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S1 Required Assumptions

Ghosh-Basu Conditions: Assumptions (A1)–(A7) of Ghosh and Basu (2013):

Consider the general I-NH set-up as described in Section 1 of the main paper.

(A1) The support χ = {y|fi(y;θ) > 0} is independent of i and θ; the true distribu-

tions Gi are also supported on χ for all i.

(A2) There is an open subset of ω of the parameter space Θ, containing the best fitting

parameter θg such that for almost all y ∈ χ, and all θ ∈ Θ, all i = 1, 2, . . ., the

density fi(y;θ) is thrice differentiable with respect to θ and the third partial

derivatives are continuous with respect to θ.

(A3) For i = 1, 2, . . ., the integrals
∫
fi(y;θ)1+τdy and

∫
fi(y;θ)τgi(y)dy can be dif-
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ferentiated thrice with respect to θ, and the derivatives can be taken under the

integral sign.

(A4) For each i = 1, 2, . . ., the matrix J (i), defined in Section 2 of the main paper,

is positive definite. Also the matrix Ψτ
n, defined in Equation (6) of the main

paper, satisfies

λ0 = inf
n

[min eigenvalue of Ψτ
n] > 0

(A5) For each i = 1, 2, . . ., there exists a function M
(i)
jkl(y) such that

|∇jklVi(y;θ)| ≤M
(i)
jkl(y) for all θ ∈ Θ, and

1

n

n∑
i=1

Egi

[
M

(i)
jkl(Y )

]
= O(1), for all j, k, l,

where Vi(y;θ) is as defined in Section 2 of the main paper.

(A6) For all j, k, we have

lim
N→∞

sup
n>1

{
1

n

n∑
i=1

Egi [|∇jVi(Y ;θ)|I(|∇jVi(Y ;θ)| > N)]

}
= 0, (S1.1)

and

lim
N→∞

sup
n>1

{
1

n

n∑
i=1

Egi [|∇jkVi(Y ;θ)− Egi(∇jkVi(Y ;θ))|

×I(|∇jkVi(Y ;θ)− Egi(∇jkVi(Y ;θ))| > N)]} = 0, (S1.2)

where I(B) denotes the indicator variable of the event B.

(A7) For all ε > 0, we have

lim
n→∞

{
1

n

n∑
i=1

Egi
[
||Ωτ

n(θ)−1/2∇Vi(Y ;θ)||2I
(
||Ωτ

n(θ)−1/2∇Vi(Y ;θ)|| > ε
√
n
)]}

= 0,

(S1.3)
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where Ωτ
n(θ) is as defined in Equation (6) of the main paper.

Assumptions (R1)–(R2) of Ghosh and Basu (2013):

Consider the set-up of normal linear regression model with fixed design as described

in Section 5 of the main paper.

(R1) The values of xi’s are such that for all j, k, and l

sup
n>1

max
1≤i≤n

|xij| = O(1), sup
n>1

max
1≤i≤n

|xijxik| = O(1),
1

n

n∑
i=1

|xijxikxil| = O(1).

(S1.4)

(R2) The matrix XT = (x1, · · · ,xn)p×n satisfies

inf
n

[min eigenvalue of
(XTX)

n
] > 0, (S1.5)

which also implies that the matrix X has full column rank, and

n max
1≤i≤n

[xi
T (XTX)−1xi] = O(1). (S1.6)

Lehmann conditions (Lehmann, 1983):

(A) There is an open subset of ω of the parameter space Θ, containing the true

parameter value θ0 such that for almost all x ∈ X , and all θ ∈ ω, the density

fi(x,θ) is three times differentiable with respect to θ for each i.
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(B) For each i, the first and second logarithmic derivatives of fi(·,θ) satisfy the

equations

Eθ [∇ log fi(X,θ)] = 0,

and

I i(θ) = Eθ
[
(∇ log fi(X,θ))(∇ log fi(X,θ))T

]
= Eθ

[
−∇2 log fi(X,θ)

]
.

(C) The matrix I i(θ) is positive definite with all entries finite for all i and all θ ∈ ω,

and hence the components (∇ log fi(X,θ)) are affinely independent with prob-

ability one.

(D) For all j, k, l, there exists functions Mjkl with finite expectation (under true

distribution) such that for each i

|∇jkl log fi(X,θ)| ≤Mjkl(x), for all θ ∈ ω.

S2 Background and Some Details on the Linear Regression

Model with Fixed Covariates

S2.1 The MDPDE (Ghosh and Basu, 2013)

Ghosh and Basu (2013) extensively studied and formally established the properties

of the minimum density power divergence estimators for normal regression model.



S2. BACKGROUND AND SOME DETAILS ON THE LINEAR REGRESSION MODEL WITH
FIXED COVARIATES

As this work is of critical importance to the present research, we describe, briefly, the

main findings of that work.

Consider the normal linear regression model set up with given values of the

explanatory variables as described in Section 5 of the main paper. The estimating

equation for the MDPDE of the parameter θ = (βT , σ2)T in this regression model,

corresponding to the DPD with tuning parameter τ , is given by

n∑
i=1

xij(yi − xiTβ)e−
τ(yi−xi

T β)2

2σ2 = 0 ∀j = 1, . . . , p (S2.7)

n∑
i=1

[
1− (yi − xiTβ)2

σ2

]
e−

τ(yi−xi
T β)2

2σ2 =
τ

(1 + τ)
3
2

. (S2.8)

We can then obtain the MDPDE θ̂
T

= (β̂
T
, σ̂2) of regression parameters by solving

these estimating equations numerically over the parameter space. Ghosh and Basu

(2013) proved the asymptotic properties of this MDPDE under some suitable assump-

tions [Assumptions (R1) and (R2) of their paper, also presented above in Section 1]

on the given values of explanatory variables, which basically imply the boundedness

of the xis in large samples and that the spectrum of (XTX) remains bounded away

from zero.

With these Conditions (R1) and (R2), let us also assume that the true density

generating the observed sample belongs to the assumed model family. Then, we have

(i) The minimum DPD estimating equations (S2.7) and (S2.8) have a consistent

sequence of roots θ̂
T

= (β̂
T
, σ̂2).
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(ii) The estimates β̂ and σ̂2 are asymptotically independent.

(iii) (XTX)
1
2 (β̂ − β) asymptotically follows a p-dimensional normal with (vector)

mean zero and covariance matrix υβτ Ip and
√
n(σ̂2 − σ2) follows asymptotically

a normal distribution with mean 0 and variance υeτ , where υβτ and υeτ are as

defined in Theorem 5.1 in the main paper.

This asymptotic results follows from the general theory of Ghosh and Basu (2013)

discussed in Section 2 of the main paper. Since the MDPDE corresponding to τ = 0

coincides with the MLEs, substituting τ = 0 in the above expressions, we get back

exactly the corresponding results for their MLE.

The robustness of the MDPDE of regression parameters can be observed from the

boundedness of their influence functions. In fact, the influence function the MDPDE

Uβ
τ of the regression coefficient β at the model distribution Fθ for contamination

only in i0-th data-point is given by

IFi0(ti0 ,U
β
τ ,Fθ) = (1 + τ)

3
2 (XTX)−1xi0(ti0 − xi0Tβ)e−

τ(ti0
−xi0

T β)2

2σ2 , (S2.9)

and the same for the MDPDE Uσ
τ of the error variance σ2 is given by

IFi0(ti0 ,U
σ
τ ,Fθ) =

2(1 + τ)
5
2

n(2 + τ 2)

{
(ti0 − xi0Tβ)2 − σ2

}
e−

τ(ti0
−xi0

T β)2

2σ2 +
2τ(1 + τ)2

n(2 + τ 2)
.(S2.10)

Clearly, both the influence functions in (S2.9) and (S2.10) are bounded in ti0 for

all τ > 0 and for any i0 implying the robustness of the MDPDEs with τ > 0.

However the influence functions for the non-robust MLE (MDPDE with τ = 0)
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are clearly unbounded. See Ghosh and Basu (2013) for the influence function with

contamination in all directions.

S2.2 LIF and PIF for testing for the regression coefficient with known σ

Consider the set-up and notations of Section 5.1 of the main paper. For the cor-

responding DPDTS, the PIF under contiguous alternatives can be obtained from

Theorem 3.7 of the main paper. Some calculations simplify it to have the form

PIF (t;T
(1)
γ,λ,Fθ0) = K∗τ

(
∆TΣx∆, p

) n∑
i=1

(∆Txi)(ti − xiTβ0)e
− τ(ti−xi

T β0)
2

2σ20 .

where K∗τ (s, p) = (1 + τ)3/2e
− s

2υ
β
τ

∞∑
k=0

(2k − s) sk−1

k!(2υβτ )k
P
(
Zp+2k > χ2

p,α

)
.

Note that this PIF depends on the contamination points tis only through (ti−xiTβ0)

and is bounded whenever τ > 0 implying the power stability of the DPDTS. But, for

γ = τ = 0 the PIF simplifies to a linear function of tis which is clearly unbounded,

implying the non-robust nature of the LRT.

Further, substituting ∆ = 0 in the PIF derived above, we get the LIF of the

proposed DPDTS, which is identically zero for all γ, τ > 0. This implies no influence

of contiguous contamination on its asymptotic level.
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S3 The MDPDE under Generalized Linear Model (GLM)

with Fixed Covariates (Ghosh and Basu, 2016)

The minimum density power divergence estimator in case of the generalized linear

regression model was explained in detail in Ghosh and Basu (2016). Suppose (yi;xi),

i = 1, · · · , n denotes n independent observations from a generalized linear model

with density given by Equation (24) of the main paper and mean µi depending on

the given fixed values of xi’s. Then, following the approach of Section 2 of the main

paper, the estimating equation of the parameters are given by

n∑
i=1

xi

[∫
K1i(y; (β, φ))fi(y; (β, φ))1+τdy −K1i(yi; (β, φ))fi(yi; (β, φ))τ

]
= 0,

(S3.11)

n∑
i=1

[∫
K2i(y; (β, φ))fi(y; (β, φ))1+τdy −K2i(yi; (β, φ))fi(yi; (β, φ))τ

]
= 0, (S3.12)

where K1i(yi; (β, φ)) = (yi−µi)
V ar(yi)g′(µi)

and K2i(yi; (β, φ)) = − (yiθi−b(θi))
a2(φ)

a′(φ) + ∂
∂φ
c(yi, φ).

In particular, assuming φ to be known and taking τ = 0, the estimating equations for

β turn out to be the same as that of the maximum likelihood estimator (MLE) as well

as that of the ordinary least squares (OLS) estimator given by
∑n

i=1
(Yi−µi)

V ar(Yi)g′(µi)
xi = 0.

Further, assume that the true data generating distribution also belongs to the

model density with parameters (βg, φg). Then, it follows from Ghosh and Basu (2016)

that, under suitable assumptions, there exists a consistent sequence (β̂n, φ̂n) of roots



S3. THE MDPDE UNDER GENERALIZED LINEAR MODEL (GLM) WITH FIXED
COVARIATES (?)

to the minimum DPD estimating equations (S3.11) and (S3.12) and

Ωτ
n(βg, φg)−

1
2 Ψτ

n(βg, φg)[
√
n((β̂n, φ̂n)− (βg, φg))]

follows asymptotically a (p + 1)-dimensional normal distribution with mean 0 and

variance Ip+1, the identity matrix of dimension p+ 1. Here

Ψτ
n(β, φ) =

1

n

 XTΓ
(τ)
11 X XTΓ

(τ)
12 1

1TΓ
(τ)
12 X 1TΓ

(τ)
22 1

 , Ωτ
n(β, φ) =

1

n

 XT Γ̃11

(τ)
X XT Γ̃12

(τ)
1

1T Γ̃21

(τ)
X 1T Γ̃22

(τ)
1

 ,

with Γ
(τ)
j = Diag(γji)i=1,··· ,n, Γ

(τ)
jk = Diag(γjki)i=1,··· ,n and Γ̃jk

(τ)
=
[
Γ

(2τ)
jk − Γ

(τ)T
j Γ

(τ)
k

]
for j, k = 1, 2, XT = [x1, · · · ,xn] and for i = 1, . . . , n, we define

γji = γ1+τ
ji (β, φ) =

∫
Kji(y; (β, φ))fi(y; (β, φ))1+τdy, j = 1, 2,

γjki = γ1+τ
jki (β, φ) =

∫
Kji(y; (β, φ))Kki(y; (β, φ))fi(y; (β, φ))1+τdy, j, k = 1, 2.

It is interesting to note that the estimators β̂n and φ̂n are not asymptotically in-

dependent for any general GLM; a set of sufficient conditions for this to happen is

γ1+2τ
12i = 0 and γ1+τ

1i γ1+τ
2i = 0 for all i which holds for only some particular GLM

including the normal regression case.

The robustness of the MDPDE in the GLM can be described in terms of its

influence function following Section 2.4 of Ghosh and Basu (2016). In particular, the

influence function of the minimum DPD functional U τ for contamination only in the
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ith0 direction is given by

IFi0(ti0 ,U τ ,Fθ) = (Ψτ
n)−1 1

n

 [fi0(ti0 ; (β, φ))τK1i0(ti0 ; (β, φ))− γ1i0 ]xi

fi0(ti0 ; (β, φ))τK2i0(ti0 ; (β, φ))− γ2i0

 .

Clearly, the boundedness of this influence function for any fixed sample size n and any

given (finite) values of xi’s depends on the boundedness of the terms fi(ti; (β, φ))τKji(ti; (β, φ))

for all i and j = 1, 2; the terms Ψn and γji0 are generally bounded by the conditions

assumed for asymptotic normality of the corresponding estimators. Further, when-

ever γ1+2τ
12i = 0 and γ1+τ

1i γ1+τ
2i = 0 for all i one can separate out the influence function

for the MDPDE of β and φ and they will be independent of each other.

S4 Proofs of the Results

S4.1 Proof of Theorem 3.1 of the main paper

Fix any i = 1, . . . , n. We consider the second order Taylor series expansion of

dγ(fi(·;θ), fi(·;θ0)) around θ = θ0 at θ = θτn as

dγ(fi(·;θτn), fi(·;θ0)) = dγ(fi(·;θ0), fi(·;θ0))

+

p∑
j=1

∇jdγ(fi(.;θ), fi(.;θ0))|θ=θ0((θ
τ
n)j − θj0)

+
1

2

∑
j,k

∇2
jkdγ(fi(.;θ), fi(.;θ0))|θ=θ0((θ

τ
n)j − θj0)((θτn)k − θk0)

+ o(||θτn − θ0||2),
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where the superscripts denote the corresponding components. Now we have

dγ(fi(.;θ0), fi(.;θ0)) = 0 and ∇jdγ(fi(.;θ), fi(.;θ0))|θ=θ0
= 0.

Also, we have

∇2
jkdγ(fi(.;θ), fi(.;θ0))|θ=θ0 = (1 + γ)

∫
fi(·;θ0)γ−1∂fi(·;θ0)

∂θj

∂fi(·;θ0)

∂θk

= (j, k)− th element of A(i)
γ (θ0).

Now from the above Taylor series expansion it is clear that the random variables

Tγ(θ
τ
n,θ0) = 2

n∑
i=1

dγ(fi(.;θ
τ
n), fi(.;θ0)) and

√
n(θτn − θ0)TAγ

n(θ0)
√
n(θτn − θ0)

have the same asymptotic distribution because n × o(||θτn − θ0||2) = oP (1) . How-

ever, since Aγ
n(θ0) → Aγ(θ0) element-wise as n → ∞, by Slutsky’s Theorem the

asymptotic distribution of the test statistics Tγ(θ
τ
n,θ0) is in turn the same as that of

√
n(θτn − θ0)TAγ(θ0)

√
n(θτn − θ0). Also it follows from Ghosh and Basu (2013) that

the asymptotic distribution of
√
n(θτn − θ0) is normal with mean zero and variance

J−1
τ (θ0)V τ (θ0)J−1

τ (θ0).

Further we know that for X ∼ Nq(0,Σ), and a q-dimensional real symmet-

ric matrix A, the distribution of the quadratic form XTAX is the same as that

of
∑r

i=1 ζiZ
2
i , where Z1, . . . , Zr are independent standard normal variables, r =

rank(ΣAΣ), r ≥ 1 and ζ1, . . . , ζr are the nonzero eigenvalues ofAΣ (Dik and Gunst,

1985, Corollary 2.1). Applying this result with X =
√
n(θτn−θ0) we get the theorem
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with

r = rank(J−1
τ (θ0)V τ (θ0)J−1

τ (θ0)Aγ(θ0)J−1
τ (θ0)V τ (θ0)J−1

τ (θ0)).

Finally, from the Corollary 8.3.3 of Harville (2008), it follows that,

r = rank(V τ (θ0)J−1
τ (θ0)Aγ(θ0)J−1

τ (θ0)V τ (θ0)).

�

S4.2 Proof of Theorem 3.2 of the main paper

Fix any i = 1, 2, . . . , n. Consider the first order Taylor series expansion of dγ(fi(·;θ), fi(·;θ0))

under fi(·;θ∗) as

dγ(fi(·;θτn), fi(·;θ0)) = dγ(fi(·;θ∗), fi(·;θ0)) +M (i)
γ (θ∗)T (θτn − θ∗) + o(||θτn − θ∗||).

Now we know that, under θ∗,

√
n(θτn − θ∗)

D→Np(0,J
−1
τ (θ∗)V τ (θ

∗)J−1
τ (θ∗)) as n→∞,

and
√
n× o(||θτn − θ∗||) = oP (1). Thus we get that the random variables

1√
n

[
n∑
i=1

dγ(fi(.;θ
τ
n), fi(.;θ0))−

n∑
i=1

dγ(fi(.;θ
∗), fi(.;θ0))

]
and M γ

n(θ∗)T
√
n(θτn−θ∗)

have the same asymptotic distribution. Using the convergence M γ
n(θ∗) →M γ(θ

∗),

we have

1√
n

[
n∑
i=1

dγ(fi(.;θ
τ
n), fi(.;θ0))−

n∑
i=1

dγ(fi(.;θ
∗), fi(.;θ0))

]
D→N(0, στ,γ(θ

∗)),
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where στ,γ(θ
∗) is as defined in the theorem. The desired approximation to the power

function follows from the above asymptotic distribution. �

S4.3 Proof of Theorem 3.4 of the main paper

Let us denote θ∗n = U τ (F
P
n,ε,t) and fix any i = 1, . . . , n. We consider the second order

Taylor series expansion of dγ(fi(·;θ), fi(·;θ0)) around θ = θ∗n at θ = θτn as,

dγ(fi(·;θτn), fi(·;θ0)) = dγ(fi(·;θ∗n), fi(·;θ0)) +M (i)
γ (θ∗n)T (θτn − θ∗n)

+
1

2
(θτn − θ∗n)TA(i)

γ (θ∗n)(θτn − θ∗n) + o(||θτn − θ∗n||2).

Now from Section 2 of the main paper and using the consistency of θ∗n we know that,

under FP
n,ε,t,

√
n(θτn − θ∗n)

D→Np(0,Στ (θ0)).

Further using the Taylor series expansion of M (i)
γ (θ) around θ = θ0 at θ = θ∗n, we

get

M (i)
γ (θ∗n)−M (i)

γ (θ0) =
1√
n
A(i)
γ (θ0)∆ +

ε√
n
IF (t;M (i)

γ (U τ ),Fθ0) + o

(
1√
n

)
.

But M (i)
γ (θ0) = 0 and IF (t;M (i)

γ (U τ ),Fθ0) = A(i)
γ (θ0)IF (t;U τ ,Fθ0), so that we

get

√
nM (i)

γ (θ∗n) = A(i)
γ (θ0)∆ + εA(i)

γ (θ0)IF (t;U τ ,Fθ0) + o (1)

= A(i)
γ (θ0)∆̃ + o (1) ,
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where ∆̃ =
[
∆ + εIF (t;U τ ,Fθ0)

]
. Again using the second order Taylor series ex-

pansion of dγ(fi(·;θ), fi(·;θ0)) around θ = θ0 at θ = θ∗n and taking summation over

all i = 1, . . . , n, we get

n∑
i=1

[dγ(fi(·;θ∗n), fi(·;θ0))− dγ(fi(·;θ0), fi(·;θ0))]

=
1√
n

n∑
i=1

∆TM (i)
γ (θ0) + ε

√
nIF (t;T

(1)
γ,λ,Fθ0) +

1

2
∆TAγ

n(θ0)∆

+
ε2

2
IF (2)(t;T

(1)
γ,λ,Fθ0) +

ε

n

n∑
i=1

∆T IF (t;M (i)
γ (U τ ),Fθ0) + o (1) .

But, dγ(fi(·;θ0), fi(·;θ0)) = 0, M (i)
γ (θ0) = 0 for all i = 1, . . . , n, IF (t;T

(1)
γ,λ,Fθ0) = 0

and

IF (2)(t;T
(1)
γ,λ,Fθ0) = IF (t;Uτ ,Fθ0)

TAγ(θ0)IF (t;Uτ ,Fθ0).

Thus, taking summation over i = 1, . . . , n, the above equation simplifies to

2
n∑
i=1

dγ(fi(·;θ∗n), fi(·;θ0)) = ∆TAγ
n(θ0)∆ + ε2IF (t;U τ ,Fθ0)A

γ
n(θ0)T IF (t;U τ ,Fθ0)

+ 2ε∆TAγ
n(θ0)IF (t;U τ ,Fθ0) + o (1) .

Hence, noting that n× o(||θτn − θ∗n||2) = oP (1), we get

2
n∑
i=1

dγ(fi(·;θτn), fi(·;θ0)) = ∆̃
T
Aγ
n(θ0)∆̃ + 2∆̃

T
Aγ
n(θ0)

√
n(θτn − θ∗n)

+
√
n(θτn − θ∗n)TAγ

n(θ∗n)
√
n(θτn − θ∗n) + oP (1) + o (1)

=
[
∆̃ +

√
n(θτn − θ∗n)

]T
Aγ
n(θ0)

[
∆̃ +

√
n(θτn − θ∗n)

]
+ oP (1).
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Thus under the probability FP
n,ε,t, asymptotic distribution of the proposed DPD based

test statistics Tγ(θ
τ
n,θ0) = 2

n∑
i=1

dγ(fi(·;θτn), fi(·;θ0)) is the same as the distribution

of (∆̃ + W 0)TAγ
n(θ0)(∆̃ + W 0), where W 0 follows the asymptotic distribution of

√
n(θτn − θ∗n). Hence Part (i) follows by taking W = (∆̃ +W 0).

(ii) This part follows from Part (i) using the series expansion of the distribution

function of a linear combination of independent non-central chi-squares in terms of

central chi-square distribution functions as derived in Kotz et al. (1967). �

S4.4 Proof of Theorem 3.7 of the main paper

Starting with the expression of Pτ,γ(∆, ε;α) as obtained in Theorem 3.4 of the main

paper, we get the power influence function PIF (·) as

PIF (t;T (1)
γ,τ ,Fθ0) =

∂

∂ε
Pτ,γ(∆, ε;α)

∣∣∣∣
ε=0

=
∞∑
v=0

∂

∂ε
Cγ,τ
v (θ0, ∆̃)

∣∣∣∣
ε=0

P

(
χ2
r+2v >

tτ,γα
ζγ,τ(1) (θ0)

)
.(S4.13)

Now, note that for each v ≥ 0, the quantities Cγ,τ
v (θ0, ∆̃) depends on ε only through

its second argument ∆̃ =
[
∆ + εIF (t;Uτ ,Fθ0)

]
and at ε = 0 we have ∆̃ = ∆.

Consider a Taylor series expansion of Cγ,τ
v (θ0,d) with respect to d around d = ∆

and evaluate it at d = ∆̃ to get

Cγ,τ
v (θ0, ∆̃) = Cγ,τ

v (θ0,∆) + (∆̃−∆)T
[
∂

∂d
Cγ,τ
v (θ0,d)T

∣∣∣∣
d=∆

]
+ o(||∆̃−∆||)

= Cγ,τ
v (θ0,∆) + εIF (t;U τ ,Fθ0)

T ·
[
∂

∂d
Cγ,τ
v (θ0,d)

∣∣∣∣
d=∆

]
+ o(ε||IF (t;U τ ,Fθ0)||).(S4.14)
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Now differentiating it with respect to ε and evaluating at ε = 0, we get

∂

∂ε
Cγ,τ
v (θ0, ∆̃)

∣∣∣∣
ε=0

= IF (t;U τ ,Fθ0)
T

[
∂

∂d
Cγ,τ
v (θ0,d)

∣∣∣∣
d=∆

]
,

provided the influence function IF (t;U τ ,Fθ0) is finite. Combining it with Equation

(S4.13), we finally get the required power influence function as

PIF (t;T
(1)
γ,λ,Fθ0) =

∂

∂ε
Pτ,γ(∆, ε;α)

∣∣
ε=0

=
∞∑
v=0

∂

∂ε
Cγ,τ
v (θ0, ∆̃)

∣∣∣∣
ε=0

P

(
χ2
r+2v >

tτ,γα
ζγ,τ(1) (θ0)

)

= IF (t;U τ ,Fθ0)
T

(
∞∑
v=0

[
∂

∂d
Cγ,τ
v (θ0,d)

∣∣∣∣
d=∆

]
P

(
χ2
r+2v >

tτ,γα
ζγ,τ(1) (θ0)

))
.

�

S4.5 Proof of Theorem 4.1 of the main paper

Note that the consistency of the RMDPDE follows from the exactly same proof of

Theorem 3.1 of Ghosh and Basu (2013), because the conditions (A1)–(A7) of their

paper hold with respect to Θ0. So, here we will only prove the asymptotic normality

of the RMDPDE.

First note that, θ̃
g

is the true RMDPDE in the sense that it minimizes the DPD

subject to the given constraints. So, one can prove that (see proof of Theorem 3.1 of

Ghosh and Basu (2013))

1

1 + τ
Ω
− 1

2
n

[
−
√
n ∇Hn(θ̃

g
)
]
D→Np(0, Ip). (S4.15)
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Now, using a Taylor series expansion, we have

√
n ∇Hn(θ̃

τ

n) =
√
n ∇Hn(θ̃

g
) +∇2Hn(θ̃

g
)
√
n(θ̃

τ

n − θ̃
g
) + o

(√
n||θ̃

τ

n − θ̃
g
||2
)
.

But, by the consistency of θ̃
τ

n, we have o
(√

n||θ̃
τ

n − θ̃
g
||2
)

= oP (1). Hence, we get

that

√
n ∇Hn(θ̃

τ

n) =
√
n ∇Hn(θ̃

g
) +∇2Hn(θ̃

g
)
√
n(θ̃

τ

n − θ̃
g
) + oP (1). (S4.16)

Similarly, we also have,

√
n υ(θ̃

τ

n) = ΥT (θ̃
g
)
√
n(θ̃

τ

n − θ̃
g
) + oP (1), (S4.17)

since υ(θ̃
g
) = 0. Now, the RMDPDE θ̃

τ

n must satisfy the Equations (15) of the main

paper. Using them, along with Equations (S4.16) and (S4.17), we get

√
n ∇Hn(θ̃

g
) +∇2Hn(θ̃

g
)
√
n(θ̃

τ

n − θ̃
g
) +
√
n Υ(θ̃

τ

n)λn + oP (1) = 0,

ΥT (θ̃
g
)
√
n(θ̃

τ

n − θ̃
g
) + oP (1) = 0.

Writing it in the matrix form, we get ∇2Hn(θ̃
g
) Υ(θ̃

g
)

ΥT (θ̃
g
) Or

 ·

√
n(θ̃

τ

n − θ̃
g
)

√
n λn

 =

 −
√
n ∇Hn(θ̃

g
)

0r

+ oP (1),

where Or denote the square null matrix of order r and 0r denote zero vector (column)

of length r. Taking the inverse of the first matrix in the LHS of above equations, and

simplifying, we get

√
n(θ̃

τ

n − θ̃
g
) = − 1

1 + τ
P τ
n(θ̃

g
)
√
n ∇Hn(θ̃

g
) + op(1),
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where P τ
n(θ) is as defined in the theorem. Therefore,

Ωτ
n(θ̃

g
)−

1
2P τ

n(θ̃
g
)−1
[√

n(θ̃
τ

n − θ̃
g
)
]

=
1

1 + τ
Ωτ
n(θ̃

g
)−

1
2

[
−
√
n ∇Hn(θ̃

g
)
]

+ op(1).

Now, the theorem follows using Equation (S4.15). �

S4.6 Proof of Theorem 4.3 of the main paper

Fix any i = 1, . . . , n. We consider the second order Taylor series expansion of

dγ(fi(·;θ), fi(·; θ̃
τ

n)) around θ = θ̃
τ

n at θ = θτn as,

dγ(fi(·;θτn), fi(·; θ̃
τ

n)) = dγ(fi(·; θ̃
τ

n), fi(·; θ̃
τ

n))

+

p∑
j=1

∇jdγ(fi(.;θ), fi(.; θ̃
τ

n))|θ=θ̃
τ
n
((θτn)j − (θ̃τn)j)

+ 1
2

∑
j,k

∇jkdγ(fi(.;θ), fi(.; θ̃
τ

n))|θ=θ̃
τ
n
((θτn)j − (θ̃τn)j)((θτn)k − (θ̃τn)k)

+ o(||θτn − θ̃
τ

n||2),

where the superscripts denote the corresponding components. But,

dγ(fi(.; θ̃
τ

n), fi(.; θ̃
τ

n)) = 0, ∇jdγ(fi(.;θ), fi(.; θ̃
τ

n))|θ=θ̃
τ
n

= 0

and

∇2
jkdγ(fi(.;θ), fi(.; θ̃

τ

n))|θ=θ̃
τ
n

= (1 + γ)

∫
fi(·; θ̃

τ

n)γ−1∂fi(·; θ̃
τ

n)

∂θj

∂fi(·; θ̃
τ

n)

∂θk

= (j, k)-th element of A(i)
γ (θ̃

τ

n).



S4. PROOFS OF THE RESULTS

So from the above Taylor series expansion,

Sγ(θ
τ
n, θ̃

τ

n) = 2
n∑
i=1

dγ(fi(.;θ
τ
n), fi(.; θ̃

τ

n))

=
√
n(θτn − θ̃

τ

n)TAγ
n(θ̃

τ

n)
√
n(θτn − θ̃

τ

n) + n× o(||θτn − θ̃
τ

n||2).

Now, since θ0 ∈ Θ0 is the true value of the parameter, we have θ̃
τ

n
P→θ0 and so

Aγ
n(θ̃

τ

n)
P→Aγ(θ̃

τ

n) element-wise as n→∞. Let us define

Dn(θ) = [∇2Hn(θ)]−1Υ(θ)
{
Υ(θ)T [∇2Hn(θ)]−1Υ(θ)

}−1
Υ(θ)T .

Then noting that, at the model with parameter θ0, Ψτ
n(θ0) = 1

1+τ
[∇2Hn(θ0)], we get

Dn(θ0) = Ir − P τ
n(θ0)Ψτ

n(θ0). Now, from the proof of Theorem 4.1, we have

√
n(θ̃

τ

n − θ0) = − 1

1 + τ
P τ
n(θ0)

√
n ∇Hn(θ0) + op(1).

Also, using a Taylor series expansion, we get

√
n ∇Hn(θ0) = −

√
n ∇2Hn(θ0)(θτn − θ0) + op(1).

Combining above two,

√
n(θ̃

τ

n − θ0) =
1

1 + τ
P τ
n(θ0)

√
n ∇2Hn(θ0)(θτn − θ0) + op(1)

= P τ
n(θ0)Ψn(θ0)

√
n(θτn − θ0) + op(1)

=
√
n(θτn − θ0)−Dn(θ0)

√
n(θτn − θ0) + op(1).

Therefore,

√
n(θτn − θ̃

τ

n) = Dn(θ0)
√
n(θτn − θ0) + op(1).
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But, by the assumptions of the Theorem, it follows thatDn(θ0)→ [Ir−P τ (θ0)J τ (θ0)]

element-wise as n→∞ and from the asymptotic distribution of MDPDE in Section

2 of the main paper, we get that

√
n(θτn − θ0)→ Np(0,J

−1
τ (θ0)V τ (θ0)J−1

τ (θ0)).

Hence

√
n(θτn − θ̃

τ

n)→ Np(0, Σ̃τ (θ0)),

where

Σ̃τ (θ0) = [Ir − P τ (θ0)J τ (θ0)]J−1
τ (θ0)V τ (θ0)J−1

τ (θ0)[Ir − J τ (θ0)P τ (θ0)]

= [J−1
τ (θ0)− P τ (θ0)]V τ (θ0)[J−1

τ (θ0)− P τ (θ0)].

It also follows from above that n × o(||θτn − θ̃
τ

n||2) = oP (1). Thus, the asymptotic

distribution of the DPD test statistics Sγ(θ
τ
n, θ̃

τ

n) under θ0 ∈ Θ0 coincides with

that of
√
n(θτn − θ̃

τ

n)TAγ(θ0)
√
n(θτn − θ̃

τ

n), which is same as that of the random

variable
∑r

i=1 ζiZ
2
i , where Z1, · · · , Zr are independent standard normal variables,

ζγ,τ1 , · · · , ζγ,τr are the nonzero eigenvalues ofAγ(θ0)Σ̃τ (θ0) and r = rank
(
Σ̃τ (θ0)Aγ(θ0)Σ̃τ (θ0)

)
,

by Corollary 2.1 of Dik and Gunst (1985) (see the last part of the proof of Theorem

3.1). Finally, from the Corollary 8.3.3 of Harville (2008), we get

r = rank
(
V τ (θ0)[J−1

τ (θ0)− P τ (θ0)]Aγ(θ0)[J−1
τ (θ0)− P τ (θ0)]V τ (θ0)

)
.

�
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S4.7 Proof of Theorem 4.4 of the main paper

Fix any i = 1, 2, . . . , n. Considering the first order Taylor series expansion, we get

dγ(fi(·;θτn), fi(·; θ̃
τ

n)) = dγ(fi(·;θ∗), fi(·;θ0)) +M
(i)
1,γ(θ

∗,θ0)T (θτn − θ∗)

+M
(i)
2,γ(θ

∗,θ0)T (θ̃
τ

n − θ∗) + o(||θτn − θ∗||+ ||θ̃
τ

n − θ∗||).

Averaging over i and multiplying by
√
n, we get

1√
n

[
n∑
i=1

dγ(fi(·;θτn), fi(·; θ̃
τ

n))−
n∑
i=1

dγ(fi(.;θ
∗), fi(.;θ0))

]
= M 1,γ

n (θ∗,θ0)T (θτn − θ∗) +M 2,γ
n (θ∗,θ0)T (θ̃

τ

n − θ∗)

+
√
n× o(||θτn − θ∗||+ ||θ̃

τ

n − θ∗||),

from which the Theorem follows in a straightforward manner. �

S4.8 Proof of Corollary 6.2 of the main paper

The proof follows from the Theorem 4.3 of the main paper by noting that

Aγ(θ0)[J−1
τ (θ0)− P τ (θ0)]V τ (θ0)[J−1

τ (θ0)− P τ (θ0)] =

 E 0p

0Tp 0


and rank(V τ (θ0)[J−1

τ (θ0)− P τ (θ0)]Aγ(θ0)[J−1
τ (θ0)− P τ (θ0)]V τ (θ0))

= rank((LTJ−1
11.2L)−1(LTJ−1

11.2L)) = rank(Ir) = r.

Here the last two relations follow from some straightforward matrix algebra calcula-

tions and the fact that J τ and V τ are invertible. �
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S5 Simulation Results for Simple Linear Regression

We consider the simple linear regression model yi = β0 + β1xi + εi, where εis (i =

1, . . . , n) are i.i.d. normal with mean 0 and variance σ2. Note that, in case of hy-

pothesis testing there can be two types of adverse effect of the outliers — one is to

reject the null due to the contamination effect although it is correct under pure data;

the second one is to accept the null through the influence of contamination although

it would have been rejected in the absence of contamination. The first one affects

the size of the test whereas second one affects its power. In this case, outliers may

affect the size or power of the test. We compute the empirical size and power of

the proposed DPD based test for testing H0 : (β0, β1) = (βg0 , β
g
1). assuming the

error variance σ2 to be both known and unknown separately. For our simulation, we

will take βg = (βg0 , β
g
1) = (3, 2), the true value of σ2 to be 3 and the explanatory

variables are given from a normal distribution with mean 10 and variance 5. Then,

we will check the stability of the size and power of this test under several types of

contaminations based on 10000 Monte-Carlo iterations and for three different sample

sizes n = 30, 50, and 100. We simulate εis from some specific distributions and con-

taminate the values of xis to create different scenarios of large residuals and leverage

points; however, due to the different objective and effects, simulation scheme has to

be different for studying the stability of size and power of the test, which we take as

follows:
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1. For comparing size stability, we choose the error ε randomly from a (1−eerr)N(0, 3)+

eerrN(10, 3) distribution so that 100eerr% (approximately) of the residuals are

large compared to the pure data. Further, we will contaminate 100ex% propor-

tion of the explanatory variable X by changing its nex values to be given from

a N(16, 5) distribution, when the sample size is n. This will produce 100ex%

leverage points in the sample data. Then, for each simulation, we take the true

values of the parameters to be (β0, β1, σ) = (3, 2,
√

3), and the empirical size of

the test are calculated.

2. Note that, the proposed DPD based test is consistent and so we need to com-

pute its power only against some contiguous alternatives; we will take here these

alternatives to be H1,n : (β0, β1) = (βg0 , β
g
1) + ∆n with ∆n = 1√

2n
for sample

size n. Then, to study power stability of the proposed DPD based test, we

again choose the error ε randomly from a (1 − eerr)N(0, 3) + eerrN(10, 3) dis-

tribution generating 100eerr% (approximately) large residuals compared to the

pure data. But, we now contaminate 100ex% proportion of X in a different

ways; by changing its nex values by
[
xi(

2−∆
2

)2 −∆n

]
for sample size n. This

will produce 100ex% leverage points with the specific characteristics that they

pull the data towards null from the contiguous alternative under consideration.

Then, for each simulation, we take the true values of the parameters to be at

the contiguous alternative, (β0, β1, σ) = (3 + ∆n, 2 + ∆n,
√

3), and compute the
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empirical power of the above mentioned test at the alternative H1,n.

Below we will present the results for the case of known σ. The results for unknown

σ case are similar and hence not reported here.

Size Stability for known σ

Let us assume that the error variance σ2 is known to us and test for

H0 : β0 = 3, β1 = 2 (S5.18)

against the omnibus alternatives. We compute the empirical size of the DPD based

test of this H0 as per the above simulation scheme for sample sizes n = 30, 50 and

100 which are reported in Tables 2 to 4 respectively. The results are given for various

degrees of contamination starting from no contamination to the heavy contamination

of 20%. It is clear from the table that the likelihood ration test corresponding to the

DPD based test with τ = 0 is effected by the contamination most. Its sizes changes

adversely in presence of very small proportion of contamination either in x or in

error. However for the other DPD based test for larger values of τ the empirical size

is highly stable in presence of small or moderate contamination proportion; it only

changes a little bit for the heavy contamination of 15%-20% although the extend of

change is very less that that of the likelihood ration test (LRT). Further, in case of no

contamination also, the sizes of the DPD based test with different τ are very similar

to each other; for larger τ the convergence to the asymptotic distribution used to
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obtain the critical values is slightly less than that of the LRT.

Power Stability for known σ

Now, let us see the power stability of the proposed DPD based test assuming

the error variance σ2 to be known and test for the hypothesis in (S5.18) against

the contiguous alternatives H1,n as defined above. Then we calculate the empirical

power of the DPD based test for various τ and sample sizes n = 30, 50 and 100 as

per the above simulation scheme; the results obtained are reported in Tables 5 to 7

respectively. Again the likelihood ration test corresponding to the DPD based test

with τ = 0 is seen to be mostly effected by the insertion of contamination in data.

It has very high power of 0.984 under pure data with small sample size of n = 30,

which goes down to 0.421 for 20% contamination in error, or to 0.451 for 10% error

and 16.7% leverage contamination for n = 30. But, under the same contamination

scenarios and sample size, the DPD based test with τ = 0.5 continues to provide high

power of 0.755 and 0.688 respectively; also its power under no contamination is 0.955

for n = 30 which is very close to that of the LRT. Similar results are seen also for the

larger sample sizes n = 50 and n = 100. Thus, the proposed DPD based test with

large τ gives more power than the LRT in presence of contaminations, even under

heavy contamination of 20%, and also has a comparable power under pure data. This

proofs the usefulness of our proposed DPD based test with respect to the robustness

of the process.
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S6 Some Real Data Examples

S6.1 Hertzsprung-Russell Data: Normal linear regression

We consider the famous data of the Hertzsprung-Russell diagram of the star cluster

CYG OB1 containing 47 stars in the direction of Cygnus (for details, see Rousseeuw

and Leroy, 1987, Table 3, Chapter 2); the data are known to contain four huge outliers

that affect the MLE and LRT drastically and is therefore useful in demonstrating the

robust methodologies in simple linear regression. Here, the dependent variable is the

logarithm of light intensity (L/L0) of a star, which is to be modeled by a simple linear

regression with only one predictor, the logarithm of its effective surface temperature

(Te). The corresponding parameter estimates based on the minimum DPD procedure

were reported in Ghosh and Basu (2013); the robustness of the MDPDEs is quite

clear from the results there.

Here, we apply the proposed DPD based tests for testing the regression coeffi-

cients. Note that the estimates of regression coefficients β and error variance σ2 differ

greatly with τ due to the presence of outliers in the data set under consideration.

So, we test for three different null hypotheses on β given by H0 : β = (−8.03, 2.95),

H0 : β = (−7.22, 2.76) and H0 : β = (6.7, − 0.4) respectively; in the absence of the

outliers, the LRT fails to reject either of the first two null hypotheses, but soundly

rejects the third (this corresponds to the tests with moderately large values of the
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(a) H0 : β = (−8.03, 2.95) (σ = 0.4

known)

(b) H0 : β = (−8.03, 2.95) (σ = 0.6

known)

(c) H0 : β = (−8.03, 2.95) (σ un-

known)

(d) H0 : β = (−7.22, 2.76) (σ = 0.4

known)

(e) H0 : β = (−7.22, 2.76) (σ = 0.6

known)

(f) H0 : β = (−7.22, 2.76) (σ un-

known)

(g) H0 : β = (6.7, − 0.4) (σ = 0.4

known)

(h) H0 : β = (6.7, − 0.4) (σ = 0.6

known)

(i)H0 : β = (6.7, −0.4) (σ unknown)

Figure 1: P-Values of the DPD based test for different H0 on β with known and unknown σ2 for

the Hertzsprung-Russell data (solid line - for full data; dashed line - data after dropping 4 outliers;

dashed-dotted line - data after dropping 5 outliers)

tuning parameter τ). For the full data, however, the LRT leads to the opposite con-

clusion in each case, whereas the conclusion for moderately large values of the tuning
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parameter remains unchanged.” Figure 1 presents the p-values for testing these hy-

pothesis based on the DPD based test over its tuning parameter τ = γ both with and

without outliers; we considered the values of σ to be known at two values 0.4 (the

robust estimate ignoring outlier) and 0.6 (the non-robust estimate in presence of out-

liers) and also repeat the test assuming σ to be unknown. It is clear from the figure

that the DPD based test with τ ≥ 0.3 can ignore the outliers successfully leading to

results which appropriately describes the homogeneous majority of the data. Even if

the parameter σ is specified incorrectly the DPD based test gives appropriate robust

results for larger values of τ ≥ 0.5. This example illustrates the strong robustness

properties of the proposed DPD based tests with moderately large values of τ .

S6.2 Australia AIDS Data: Poisson Regression model

As an illustrative example of the generalized linear model, we will consider one of

it’s particular cases, namely the Poisson regression model applicable to count data.

One can easily apply the proposed DPD based tests for testing under the Poisson

regression model following the general theory developed in Section 6 of the main

paper. Here, we will consider an interesting dataset on the counts of AIDS patients

in Australia for successive quarters of 1984 to 1988; this dataset is obtained from

Dobson (2002) and was previously analyzed by Ghosh and Basu (2016, Suppelentary

material) to illustrate the robustness of the MDPDE under Poisson regression model.



S6. SOME REAL DATA EXAMPLES

The data on the AIDS count can be modeled by a Poisson regression model with the

fixed covariate being the logarithm of time (slope) along with an intercept. Since

there is no outlier in the original data, following Ghosh and Basu (2016, Suppelentary

material) we also construct two artificial outliers by changing the observations at

time 1 and time 20, from 1 to 10 and from 159 to 15 respectively. The corresponding

MDPDEs under both the pure data and with outliers have been examined in Ghosh

and Basu (2016, Suppelentary material); the work demonstrates strong robustness

properties of these estimators with tuning parameter τ > 0 over the classical MLE

at τ = 0 (see Table 1 for few examples).

Now, we will consider a simple linear hypothesis under this Poisson regression

model given by

H0 : β1 = 3 against H1 : β1 6= 3, (S6.19)

where β1 is the slope coefficient corresponding to the covariate ‘logarithmic time’.

We apply the proposed DPD based test for this problem following Section 6 of the

main paper, using the (unrestricted) MDPDEs of the slope and intercept coefficients

and the restricted MDPDE of the intercept under H0 (i.e., when the slope coefficient

is 3). These estimates along with the resulting p-values for different values of tuning

parameter τ = γ have been presented in Table 1 under both the original data without

outlier and with two artificial outliers. Clearly, for the original data with no outliers,

the null hypothesis in (S6.19) gets accepted for all values of tuning parameters τ = γ.
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However, in presence of two artificial outliers, the classical likelihood ratio test (at

τ = γ = 0) strongly rejects the null hypothesis but the proposed DPDTS with

τ = γ > 0 still accept the null hypothesis yielding robust inference.

Table 1: The unrestricted and restricted minimum density power divergence estimates and the

resulting p-values for the AIDS Dataset without and with 2 artificial outliers

τ = γ 0 0.1 0.2 0.5 1

Intercept (without outlier) 0.996 1.018 0.994 1.010 0.964

Slope (without outlier) 3.055 3.036 3.052 3.037 3.055

Restricted Intercept (without outlier) 1.057 1.057 1.055 1.048 1.038

Intercept (with 2 outliers) 1.730 1.278 1.227 1.022 1.155

Slope (with 2 outliers) 2.296 2.791 2.836 3.011 2.895

Restricted Intercept (with 2 outliers) 0.949 1.048 1.048 1.044 1.031

p-value (without outlier) 0.759 0.832 0.721 0.839 0.625

p-value (with 2 outliers) 0.000 0.321 0.431 0.761 1.000

S7 On the Competitive Choice of Tuning parameters and

Test Statistics

In defining the DPD test statistics we have tried to keep the method as general as pos-

sible in terms of the tuning parameters of the test statistics. As such the asymptotic
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distribution of the test statistics has been defined as a function of two independent

tuning parameters τ and γ. In practice one could consider the totality of all tests

obtained by varying the two different tuning parameters. In the theoretical sense we

have done exactly that in this paper. Investigating all such tests numerically is, how-

ever, a huge task and for the present we have restricted our numerical investigations

to the case where γ = τ . We hope to further extend our numerical evaluation of this

family of test statistics in the future by choosing distinct values for τ and γ. In par-

ticular, it may be of interest to observe the situation where γ = 0 and τ > 0 so that

we have an idea about the performance of the likelihood ratio statistics evaluated at

a robust estimator.

Here we have examined the performances of the proposed DPD based test statis-

tics at τ = γ through several theoretical results and numerical illustrations for the

linear regression model and the GLMs. We have seen that the power of the proposed

test against the contiguous alternative under pure data is asymptotically independent

of γ and decreases slightly with increasing values of the parameters τ ; but the loss

in power is not significant even for τ = 0.5. On the other hand the robustness of the

proposed test under contamination, both in terms of its size and power, increase as

τ = γ increases. So, we need to choose the tunning parameters τ = γ suitably to

make a trade-off between these two.

In this respect, it is useful to note that the robustness properties of the proposed
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test depend mostly on the MDPDE of the parameter used through τ although the

extent of robustness depends slightly on γ. However, we suggest to use γ = τ to

make the test statistics compatible with the MDPDE used. So, it would be enough

to choose the proper estimator with the optimal value of the parameter τ to be used

in our test statistics. Ghosh and Basu (2015) has proposed one such approach of

data-driven choice of the tunning parameter of the MDPDE in the context of I-NH

set-up. The proposal had been successfully implemented in the case of linear regres-

sion and generalized linear models by Ghosh and Basu (2015) and Ghosh and Basu

(2016) respectively. We have verified that the resulting choice of tunning parameter

also provide us the desirable trade-off for the proposed testing procedures also. For

example, the optimal choice of tunning parameter τ for the MDPDE under the Salin-

ity Data-set had been seen to be τ = 0.5 by Ghosh and Basu (2015). As we have

seen in Section 7.2 of the main paper, the choice of γ = τ = 0.5 yields the robust

inference for any kind of hypothesis for this data-set; also it has quite high power

against the contiguous alternative under pure data which can be seen from Figure 1

of the main paper. Similar phenomenon also hold for other datasets presented above

in Section S6. So, we suggest to choose the tunning parameters of the proposed

testing procedures by means of the Ghosh and Basu (2015) proposal.

Further, as we have seen in case of linear regression and GLMs, the proposed

DPD based test for positive γ and τ are computationally no more complicated than
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the popular LRT (corresponding to the DPD based test with γ = τ = 0) but gives us

the extra advantage of stability in presence of the outlying observations at the cost of

only a small power loss under pure data. This very strong property of the proposed

test will build its equity against the existing asymptotic tests for the present set-up.

For a brief comparison with the existing literature, it is to be noted that we have

proposed a class of robust tests under a complete general set-up of I-NH set-up and

as per the knowledge of the authors there is no such general approach available. How-

ever, there are some particular approaches for particular cases like linear regression

(Ronchetti and Rousseeuw, 1980; Schrader and Hettmansperger, 1980; Ronchetti,

1982a,b, 1987; Sen, 1982; Markatou and Hettmansperger, 1990; Markatou and He,

1994; Salibian-Barrera et al., 2016) and some GLMs (Morgenthaler, 1992; Cantoni

and Ronchetti, 2001; Maronna et al., 2006; Wang and Qu, 2007; Hosseinian, 2009);

but most of them assume the covariates to be stochastic while we consider the case

of fixed covariates. Even if we can apply a robust test procedure with stochastic

covariate heuristically in case of regression models with given fixed covariates, their

properties will directly depend on the robust estimations of the regression coefficient

used in construction of the test statistics. And, as is extensively studied in Ghosh and

Basu (2013, 2016), the MDPDE of the regression coefficients has several advantages

over the existing robust estimators and we expect the same to hold in case of the

proposed MDPDE based tests too. However, this surely needs a lot more research
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and considering the length of the present paper, we have decided to leave extensive

comparisons for the future.

Table 2: The empirical size of the DPD based test with known σ for different contamination pro-
portion and sample sizes n = 30.

ex eerr τ = 0 τ = 0.05 τ = 0.1 τ = 0.25 τ = 0.4 τ = 0.5 τ = 0.7 τ = 1

0% 0% 0.050 0.048 0.046 0.045 0.044 0.044 0.045 0.044
0% 1% 0.067 0.061 0.057 0.052 0.050 0.049 0.050 0.050
0% 3% 0.112 0.097 0.087 0.070 0.064 0.061 0.061 0.059
0% 5% 0.176 0.147 0.127 0.093 0.080 0.077 0.072 0.068
0% 10% 0.378 0.322 0.273 0.185 0.145 0.130 0.113 0.099
0% 15% 0.593 0.526 0.463 0.321 0.244 0.213 0.175 0.147
0% 20% 0.767 0.707 0.643 0.476 0.364 0.314 0.256 0.206

3.3% 0% 0.866 0.446 0.211 0.092 0.078 0.074 0.073 0.075
3.3% 1% 0.851 0.443 0.220 0.104 0.086 0.080 0.080 0.082
3.3% 3% 0.826 0.442 0.246 0.129 0.106 0.098 0.094 0.090
3.3% 5% 0.810 0.454 0.280 0.159 0.130 0.119 0.111 0.104
3.3% 10% 0.801 0.527 0.394 0.261 0.206 0.183 0.162 0.143
3.3% 15% 0.828 0.637 0.543 0.390 0.311 0.272 0.232 0.199
3.3% 20% 0.876 0.749 0.688 0.534 0.429 0.380 0.315 0.261
10% 0% 1.000 0.969 0.538 0.160 0.129 0.122 0.116 0.112
10% 1% 1.000 0.964 0.543 0.172 0.139 0.131 0.124 0.119
10% 3% 1.000 0.955 0.557 0.200 0.162 0.150 0.142 0.133
10% 5% 1.000 0.947 0.575 0.236 0.188 0.173 0.162 0.151
10% 10% 0.999 0.935 0.638 0.338 0.264 0.244 0.216 0.196
10% 15% 0.999 0.937 0.727 0.464 0.362 0.331 0.291 0.251
10% 20% 0.998 0.945 0.810 0.598 0.482 0.436 0.374 0.318
20% 0% 1.000 1.000 0.997 0.507 0.312 0.269 0.234 0.215
20% 1% 1.000 1.000 0.997 0.518 0.324 0.280 0.245 0.226
20% 3% 1.000 1.000 0.996 0.541 0.354 0.308 0.268 0.245
20% 5% 1.000 1.000 0.995 0.569 0.386 0.337 0.294 0.265
20% 10% 1.000 1.000 0.993 0.640 0.466 0.413 0.355 0.315
20% 15% 1.000 1.000 0.992 0.725 0.561 0.505 0.439 0.381
20% 20% 1.000 1.000 0.993 0.799 0.653 0.593 0.516 0.450
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Table 3: The empirical size of the DPD based test with known σ for different contamination pro-
portion and sample sizes n = 50.

ex eerr τ = 0 τ = 0.05 τ = 0.1 τ = 0.25 τ = 0.4 τ = 0.5 τ = 0.7 τ = 1

0% 0% 0.049 0.048 0.048 0.046 0.044 0.043 0.045 0.047
0% 1% 0.065 0.059 0.056 0.051 0.050 0.050 0.050 0.052
0% 3% 0.126 0.105 0.090 0.073 0.066 0.064 0.062 0.062
0% 5% 0.210 0.167 0.137 0.100 0.083 0.078 0.072 0.071
0% 10% 0.498 0.415 0.346 0.213 0.155 0.139 0.118 0.106
0% 15% 0.754 0.677 0.597 0.398 0.278 0.235 0.186 0.155
0% 20% 0.906 0.855 0.796 0.594 0.438 0.366 0.279 0.220
2% 0% 0.048 0.048 0.047 0.044 0.045 0.044 0.044 0.045
2% 1% 0.062 0.057 0.053 0.048 0.048 0.047 0.046 0.048
2% 3% 0.116 0.099 0.085 0.066 0.060 0.058 0.056 0.057
2% 5% 0.201 0.164 0.135 0.094 0.079 0.075 0.069 0.067
2% 10% 0.481 0.398 0.330 0.205 0.154 0.133 0.113 0.101
2% 15% 0.744 0.662 0.579 0.382 0.269 0.226 0.180 0.144
2% 20% 0.903 0.852 0.787 0.578 0.426 0.354 0.270 0.209
4% 0% 0.344 0.147 0.091 0.063 0.056 0.055 0.054 0.057
4% 1% 0.329 0.145 0.095 0.069 0.060 0.059 0.057 0.060
4% 3% 0.328 0.162 0.120 0.087 0.075 0.073 0.067 0.067
4% 5% 0.353 0.198 0.161 0.113 0.095 0.089 0.081 0.078
4% 10% 0.498 0.380 0.331 0.225 0.169 0.151 0.130 0.115
4% 15% 0.692 0.613 0.554 0.390 0.284 0.242 0.198 0.164
4% 20% 0.849 0.808 0.762 0.578 0.439 0.368 0.292 0.231
6% 0% 0.987 0.455 0.165 0.079 0.069 0.067 0.066 0.068
6% 1% 0.980 0.441 0.167 0.086 0.075 0.072 0.071 0.072
6% 3% 0.962 0.434 0.186 0.105 0.091 0.089 0.085 0.081
6% 5% 0.944 0.441 0.220 0.131 0.111 0.105 0.100 0.092
6% 10% 0.917 0.530 0.372 0.243 0.188 0.168 0.147 0.135
6% 15% 0.928 0.681 0.574 0.407 0.306 0.265 0.217 0.182
6% 20% 0.948 0.822 0.766 0.590 0.455 0.394 0.314 0.253

10% 0% 1.000 0.718 0.266 0.108 0.091 0.086 0.085 0.082
10% 1% 1.000 0.700 0.261 0.111 0.098 0.093 0.089 0.087
10% 3% 1.000 0.668 0.270 0.126 0.109 0.103 0.099 0.097
10% 5% 0.999 0.652 0.286 0.149 0.128 0.121 0.114 0.109
10% 10% 0.993 0.661 0.406 0.246 0.199 0.179 0.161 0.153
10% 15% 0.989 0.733 0.577 0.399 0.305 0.268 0.230 0.202
10% 20% 0.988 0.834 0.751 0.570 0.452 0.392 0.320 0.269
12% 0% 1.000 0.981 0.632 0.179 0.130 0.119 0.111 0.108
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Table 4: The empirical size of the DPD based test with known σ for different contamination pro-
portion and sample sizes n = 100.

ex eerr τ = 0 τ = 0.05 τ = 0.1 τ = 0.25 τ = 0.4 τ = 0.5 τ = 0.7 τ = 1

0% 0% 0.050 0.049 0.049 0.050 0.049 0.049 0.048 0.048
0% 1% 0.071 0.065 0.061 0.059 0.055 0.054 0.053 0.052
0% 3% 0.160 0.132 0.110 0.081 0.070 0.068 0.062 0.059
0% 5% 0.302 0.241 0.192 0.118 0.092 0.084 0.075 0.071
0% 10% 0.713 0.612 0.515 0.298 0.195 0.160 0.129 0.110
0% 15% 0.934 0.884 0.811 0.560 0.375 0.295 0.213 0.165
0% 20% 0.993 0.979 0.956 0.788 0.584 0.475 0.336 0.240
1% 0% 0.365 0.097 0.067 0.056 0.055 0.055 0.054 0.053
1% 1% 0.347 0.102 0.075 0.065 0.062 0.061 0.059 0.057
1% 3% 0.357 0.149 0.119 0.089 0.079 0.073 0.068 0.065
1% 5% 0.421 0.239 0.197 0.125 0.099 0.091 0.083 0.077
1% 10% 0.688 0.576 0.508 0.307 0.207 0.171 0.138 0.119
1% 15% 0.907 0.855 0.802 0.567 0.382 0.306 0.225 0.176
1% 20% 0.983 0.971 0.949 0.792 0.591 0.488 0.345 0.253
5% 0% 1.000 0.729 0.275 0.123 0.110 0.107 0.103 0.103
5% 1% 1.000 0.707 0.273 0.132 0.117 0.115 0.110 0.108
5% 3% 1.000 0.682 0.286 0.155 0.138 0.133 0.125 0.119
5% 5% 1.000 0.678 0.328 0.192 0.163 0.154 0.142 0.131
5% 10% 1.000 0.767 0.539 0.356 0.269 0.237 0.202 0.179
5% 15% 1.000 0.894 0.785 0.589 0.433 0.366 0.290 0.239
5% 20% 1.000 0.969 0.934 0.794 0.619 0.530 0.404 0.315
7% 0% 1.000 0.975 0.512 0.156 0.127 0.122 0.117 0.115
7% 1% 1.000 0.969 0.503 0.162 0.135 0.130 0.124 0.119
7% 3% 1.000 0.956 0.496 0.187 0.156 0.150 0.140 0.132
7% 5% 1.000 0.945 0.509 0.222 0.180 0.171 0.158 0.147
7% 10% 1.000 0.938 0.632 0.374 0.286 0.254 0.220 0.196
7% 15% 1.000 0.962 0.807 0.594 0.449 0.382 0.305 0.257
7% 20% 1.000 0.983 0.935 0.787 0.626 0.539 0.422 0.337
8% 0% 1.000 0.994 0.568 0.173 0.142 0.136 0.132 0.128
9% 0% 1.000 0.997 0.602 0.179 0.149 0.145 0.138 0.136
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Table 5: The empirical power of the DPD based test with known σ for different contamination
proportion and sample sizes n = 30.

ex eerr τ = 0 τ = 0.05 τ = 0.1 τ = 0.25 τ = 0.4 τ = 0.5 τ = 0.7 τ = 1

0% 0% 0.984 0.984 0.982 0.976 0.964 0.955 0.931 0.885
0% 1% 0.972 0.974 0.974 0.969 0.958 0.949 0.925 0.880
0% 3% 0.940 0.947 0.953 0.954 0.947 0.937 0.914 0.871
0% 5% 0.894 0.909 0.923 0.937 0.933 0.926 0.905 0.862
0% 10% 0.734 0.773 0.808 0.865 0.880 0.881 0.868 0.832
0% 15% 0.558 0.613 0.663 0.763 0.808 0.822 0.826 0.800
0% 20% 0.421 0.469 0.522 0.649 0.728 0.755 0.776 0.761

3.3% 0% 0.970 0.968 0.966 0.959 0.947 0.936 0.907 0.855
3.3% 1% 0.953 0.954 0.954 0.950 0.938 0.929 0.901 0.851
3.3% 3% 0.909 0.921 0.926 0.930 0.922 0.913 0.888 0.838
3.3% 5% 0.851 0.873 0.886 0.905 0.904 0.898 0.876 0.827
3.3% 10% 0.675 0.720 0.756 0.821 0.842 0.845 0.836 0.798
3.3% 15% 0.507 0.558 0.612 0.714 0.767 0.782 0.787 0.764
3.3% 20% 0.393 0.431 0.481 0.606 0.686 0.716 0.742 0.733
6.7% 0% 0.946 0.947 0.946 0.936 0.920 0.908 0.877 0.820
6.7% 1% 0.922 0.927 0.930 0.924 0.911 0.898 0.869 0.814
6.7% 3% 0.868 0.883 0.894 0.900 0.891 0.880 0.854 0.802
6.7% 5% 0.799 0.825 0.843 0.872 0.870 0.863 0.841 0.794
6.7% 10% 0.619 0.668 0.705 0.780 0.804 0.807 0.799 0.764
6.7% 15% 0.465 0.512 0.559 0.672 0.731 0.745 0.754 0.732
6.7% 20% 0.383 0.413 0.450 0.573 0.650 0.683 0.710 0.702
10% 0% 0.892 0.896 0.898 0.894 0.875 0.861 0.826 0.764
10% 1% 0.859 0.869 0.876 0.878 0.863 0.850 0.819 0.759
10% 3% 0.784 0.807 0.826 0.843 0.836 0.828 0.802 0.748
10% 5% 0.704 0.739 0.765 0.810 0.815 0.810 0.786 0.735
10% 10% 0.509 0.560 0.607 0.697 0.733 0.743 0.740 0.707
10% 15% 0.377 0.419 0.466 0.588 0.657 0.680 0.694 0.677
10% 20% 0.333 0.354 0.383 0.503 0.588 0.623 0.651 0.651

16.7% 0% 0.778 0.787 0.789 0.787 0.771 0.754 0.721 0.662
16.7% 1% 0.732 0.749 0.758 0.768 0.756 0.743 0.713 0.657
16.7% 3% 0.643 0.673 0.692 0.726 0.728 0.720 0.697 0.646
16.7% 5% 0.562 0.601 0.629 0.682 0.696 0.695 0.678 0.635
16.7% 10% 0.402 0.443 0.479 0.572 0.618 0.631 0.633 0.605
16.7% 15% 0.336 0.354 0.385 0.486 0.556 0.581 0.600 0.589
16.7% 20% 0.355 0.349 0.358 0.438 0.516 0.547 0.579 0.577

20% 0% 0.691 0.703 0.709 0.716 0.700 0.687 0.652 0.595
20% 1% 0.645 0.664 0.676 0.694 0.686 0.677 0.647 0.589
20% 3% 0.557 0.585 0.609 0.648 0.656 0.651 0.628 0.581
20% 5% 0.483 0.519 0.548 0.606 0.625 0.626 0.614 0.571
20% 10% 0.355 0.382 0.417 0.503 0.551 0.567 0.573 0.549
20% 15% 0.329 0.331 0.351 0.437 0.498 0.528 0.549 0.539
20% 20% 0.382 0.358 0.357 0.410 0.476 0.506 0.539 0.537



Abhik Ghosh AND Ayanendranath Basu

Table 6: The empirical power of the DPD based test with known σ for different contamination
proportion and sample sizes n = 50.

ex eerr τ = 0 τ = 0.05 τ = 0.1 τ = 0.25 τ = 0.4 τ = 0.5 τ = 0.7 τ = 1

0% 0% 0.992 0.992 0.991 0.987 0.982 0.976 0.962 0.927
0% 1% 0.982 0.984 0.984 0.982 0.976 0.971 0.956 0.924
0% 3% 0.950 0.959 0.965 0.971 0.967 0.963 0.946 0.914
0% 5% 0.898 0.921 0.935 0.953 0.953 0.951 0.936 0.901
0% 10% 0.696 0.754 0.801 0.875 0.898 0.902 0.895 0.871
0% 15% 0.485 0.548 0.614 0.749 0.814 0.833 0.845 0.832
0% 20% 0.365 0.404 0.455 0.611 0.712 0.751 0.789 0.794
2% 0% 0.990 0.990 0.990 0.986 0.979 0.973 0.958 0.922
2% 1% 0.979 0.981 0.982 0.979 0.974 0.968 0.952 0.918
2% 3% 0.945 0.956 0.961 0.967 0.964 0.957 0.943 0.908
2% 5% 0.891 0.912 0.927 0.948 0.949 0.945 0.930 0.896
2% 10% 0.693 0.749 0.793 0.866 0.891 0.894 0.889 0.863
2% 15% 0.492 0.549 0.611 0.743 0.807 0.826 0.836 0.822
2% 20% 0.389 0.421 0.465 0.608 0.702 0.743 0.781 0.783
6% 0% 0.978 0.977 0.977 0.971 0.961 0.953 0.931 0.885
6% 1% 0.962 0.964 0.965 0.962 0.953 0.945 0.923 0.880
6% 3% 0.908 0.923 0.934 0.942 0.938 0.930 0.910 0.869
6% 5% 0.834 0.864 0.885 0.913 0.917 0.910 0.893 0.855
6% 10% 0.611 0.665 0.716 0.810 0.843 0.850 0.846 0.818
6% 15% 0.437 0.485 0.540 0.680 0.749 0.771 0.788 0.778
6% 20% 0.384 0.396 0.426 0.551 0.647 0.688 0.730 0.741

10% 0% 0.958 0.959 0.958 0.951 0.939 0.926 0.898 0.842
10% 1% 0.932 0.938 0.941 0.938 0.929 0.916 0.892 0.836
10% 3% 0.864 0.884 0.897 0.910 0.907 0.899 0.873 0.822
10% 5% 0.780 0.813 0.837 0.871 0.879 0.874 0.853 0.811
10% 10% 0.554 0.606 0.660 0.750 0.796 0.803 0.801 0.773
10% 15% 0.422 0.456 0.503 0.624 0.697 0.720 0.739 0.728
10% 20% 0.413 0.407 0.421 0.520 0.607 0.643 0.687 0.698
16% 0% 0.865 0.872 0.874 0.867 0.847 0.835 0.803 0.744
16% 1% 0.818 0.834 0.844 0.846 0.832 0.822 0.792 0.738
16% 3% 0.713 0.745 0.767 0.797 0.800 0.795 0.769 0.723
16% 5% 0.603 0.649 0.685 0.742 0.762 0.762 0.746 0.704
16% 10% 0.399 0.443 0.495 0.604 0.659 0.676 0.686 0.668
16% 15% 0.341 0.352 0.380 0.491 0.571 0.607 0.637 0.637
16% 20% 0.418 0.388 0.376 0.433 0.503 0.541 0.589 0.611
20% 0% 0.809 0.817 0.819 0.810 0.796 0.779 0.743 0.686
20% 1% 0.754 0.770 0.781 0.789 0.778 0.766 0.736 0.678
20% 3% 0.646 0.679 0.704 0.736 0.740 0.737 0.715 0.666
20% 5% 0.543 0.583 0.619 0.681 0.699 0.704 0.693 0.650
20% 10% 0.382 0.412 0.452 0.551 0.603 0.621 0.633 0.618
20% 15% 0.372 0.368 0.384 0.467 0.530 0.559 0.588 0.592
20% 20% 0.485 0.439 0.413 0.431 0.485 0.515 0.559 0.576
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Table 7: The empirical power of the DPD based test with known σ for different contamination
proportion and sample sizes n = 100.

ex eerr τ = 0 τ = 0.05 τ = 0.1 τ = 0.25 τ = 0.4 τ = 0.5 τ = 0.7 τ = 1

0% 0% 0.987 0.986 0.985 0.982 0.975 0.967 0.951 0.916
0% 1% 0.970 0.974 0.976 0.976 0.969 0.962 0.944 0.910
0% 3% 0.909 0.928 0.939 0.954 0.952 0.946 0.930 0.897
0% 5% 0.800 0.844 0.875 0.920 0.927 0.923 0.911 0.879
0% 10% 0.446 0.529 0.607 0.766 0.829 0.845 0.854 0.834
0% 15% 0.298 0.316 0.364 0.556 0.682 0.726 0.771 0.777
0% 20% 0.457 0.378 0.340 0.396 0.529 0.598 0.676 0.716
2% 0% 0.980 0.980 0.980 0.975 0.965 0.958 0.939 0.897
2% 1% 0.960 0.965 0.968 0.967 0.958 0.951 0.932 0.889
2% 3% 0.885 0.908 0.921 0.939 0.938 0.934 0.916 0.876
2% 5% 0.761 0.812 0.845 0.896 0.908 0.907 0.893 0.857
2% 10% 0.409 0.488 0.563 0.729 0.798 0.817 0.826 0.811
2% 15% 0.295 0.299 0.339 0.520 0.646 0.695 0.741 0.750
2% 20% 0.481 0.397 0.349 0.375 0.500 0.569 0.647 0.688
6% 0% 0.960 0.959 0.959 0.953 0.940 0.929 0.901 0.850
6% 1% 0.926 0.932 0.936 0.937 0.927 0.917 0.890 0.842
6% 3% 0.813 0.846 0.868 0.894 0.894 0.889 0.870 0.824
6% 5% 0.667 0.727 0.770 0.838 0.857 0.857 0.845 0.807
6% 10% 0.349 0.410 0.478 0.645 0.727 0.752 0.768 0.751
6% 15% 0.310 0.289 0.301 0.447 0.570 0.624 0.675 0.688
6% 20% 0.544 0.446 0.383 0.349 0.442 0.505 0.584 0.627

10% 0% 0.924 0.925 0.922 0.912 0.894 0.878 0.845 0.786
10% 1% 0.866 0.878 0.885 0.886 0.876 0.861 0.831 0.778
10% 3% 0.722 0.762 0.791 0.827 0.832 0.827 0.805 0.758
10% 5% 0.563 0.624 0.675 0.757 0.783 0.786 0.776 0.735
10% 10% 0.295 0.337 0.396 0.544 0.637 0.666 0.687 0.679
10% 15% 0.348 0.298 0.284 0.377 0.486 0.541 0.599 0.618
10% 20% 0.617 0.507 0.423 0.335 0.393 0.444 0.521 0.566
15% 0% 0.820 0.825 0.825 0.813 0.794 0.775 0.738 0.671
15% 1% 0.741 0.762 0.772 0.779 0.771 0.757 0.723 0.662
15% 3% 0.572 0.615 0.651 0.701 0.714 0.712 0.690 0.638
15% 5% 0.411 0.469 0.519 0.620 0.652 0.660 0.651 0.615
15% 10% 0.230 0.241 0.277 0.409 0.500 0.534 0.565 0.563
15% 15% 0.384 0.300 0.263 0.288 0.375 0.424 0.487 0.519
15% 20% 0.701 0.583 0.472 0.312 0.331 0.367 0.427 0.481
20% 0% 0.711 0.715 0.716 0.707 0.686 0.669 0.626 0.566
20% 1% 0.626 0.643 0.655 0.671 0.660 0.647 0.613 0.558
20% 3% 0.446 0.490 0.524 0.584 0.601 0.597 0.576 0.539
20% 5% 0.315 0.359 0.404 0.501 0.540 0.549 0.543 0.519
20% 10% 0.242 0.228 0.238 0.324 0.402 0.435 0.470 0.474
20% 15% 0.477 0.373 0.304 0.265 0.317 0.357 0.409 0.440
20% 20% 0.780 0.681 0.567 0.355 0.324 0.337 0.376 0.417
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