various selection methods in the Japanese industrial chemical firm dataset.

Variables MF Median Cosso Add RF QaSIS
ASSETS - - - - - -

AGE - -
√

- - -
LEVERAGE

√ √ √ √ √ √

VARS
√ √ √ √ √ √

OPERS
√ √ √ √ √

-
TOP10 - - - -

√
-

TOP5 - - - - - -
OWNIND - -

√
-

√
-

AOLC - -
√

-
√ √

SHARE -
√ √ √

-
√

BDHIND -
√

-
√

-
√

BDA
√

- - -
√ √

Pred. Err. 0.273 0.316 0.286 0.316 0.276 0.296
S.D. (0.006) (0.008) (0.006) (0.008) (0.007) (0.007)

(bank debt to assets). The dataset is available online through the Economic

Journal at http://www.res.org.uk.

The dataset was pre-processed by removing all the missing values, and the

response and the covariates were all standardized. We then randomly split the

dataset, with 20 observations for testing and the remainder for training. The

splitting was replicated 100 times, and the variable selection performance and

the averaged prediction errors are summarized in Table 3.

As Table 3 shows, MF selects four informative variables, including LEVER-

AGE, VARS, OPERS, and BDA, whereas Median and Add select five variables,

Cosso and RF select seven variables, and QaSIS selects six variables. The av-

erage prediction error of MF is smaller than that of the other five methods,

suggesting that these methods may include some noise variables that deteriorate

their prediction performance. Figure 1 displays scatter plots of MH5 against the

variables selected by MF. Among all the variables selected by MF, BDA is ig-

nored by Median, Cosso and ADD. However, it’s clear from the scatter plot that

the variance of MH5 appears to shrink as BDA increases, even though its mean

does not change much with BDA. The modified Levene test yields a significant

p-value, providing strong evidence against the constant variance of MH5 given

BDA. This supports the advantage of MF in identifying informative variables

might influence the conditional distribution of the response.

http://www.res.org.uk
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(a) (b)

(c) (d)

Figure 1. The scatter plot of MH5 against the selected variables by MF in the Japanese
industrial chemical firm dataset. The solid lines are the fitted curve by local smoothing,
and the dashed lines display the fitted mean plus or minus one standard deviation.

5. Summary

This article proposes a gradient-induced model-free variable selection method

to identify the informative variables that are dependent of the response in a

general sense. The proposed method formulates the variable selection task in a

flexible framework of learning gradients of multiple quantile regression functions.

The proposed method works under the classical setting with fixed dimension;

it would be of interest to extend it to the case of diverging dimensions, One

possible route is to first implement a model-free sure screening algorithm (Fan

and Lv (2008)) to screen out most uninformative variables, and then the proposed

method can be applied to identify the truly informative variables within the

reduced candidate variable set.

Supplementary Materials

The proofs of Theorems 1 and 2 and the related lemmas and propositions

are provided in the online supplementary materials.
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Appendix: updating Q and g

I.1 Updating Q: For any fixed k, let

w̃ij =
wij

2(ε+ |õij |)
, hijk =

wij(2τk − 1)

2
, gijk = yi − gτk(xi)

T (xi − xj).

Summing up the derivative of (2.5) with respect to ckj yields that, for any x ∈ X ,

1

mn(n− 1)

n∑
i,j=1

w̃ij
{
gijk −Qτk(xj)

}
K(xj ,x)

+
1

mn(n− 1)

n∑
i,j=1

hijkK(xj ,x)− 2
λ0

m
Qτk(x) = 0.

Let zk,j = [1/{n(n− 1)}]
∑n

i=1(w̃ijgijk+hijk) and ek,j = [1/{n(n− 1)}]
∑n

i=1 w̃ij .

Since the above equality holds for any x, we have

2λ0c
k = (zk,1, . . . , zk,n)− ck(ek,1K

T
x1
, . . . , ek,nK

T
xn),

I.2 Updating g: Since Ω(·) is one-homogeneous, Ω(θf) = θΩ(f) for θ > 0, the

Moreau identity (Combettes and Wajs (2005)) gives an equivalent relationship

between the proximal operator and the projection operator,

proxµΩ = I − πµCn , (A.1)

where Cn = (∂Ω(0)) is the subdifferential of Ω at the origin, and πµCn : HmpK →
HmpK is the projection on µCn, which is well defined since Cn is a closed subset

of HmpK . We can efficiently compute the projection of πµCn from the following

lemma (Rosasco et al. (2009)).

Lemma 1. For all l = 1, . . . , p, let Gl be a Hilbert space with norm ‖ · ‖l and Jl :

F → Gl be a bounded linear operator. Let J(f) =
∑p

l=1 ‖Jl(f)‖l and G = Πp
l=1Gl,

so that v = (v1, . . . ,vp) with vl ∈ Gl and ‖v ‖ =
∑p

l=1 ‖vl ‖l. If J : F → G is

such that J (f) = (J1(f), . . . ,Jp(f)) and KerJ = {0}, then

∂J(0) = {J T v : v ∈ G, ‖vl‖l ≤ 1, for any l},

where J T : G → F is the adjoint of J that can be written as J Tv =
∑p

l=1 J
T
l vl.
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The projection of an element g ∈ F on the set µ∂J(0) is given by µJ T v̄, with

v̄ = arg min
v∈G, ‖vl ‖l≤1

‖µJ T v−g‖2F ,

Let J : HmpK → HmpK to be the weighted group operator, J (f) = (J1(f), . . . ,

Jp(f)), where Jl(f) =
√
λl[f ]l with [f ]l ∈ HmK . We reformulate the penalty term

as Ω(f) =
∑p

l=1 ‖Jl(f)‖HmK . Proposition 2 of Rosasco et al. (2009) shows that

the projection can be defined as πµCn(g) = µv̄ with v̄ = (λ1v̄1, . . . , λpv̄p), where

v̄l = argmin
‖vl‖Hm

K
≤1
‖µλlvl − [g]l‖2HmK , l = 1, . . . , p.

It can be computed block-wise as

v̄l = min

(
1,
‖[g]l‖HmK
µλl

)
[g]l

‖[g]l‖HmK
,

which implies that

[I − πµCn(g)]l = [g]l −min
(
µλl, ‖[g]l‖HmK

) [g]l
‖[g]l‖HmK

=
[g]l

‖[g]l‖HmK
(‖[g]l‖HmK − µλl)+, l = 1, . . . , p.

In our case µ = 1/D and, by (A.1), the proximal operator of (2.6) can be ex-

pressed explicitly as

[g̃
t+1

]l =
[ḡt]l

‖[ḡt]l‖HmK

(
‖[ḡt]l‖HmK −

λl
D

)
+

,

where ḡt = gt−1/D∇gR(Qt+1,gt). A direct computation yields that∇gR(Qt+1,

gt) = (Vt
1, . . . ,V

t
m)T , where Vt

k is a p-dimensional vector, whose l-th element is

[V
t
k]l(x) =

1

mn(n− 1)

n∑
i,j=1

wij

{
yi −Qt+1

τk (xj)− gt
τk(xi)

T (xi − xj)

2(ε+ |õij |)
+ (τk − 0.5)

}
K(xi,x)(xj,l − xi,l). (A.2)
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