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Abstract: We consider the problem of estimating the region on which a non-

parametric response function defined on the plane is at its baseline level in a

sampling setting where multiple replicates of the response are available at each

location. The baseline level typically corresponds to the minimum/maximum of

the function and estimating such regions or their complements is pertinent to sev-

eral problems arising in edge estimation, environmental statistics, fMRI and related

fields. We assume the region of interest to be convex and estimate it via fitting a

“stump” function to approximate p-values obtained from tests for deviation of the

regression function from its baseline level. The shape of the baseline region and

the smoothness of the regression function at its boundary play a critical role in

determining the rate of convergence of our estimate: for a response function which

is “p-regular” at the boundary of the convex baseline region, our estimate converges

at a rate N−2/(4p+3), N being the total budget. This is expected to be optimal

in light of existing work in related problems. We end with a discussion of various

extensions of our approach, as well as connections to existing approaches.

Key words and phrases: Baseline zone estimation, convexity constraint, p-values,

replicated measurements.

1. Introduction

Consider a data generating model of the form Y = µ(X) + ε, where µ is a

function on [0, 1]2 such that

µ(x) = τ0 for x ∈ S0, and µ(x) > τ0 for x /∈ S0 , (1.1)

τ0 is unknown, and the covariate X is independent of the error ε which has

mean zero with finite positive variance σ20. We are interested in estimating the

baseline region S0 beyond which the function deviates from τ0. Examples of such

problems abound. In several fMRI studies, one seeks to detect regions of brain

activity from cross sectional two-dimensional images. Here, S0 corresponds to the

region of no-activity in the brain with Sc0 being the region of interest. In LIDAR
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(light detection and ranging) experiments used for measuring concentration of

pollutants in the atmosphere, interest often centers on finding high/low pollution

zones (see, for example, Wakimoto and McElroy (1986)); in such contexts, S0
would be the zone of maximal pollution, say in the vicinity of a polluting source.

In dose-response studies, patients may be put on multiple (interacting) drugs

(see, for example, Geppetti and Benemei (2009)), and it is of interest to find the

dosage levels (∂S0) at which the effect of the drugs starts kicking in.

In this paper, we address the problem of estimating S0 in a replicated mea-

surement setting, sometimes called the ‘dose–response’ setting: n locations are

chosen (randomly) from which to sample responses, and at each location m repli-

cates are obtained. Thus, the total number of data-points is N ≡ m×n, and we

allow both m and n to grow. Our methodology extends a relatively recent idea

from Mallik et al. (2011), developed in a simple 1-dimensional setting, to multi-

ple dimensions. We construct p-value type statistics that detect the deviation of

the function µ from its baseline value τ0 at each covariate level and then fit an

appropriate “stump” – a piecewise constant function with two levels – to these

p-values. A key motivation for the dose-response setting comes from the mini-

mum effective dose (MED) problems – a one-dimensional version of the problem

considered here – where data are available from several patients (multiple repli-

cates) at each dose level (covariate value) and one is interested in finding the

lowest dose level where the effect of the concerned drug kicks in. The baseline

set is, therefore, an interval [0, d0] for some unknown d0 > 0. The extension of

the dose-response setting to two dimensions as considered in this paper can be

viewed as an idealized version of a scenario involving pharmacological studies

where subjects are assigned a pair of interacting drugs, and multiple individuals

are put at different combinations of drug–levels.

The question of detecting S0 is also related to the edge detection problem

which involves recovering the boundary of an image. In edge detection, µ cor-

responds to the image intensity function with Sc0 being the image and S0 the

background. A number of different algorithms in the computer science litera-

ture deal with this problem, though primarily in situations where µ has a jump

discontinuity at the boundary of S0; see Qiu (2007) for a review of edge detec-

tion techniques. With the exception of work done by Korostelëv and Tsybakov

(1993), Mammen and Tsybakov (1995), and a few others, theoretical properties

of such algorithms appear to have been rarely addressed. In fact, the study of

theoretical properties of such estimates is typically intractable without some reg-

ularity assumption on S0; for example, Mammen and Tsybakov (1995) discuss
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minimax recovery of sets under smoothness assumption on the boundary.

In this paper, we approach the problem from the point of view of a shape-

constraint (typically obtained from background knowledge) on the baseline re-

gion. We assume that the region S0 is a closed convex subset of [0, 1]2 with

a non-empty interior (and therefore, positive Lebesgue measure) and restrict

ourselves to the more difficult problem where µ is continuous at the boundary.

Convexity is a natural shape restriction to impose, not only because of analytical

tractability, but also as convex boundaries arise naturally in several application

areas: see, Wang et al. (2007), Ma et al. (2010), Stahl and Wang (2005), and

Goldenshluger and Spokoiny (2006) for a few illustrative examples. In the statis-

tics literature, Goldenshluger and Zeevi (2006) provide theoretical analyses of a

convex boundary recovery method in a white noise framework.

Our problem also has connections to the level-sets estimation problem since

Sc0 is the “level-set” {x : µ(x) > τ0} of the function µ. However, because τ0 is

at the extremity of the range of µ, the typical level-set estimate {x : µ̂(x) > τ0},
where µ̂ is an estimate of µ, does not distinguish well between the sets {x :

µ(x) ≥ τ0} and {x : µ(x) > τ0} unless µ has a jump at ∂S0 and, indeed, need

not be consistent for Sc0 . Moreover, this plug-in approach does not account for

the pre-specified shape of the level-set. We note that the shape-constrained ap-

proach to estimate level-sets has also been studied in the literature, e.g., Nolan

(1991) studied estimating ellipsoidal level-sets in context of densities, Hartigan

(1987) provided an algorithm for estimating convex contours of a density, and

Tsybakov (1997) and Cavalier (1997) studied “star-shaped” level-sets of density

and regression functions, respectively. These approaches are based on an “excess

mass” criterion (or its local version) that yield estimates with optimal conver-

gence rates Tsybakov (1997). It will be seen later that our estimate also recovers

the level-set of a transform of µ, but at a level in the interior of the range of the

transform. More connections in this regard are explored in Section 4.

The smoothness of µ at its boundary plays a critical role in determining the

rate of convergence of our estimate: for a regression function which is “p-regular”

(formally defined in Section 3) at the boundary of the convex baseline region,

our estimate converges at a rate N−2/(4p+3). This coincides with the rate ob-

tained in related level-set estimation problems; see Polonik (1995, Thm. 3.7) and

Tsybakov (1997, Thm. 2). It should be pointed out, here, that our convergence

rates for estimation of the boundary in the regression context are quite different

from the analogous problem of support boundary recovery based on i.i.d. obser-
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vations from a multivariate density as studied, for example, in Härdle, Park and

Tsybakov (1995), who obtain faster convergence rates due to the simpler nature

of the problem: namely, there are no realizations from outside the support of the

density.

In sum, we propose a computationally simple approach to estimate baseline

sets in two dimensions in a replicated measurement setting and deduce consis-

tency and rates of convergence of our estimate. Our approach falls at the interface

of edge detection and level-set estimation problem as it detects the edge set (Sc0)

through a level-set estimate (see Section 4). While we primarily address the sit-

uation where the baseline set is convex, in the presence of efficient algorithms,

our approach is extendible beyond convexity (see Section 4).

The rest of the paper is arranged as follows. We formally define our setting,

describe the estimation procedure, and list our assumptions in Section 2. We

justify consistency and deduce an upper bound on the rate of the convergence of

our procedure in Section 3. We end with a discussion on various extensions and

connections in Section 4.

2. Estimation Procedure

In this section, we extend a particular variant of the p-value procedure orig-

inally developed in a one-dimensional setting in Mallik et al. (2011). Consider a

data generating model of the form

Yij = µ(Xi) + εij , j = 1, . . . ,m, i = 1, . . . , n.

Here m = mn = m0n
β for some β > 0, with N = m× n being the total budget.

The covariate X is sampled from a distribution F with Lebesgue density f on

[0, 1]2 and ε is independent of X, has mean 0 and variance σ20.

At each level Xi = x, we test the null hypothesis H0,x : µ(x) = τ0 against

the alternative H1,x : µ(x) > τ0 and use the resulting (approximate) p-values to

construct an estimate of the set S0. The (un-normalized1) p-values are given by

pm,n(x) = 1− Φ(
√
m(Ȳi· − τ̂)),

where Ȳi· =
∑m

j=1 Yij/m and τ̂ is some suitable estimate of µ (to be discussed

later). These p-values asymptotically have mean 1/2 for x ∈ S0 and converge to

zero when x /∈ S0. This simple observation can be used to construct estimates

of S0. We fit a stump to the observed p–values, with levels 1/2 and 0 on either

side of the boundary of a generic set and prescribe the set corresponding to the

1See Remark 1.
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best fitting stump (in the sense of least squares) as an estimate of S0. Formally,

we fit a stump of the form ξS(x) = (1/2)1(x ∈ S), minimizing
n∑
i=1

{pm,n(Xi)− ξS(Xi)}2 =
∑
i:Xi∈S

(
pm,n(Xi)−

1

2

)2

+
∑

i:Xi∈Sc
(pm,n(Xi))

2

over appropriate choices of S. The above expression can be simplified and it can

be seen that one can alternatively minimize

Mn(S) = Pn
{

Φ
(√
m(Ȳ − τ̂)

)
− γ
}

1S(X),

where Pn denotes the empirical measure on {Ȳi·, Xi}i≤n and γ = 3/4.

Remark 1. Our procedure uses un-normalized p-values where the test statistic

is not normalized by an estimate of the variance. The choice is merely based on

notational convenience.The two versions of the procedure, the normalized and

the un-normalized one, exhibit similar fundamental features such as the same

dichotomous separation over S0 and Sc0, and identical rates of convergence.The

un-normalized version is notationally more tractable and avoids a few routine

justifications required for the normalized version.

The class of sets over which Mn is minimized should be chosen carefully

as very large classes would give uninteresting discrete sets while small classes

may not provide a reasonable estimate of S0. As we assumed S0 to be convex,

we minimize Mn over S, the class of closed convex subsets of [0, 1]2. Let Ŝn =

argminS∈SMn(S). The estimate Ŝn can be computed by an adaptation of a

density level-set estimation algorithm from Hartigan (1987) which we state below.

If a closed convex set S? minimizes Mn, the convex hull of {Xi : Xi ∈ S?, 1 ≤
i ≤ n} also minimizes Mn. Hence, it suffices to reduce our search to convex

polygons whose vertices could only be Xi’s. There could be 2n such polygons,

still a computationally expensive collection to search over.

Computing the estimate. We first find the optimal polygon (the convex

polygon which minimizes Mn) for each choice of X as its leftmost vertex. We use

the following notation. Let this particular X be numbered 1, and let the Xi’s not

to its left be numbered 2, 3, . . . , r. The coordinates of the point i are denoted by

zi, and the line segment azi + (1− a)zj , (0 ≤ a ≤ 1) is written as [i, j]. Assume

that 1, . . . , r are ordered so that the segments [1, i] move counterclockwise as i

increases and so that i ≤ j if i ∈ [1, j]. Polygons will be built up from triangles

for 1 < i < j ≤ r; ∆ij is the convex hull of (1, i, j) excluding [1, i]. The segment

[1, i] is excluded from ∆ij in order to combine triangles without overlap. The

quadrilateral with vertices at 1, i, j, k for i < j < k ≤ r is convex if
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Figure 1. Notation for constructing the convex set estimate. An arbitrary vertex is
numbered 1, and those not to its left are numbered 2, 3, . . . , 8 in a counterclockwise
manner. The triangle ∆78 excludes the line segment [1, 7]. The optimal polygon (with
measure M67) with successive vertices 6, 7 and 1 is depicted as the convex polygon with
vertices 1, 4, 6 and 7.

Dijk =

∣∣∣∣∣∣∣
z′i 1

z′j 1

z′k 1

∣∣∣∣∣∣∣ ≥ 0.

Let M1j be the value of Mn on the line segment [1, j]. Further, for 1 < j <

k ≤ r, let Mjk denote the minimum value of Mn among closed convex polygons

with successive counterclockwise vertices j, k and 1. All such convex polygons

contain the triangle ∆jk and hence, Mn(∆jk), Mn measure of ∆jk, is a common

contributing term to the Mn measure of all such polygons. This simple fact forms

the basis of the algorithm. It can be shown that

Mjk = Mi∗j + Mn(∆jk), (2.1)

where i∗ = I(k, j) is chosen to minimize Mij over vertices i with i < j, Dijk ≥ 0,

i.e,

i∗ = I(k, j) = argmin
i:i<j,Dijk>0

Mij . (2.2)

Here i∗ could possibly be 1, in which case Mjk is simply the Mn measure of the

triangle formed by j, k and 1 (including the contribution of line segment [1, j]).

One way to construct an optimal polygon with leftmost vertex 1 is to find the

minimum among Mjk, 1 ≤ j < k, where Mjk’s are computed recursively using

(2.1) and (2.2). Hence, one optimal polygon with leftmost vertex 1 has vertices

il, i2, . . . , is = 1, where either s = 1 or Mi2i1 = min1≤j<kMjk, i3 = I(i1, i2),
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Figure 2. An illustration of the procedure in the dose-response setting with m = 10 and
n = 100. The set S0 is a circle centered at (1,−1) with radius 1.

i4 = I(i2, i3), . . . , 1 = is = I(is−2, is−1). Once this is done for each choice of X

as the leftmost vertex, the final estimate Ŝn is simply the one with the minimum

Mn value among these n constructed polygons.

Figures 1 and 2 illustrate some aspects of this discussion. There are minor

modifications that can be made to the above algorithm so that the over-all im-

plementation involves O(n3) computations; see Hartigan (1987, Sec. 3) for more

details.

2.1. Notations and assumptions

We adhere to the setup above. Let λ denote the Lebesgue measure. The

precision of the estimates is measured using the metric

dF (S1, S2) = F (S1∆S2) .

For simplicity, we assume τ0 to be known. It can be shown that our results

extend to case where we impute a
√
mn (dose-response) estimate of τ (more on

this in Section 3.1).

Let ρ denote the l∞ metric on R2 (which is equivalent to the Euclidean metric

but makes some of the subsequent analyses simpler) and for a point x ∈ R2 and

a set A ⊂ R2, let ρ(x,A) := infy∈A ρ(x, y).

We make the following assumptions.

1. The function µ is continuous on [0, 1]2.

2. The function µ is p-regular at ∂S0: for some κ0, C0, C1 > 0 and for all

x /∈ S0 such that ρ(x, S0) < κ0,
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C0ρ(x, S0)
p ≤ µ(x)− τ0 < C1ρ(x, S0)

p. (2.3)

3. S0 = µ−1(τ0) is convex. For some ε0 > 0, , S0 ⊂ [ε0, 1− ε0]2 and λ(S0) > 0.

4. The design density f for the dose-response setting is continuous and positive

on [0, 1]2.

Remark 2. By uniform continuity of µ and compactness of [0, 1]2, inf{µ(x) :

ρ(x, S0) ≥ κ0} > τ0. For a fixed p, τ0, κ0, δ0 > 0, we denote the class of

functions µ satisfying Assumptions 1, 2, 3 and

inf{µ(x) : ρ(x, S0) ≥ κ0} − τ0 > δ0 (2.4)

by Fp = Fp(p, τ0, κ0, δ0).

3. Consistency and Rate of Convergence

As τ0 is known, we can take τ0 = 0 without loss of generality. With Mn(S) =

Pn
{

Φ
(√
mȲ

)
− γ
}

1S(X), let Pm denote the measure induced by (Ȳ , X) and

Mm(S) = Pm
[{

Φ
(√
mȲ

)
− γ
}

1S(X)
]
.

The process Mm acts as a population criterion function and can be simplified as

follows. Let

Z1m =
1√
mσ0

m∑
j=1

ε1j (3.1)

and Z0 be a standard normal random variable independent of Z1ms. Then

E
{

Φ
(√
mȲ1

)∣∣X1 = x
}

= E
[
Φ
{√

mµ(x) + σ0Z1m

}]
= E

(
E
[
1
{
Z0 <

√
mµ(x) + σ0Z1m

}∣∣Z1m

])
= P

{
Z0 − σ0Z1m√

1 + σ20
<

√
mµ(x)√
1 + σ20

}
= Φm

{√
mµ(x)√
1 + σ20

}
,

where Φm denotes the distribution function of (Z0 − σ0Z1m)/
√

1 + σ20. By

Pólya’s theorem, Φm converges uniformly to Φ as m → ∞. Hence, it can be

seen that

lim
m→∞

E
{

Φ
(√
mȲ1

)∣∣X1 = x
}

=
1

2
1S0

(x) + 1Sc0 (x).

By the Dominated Convergence Theorem, Mm(S) converges to M(S), where

M(S) = MF (S) =

∫
S

(
1

2
1S0

(x) + 1Sc0 (x)− γ
)
F (dx)

=

(
1

2
− γ
)
F (S0 ∩ S) + (1− γ)F (Sc0 ∩ S). (3.2)
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Note that S0 minimizes the limiting criterion function M(S). An application

of the argmin continuous mapping theorem van der Vaart and Wellner (1996,

Theorem 3.2.2) yields a result on the consistency of Ŝn.

Theorem 1. Assume S0 to be a closed convex set and the unique minimizer of

M(S). Then supS∈S |Mn(S) −M(S)| and dF (Ŝn, S0) converge in probability to

zero for any γ ∈ (0.5, 1).

Remark 3. The proof of this theorem appears in Section A.1 of the Appendix,

where we actually establish a stronger result: consistency is established in terms

of the Hausdorff metric which implies consistency with respect to dF . Moreover,

we do not require m to grow as m0n
β, β > 0, for consistency. The condition

min(m,n) → ∞ suffices. The result extends to higher dimensions: when µ is a

function from [0, 1]d 7→ R and S0 = µ−1(0) is a closed convex subset of [0, 1]d,

the corresponding estimate is consistent.

We now proceed to deduce the rate of convergence of dF (Ŝn, S0). For this, we

study how small the difference (Mn−M) is and how M behaves in the vicinity of

S0. We split the difference (Mn−M) into (Mn−Mm) and (Mm−M) and study

them separately. The term Mn −Mm involves an empirical average of centered

random variables, efficient bounds on which are derived using empirical process

inequalities. We first establish a bound on the non-random term (Mm −M) in

the vicinity of S0.

Lemma 1. For any δ > 0, an ↓ 0 and F (S4S0) < δ, we have

|(Mm −M)(S)− (Mm −M)(S0)| ≤
∣∣∣∣Φm(0)− 1

2

∣∣∣∣ δ + min(c0an, δ)

+

∣∣∣∣∣Φm

(
C0
√
mapn√

1 + σ20

)
− 1

∣∣∣∣∣ δ +

∣∣∣∣∣Φm

( √
mδ0√

1 + σ20

)
− 1

∣∣∣∣∣ δ.
Here, c0 > 0 is some constant.

Proof. Note that

Mm(S)−Mm(S0) = Pm

[{
Φm

(√
mµ(x)√
1 + σ20

)
− γ

}
{1S(x)− 1S0

(x)}

]
and

M(S)−M(S0) =

∫ {(
1

2

)
1S0

(x) + 1Sc0 (x)− γ
}
{1S(x)− 1S0

(x)}F (dx).

Hence, the expression |(Mm −M)(S)− (Mm −M)(S0)| is bounded by∫
x∈(S0∩S)

∣∣∣∣Φm (0)− 1

2

∣∣∣∣F (dx) +

∫
x∈(Sc0∩S)

∣∣∣∣∣Φm

(√
mµ(x)√
1 + σ20

)
− 1

∣∣∣∣∣F (dx). (3.3)
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The first term is bounded by |Φm(0) − 1/2|δ. Let Sn = {x : ρ(x, S0) > an}.
For a set S with a rectifiable boundary, let P (S) denote its perimeter, P (S) =

limη→0 λ(Sη\S)/η. Then λ(Scn\S0) ≤ (2P (S0))an for large n. Here, P (S0) is

finite Eggleston (1958, pp. 82–89) and is uniformly bounded for S0 ∈ S. Using

Assumption 4, F (Scn\S0) ≤ c0an for some c0 > 0. Hence, the second sum in (3.3)

is bounded by

F (Scn\S0) +

∫
x∈(Sn∩S)

∣∣∣∣∣Φm

(√
mµ(x)√
1 + σ20

)
− 1

∣∣∣∣∣F (dx) ≤ min(c0an, δ)

+

∫
x∈(Sn∩S)

{∣∣∣∣∣Φm

(
C0
√
mapn√

1 + σ20

)
− 1

∣∣∣∣∣+

∣∣∣∣∣Φm

( √
mδ0√

1 + σ20

)
− 1

∣∣∣∣∣
}
F (dx).

As F (Sn ∩ S) < δ, we get the result.

To control Mn −Mm, we rely on a version of Theorem 5.11 of van de Geer

(2000). The result in its original form is slightly general. In their notation, it

involves a bound on a special metric ρK(·) (see van de Geer (2000, Eq. (5.23)))

which, in light of Lemma 5.8 of van de Geer (2000), can be controlled by bound-

ing the L2-norm in the case of bounded random variables. This yields the con-

sequence stated below. Here, HB denotes the entropy with respect to bracketing

numbers.

Theorem 2. Let G be a class of functions such that supg∈G ‖g‖∞ ≤ 1. For some

universal constant C > 0, if C2, C3, R and N > 0 satisfy:

R ≥ sup
g∈G
‖g‖L2(P ),

N ≥ C2

∫ R

0
H

1/2
B (u,G, P )du ∨R,

C2
2 ≥ C2(C3 + 1) and

N ≤ C3

√
nR2,

P ∗

{
sup
g∈G
|Gn(g)| > N

}
≤ C exp

{
−N2

C2(C3 + 1)R2

}
.

Here, P ∗ denotes the outer probability.

Proposition 1. When β > 0,

P ∗{dF (Ŝn, S0) > δn} → 0

for δn = K1 max{n−2/3,m−1/(2p)}, where K1 > 0 is some constant.

Proof. Let kn be the smallest integer such that 2kn+1δn ≥ 1. For 0 ≤ k ≤ kn,

let Sn,k =
{
S : S ∈ S, 2kδn ≤ dF (S, S0) < 2k+1δn

}
. As, Ŝn is the minimizer for
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Mn, we have

P ∗
{
dF (Ŝn, S0) > δn

}
≤

kn∑
k=0

P ∗
(

inf
S∈Sn,k

Mn(S)−Mn(S0) ≤ 0

)
.

The sum on the right side can be bounded by:

kn∑
k=0

P ∗

{
sup
S∈Sn,k

|(Mn−M)(S)− (Mn−M)(S0)| > inf
S∈Sn,k

(M(S)−M(S0))

}
. (3.4)

For c(γ) = min(γ − 1/2, 1− γ),

M(S)−M(S0) =

(
γ − 1

2

)
{F (S0)−F (S0∩S)}+(1−γ)F (Sc0∩S) ≥ c(γ)F (S4S0),

and hence, (3.4) is bounded by

kn∑
k=0

P ∗

{
sup
S∈Sn,k

|(Mn −Mm)(S)− (Mn −Mm)(S0)| > c(γ)2k−1δn

}

+

kn∑
k=0

P ∗

{
sup
S∈Sn,k

|(Mm −M)(S)− (Mm −M)(S0)| ≥ c(γ)2k−1δn

}
. (3.5)

Note that Mm −M is a non-random process and hence, each term in the

second sum is either 0 or 1. We now show that the second sum in this display is

eventually zero. For this, we apply Lemma 1. We have

sup
A∈Sn,k

|(Mm −M)(S)− (Mm −M)(S0)|

≤
∣∣∣∣Φm(0)− 1

2

∣∣∣∣ 2k+1δn + min(c0an, 2
k+1δn)

+

∣∣∣∣∣Φm

(
C0
√
mapn√

1 + σ20

)
− 1

∣∣∣∣∣ 2k+1δn +

∣∣∣∣∣Φm

( √
mδ0√

1 + σ20

)
− 1

∣∣∣∣∣ 2k+1δn

≤ 4

{∣∣∣∣Φm(0)− 1

2

∣∣∣∣+

∣∣∣∣∣Φm

( √
mδ0√

1 + σ20

)
− 1

∣∣∣∣∣
}

2k−1δn

+

{
2c0an
δn

+ 4

∣∣∣∣∣Φm

(
C0
√
mapn√

1 + σ20

)
− 1

∣∣∣∣∣
}

2k−1δn. (3.6)

Hence, it suffices to show that the coefficient of 2k−1δn in (3.6) is smaller than

c(γ). To this end, fix 0 < η < c(γ)/8. For large m,∣∣∣∣Φm(0)− 1

2

∣∣∣∣+

∣∣∣∣∣Φm

( √
mδ0√

1 + σ20

)
− 1

∣∣∣∣∣ ≤ η.
Choose cη such that an = cηm

−1/(2p) > {Φ−1m (1 − η)
√

1 + σ20/(C0
√
m)}1/p. For
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large n, the coefficient of 2k−1δn in (3.6) is bounded by

8η +
c0cη
K1

< c(γ),

for K1 > (c0cη)/(c(γ)− 8η). Hence, each term in the second sum of (3.5) is zero

for a suitably large choice of the constant K1. The first term can be written as

kn∑
k=0

P ∗

{
sup
S∈Sn,k

∣∣Gngm(Ȳ )1S4S0
(X)

∣∣ > c(γ)2k−1δn
√
n

}
, (3.7)

where gm(y) = Φ (
√
my) − γ. We are now in a position to apply Theorem 2

to each term of (3.7). In the setup of Theorem 2, N = c(γ)2k−1δn
√
n. The

concerned class of functions is Gn,k = {gm(Ȳ ) (1S(X) − 1S0
(X)) : S ∈ Sn,k}.

Note that ‖gm(1S − 1S0
)‖L2(Pm) ≤ [E1S4S0

(X)]1/2 ≤ (2k+1δn)1/2, so we can pick

R = Rn,k = (2k+1δn)1/2. Let Cn,k := {1S − 1S0
: S ∈ Sn,k}. As Sn,k ⊂ S,

N[ ](u, Cn,k, L2(P )) ≤ N[ ](u/2,S, L2(P )) for any u > 0, by a simple calculation.

Also, starting with a bracket [fL, fU ] containing a generic function in Cn,k and

‖fU − fL‖L2(P ) ≤ u, we can obtain a bracket for gm(Y )(1S(X) − 1S0
(X)) using

the inequality

Φ
(√
my
)
fL − γfU ≤ gm(y)1B(x) ≤ Φ

(√
my
)
fU − γfL.

As ‖Φ(
√
my) + γ‖∞ ≤ 2,

‖(Φ
(√
my
)
fU − γfL)− (Φ

(√
my
)
fL − γfU )‖L2(P ) ≤ 2u.

It follows that

HB{u,Gn,k, L2(P )} ≤ HB

{u
2
, Cn,k, L2(P )

}
≤ HB

{u
4
,S, L2(P )

}
.

Using the fact that HB(u,S, L2(P )) = log(N[ ](u,S, L2(P ))) ≤ A0u
−(d−1) for

d ≥ 2 (see Bronštĕın (1976)), we get

HB{u,Gn,k, L2(P )} ≤ 4A0u
−1

for some constant A0 > 0 (depending only on the design distribution). Renaming

4A0 as A0, the conditions of Theorem 2 then translate to

2k−1c(γ)δn
√
n ≥ 2C2 max(A0, 1)(2k+1δn)1/4,

C2
2 ≥ C2(C3 + 1) and

c(γ)2k−1δn
√
n ≤ C3

√
n2k+1δn.

It can be seen that for K1 ≥ 29(C2 max(A1, 1)/c(γ))4/3, C3 = c(γ)/4 and C2 =√
5C/2, these conditions are satisfied, and hence, we can bound (3.7) by
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kn∑
k=0

C exp

{
−2k−3c2(γ)δnn

C2(C3 + 1)

}
.

As δn & n−2/3 (the symbol & is used to denote the corresponding ≥ inequality

holding up to some finite positive constant), the term δnn diverges to ∞ as

n→∞. Hence, the above display converges to zero. This completes the proof.

Remark 4. This result also holds for values of δn larger than the one prescribed.

Hence, our result delivers consistency though it requires m to grow as m0n
β. In

terms of the total budget, choosing β = 4p/3 corresponds to the optimal rate.

In this case, δn is of the order n−2/3 or N−2/(4p+3). This particular rate also

appears in related problems involving the estimation of convex level sets for a

density function as studied in Polonik (1995) and Tsybakov (1997). Polonik

(1995, Thm. 3.7) considers the estimation of density contour clusters using an

empirical mass approach under a metric entropy condition on the class of clusters

and derives rates of convergence of the estimates in terms of parameters (r, γ),

where r describes how quickly the entropy grows in terms of the radius and

γ controls the F measure of the set of points at which the density is close to

the level of interest. For convex density contour clusters in R2, the example

following Theorem 3.7 shows that for regular situations with γ = 1, the excess

mass estimator is N−2/7 consistent for the true level set in dF distance, which

coincides with the rate obtained by our estimator for 1-regular µ functions (i.e

p = 1). Tsybakov (1997, Thm. 2) demonstrates that his level set estimator of

convex level sets exhibits an optimal rate of N−2/(4α+3) for α-regular densities

around the level set λ (as defined around (4) of that paper): the α parameter

of that paper corresponds to the p parameter in our assumptions. Keep in mind

that Polonik (1995) and Tsybakov (1997)] deal with non-replicated settings and

use notation n for the total number of observations rather than N .

The bounds deduced for the two sums in (3.5) depend on µ only through

p and δ0, e.g., the exponential bounds from Theorem 2 depend on the class of

functions only through their entropy and norm of the envelope which do not

change with µ. Hence, we have a result that is similar in flavor to the upper

bounds deduced for level-set estimates in Tsybakov (1997).

Corollary 1. For the choice of δn given in Proposition 1, we have

lim sup
n→∞

sup
µ∈Fp

E∗µ

{
δ−1n d(Ŝn, S0)

}
<∞. (3.8)

Here, Eµ is the expectation with respect to the model with a particular µ ∈ Fp.
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The other features of the model such as error distribution and the design distri-

bution do not change.

Proof. Note that

E∗µ{δ−1n d(Ŝn, S0)} ≤ 1 +
∑

k≥0,2kδn≤1
2k+1P ∗

{
2k < δ−1n d(Ŝn, S0) ≤ sk+1

}
≤ 1 +

∑
k≥0,2kδn≤1

2kP ∗
{

inf
A∈Sn,k

Mn(A)−Mn(S0) ≤ 0

}
.

The probabilities P ∗
(
infA∈Sn,k Mn(A)−Mn(S0) ≤ 0

)
can be bounded in an iden-

tical manner to that in the proof of the above Proposition and hence, we get

sup
µ∈Fp

E∗µ{δ−1n d(Ŝn, S0)} ≤ 1 +

kn∑
k=0

C2k+1 exp

{
−2k−3c2(γ)δnn

C2(C3 + 1)

}
.

As δnn→∞, we get the result.

3.1. Extension to the case of an unknown τ0

While we deduced our results under the assumption of a known τ0, in ap-

plications τ0 is generally not known. In this situation, quite a few extensions

are possible. If S0 can be safely assumed to contain a positive F -measure set

U , then a simple averaging of the Ȳ values realized for X’s in U would yield a√
mn-consistent estimator of τ0. If a proper choice of U is not available, one can

obtain an initial estimate of τ0 in the dose–response setting as

τ̂init = argmin
τ∈R

Pn
{

Φ
(√
m(Ȳ − τ)

)
− 1

2

}2

.

This provides a consistent estimate of τ0 under mild assumptions. A
√
mn-

consistent estimate of τ0 can then be found by using τ̂init to compute Ŝn and

then averaging the Ȳ value for the X’s realized in rŜn for a fixed r ∈ (0, 1). It

can be shown that the rate of convergence remains unchanged if one imputes a√
mn-consistent estimate of τ0. A sketch of the next result is given in Section A.2.

Proposition 2. Let Ŝn denote the smallest minimizer of

Mn(S, τ̂) = Pn
([

Φ
{√

m(Ȳ − τ̂)
}
− γ
]

1S(X)
)
,

where
√
mn (τ̂ − τ0) = Op(1). For m = m0n

β and δn as defined in Proposition

1, we have P{d(Ŝn, Sn) > δn} → 0.

4. Discussion

Extensions to non-convex baseline sets. We have addressed the situation
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where the baseline set is convex for dimension d = 2, but our approach can be

extended past convexity and beyond the two-dimensional setting of this paper in

the presence of an efficient algorithm and for suitable collections of sets.

For example, let S̃ be a collection of subsets of [0, 1]d sets and let

S̃n = argmin
S∈S̃

Mn(S) .

Here, µ is a real-valued function from [0, 1]d and S0 = µ−1(τ0) is assumed to

belong to the class S̃. Then, the estimator S̃n has the following properties.

Proposition 3. Assume that S0 is the unique minimizer (up to F -null sets) of

the population criterion function MF defined in (3.2). Then dF (S̃n, S0) converges

in probability to zero. Moreover, if

HB(u, S̃, P ) . u−r for some r < 2 ,

P [dF (S̃n, S0) > δ̃n] converges to zero where δ̃n = K1 max(n−2/(2+r),m−1/(2p)) for

some K1 > 0.

Remark 5. The proof follows along the lines of Proposition 1. The depen-

dence of the rate on the dimension arises through r which usually grows with

d. Some algebra shows that in terms of N , the optimal rate can be written as

N−2/(4p+2+r). When d = 2, r = 1 for the class of convex sets, and the optimal rate

is N−2/(4p+3). The assumption on the bracketing entropy in this proposition is

essentially a requirement that the class of sets under consideration be a Donsker

class. Thus, our rate of convergence result is valid for any collection of such

Donsker-type sets in any (fixed) dimension d. From the methodological point

of view, the minimizer S̃n over S̃ needs to be computable through an algorithm

of reasonable complexity. However, as discussed below, our proposal has close

connections to level-set estimation approaches. Since algorithmic approaches to

level sets estimation are well-developed in general settings, our p-value based ap-

proach is expected to be applicable more broadly. However, level sets estimation

techniques typically work better in low dimensions.

Connection with level-set approaches. Minimizing Mn(S) in the dose-response

setting is equivalent to minimizing

M̃n(S) = Mn(S)− 1

2

N∑
i=1

{
1

4
− pm,n(Xi)

}

=

n∑
i=1

1/4− pm,n(Xi)

2
{1(Xi ∈ S)− 1(Xi ∈ Sc)} .
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This form is quite similar to an empirical risk criterion function appearing in

Willett and Nowak (2007, Eq. (7)) in the context of a level-set estimation proce-

dure. It can be deduced that our baseline detection approach ends up estimating

the level set Sm = {x : E [pm,n(x)] > 1/4} from i.i.d. data {pm,n(Xi), Xi}ni=1

with 0 ≤ pm,n(Xi) ≤ 1. As m→∞, Sm’s decrease to S0, which is the target set.

Hence, in principle, any level-set approach could be applied to the transformed

data {pm,n(Xi), Xi}ni=1 to yield an estimate for Sm.

In Scott and Davenport (2007), the approach to the level set estimation

problem, with the criterion of minimizing the risk criterion in Willett and Nowak

(2007), is shown to be equivalent to a cost-sensitive classification problem. This

problem involves random variables (X,Y,C) ∈ Rd × {0, 1} × R, where X is a

feature, Y a class and C is the cost for misclassifying X when the true label is

Y . Cost sensitive classification seeks to minimize the expected cost

R(G) = E{C 1(G(X) 6= Y )}, (4.1)

where G, with a little abuse of notation, refers both to a subset of Rd and G(x) =

1(x ∈ G). With C = |γ−Y | and Ỹ = 1(Y ≥ γ), the objective of the cost-sensitive

classification, based on (X, Ỹ , C), can be shown to be equivalent to minimizing

the excess risk criterion in Willett and Nowak (2007). So, approaches like support

vector machines (SVM) and k-nearest neighbors (k-NN), which can be tailored to

solve the cost-sensitive classification problem (see Scott and Davenport (2007)),

are relevant to estimating level sets, and thus provide alternative ways to solve

the baseline set detection problem. Since the loss function in (4.1) is not smooth,

one might prefer to work with its surrogates. Some results in this direction can

be found in Scott (2011).

Our developed approach can be also written as a maximization problem: we

seek to find the maximizer of:

M#
n (S) :=

n∑
i=1

{pm,n(Xi)−
1

4
} 1(Xi ∈ S) ,

over all convex S in [0, 1]2 as an estimate of Sm. This is essentially an empirical

generalized λ-cluster (with λ = 1/4) as considered in Polonik and Wang (2005,

Definition (2.3)) who seek to estimate level sets in a standard regression function

setting (i.e. unreplicated data, or one observation per covariate) via an excess–

mass approach. However, apart from the difference of our setting from Polonik

and Wang (2005), our paper also differs in that ours derives an explicit con-

vergence rate of the estimate under the restriction of convexity, whereas theirs

establishes a weaker result, consistency, but under more general conditions on
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the class of sets.

Adaptivity. We have assumed knowledge of the order of the regularity p of µ

at ∂S0, which is required to achieve the optimal rate of convergence, though not

for consistency. The knowledge of p dictates the allocation between m and n for

attaining the best possible rates. When p is unknown, the adaptive properties of

dyadic trees (see Willett and Nowak (2007) and Singh, Scott and Nowak (2009))

could conceivably be utilized to come up with a near-optimal approach. This is

a hard open problem and will be a topic of future research.

The baseline zone problem in the conventional regression setting: In the con-

ventional regression setting of the problem (with n covariate–response pairs, a sin-

gle response per covariate), the use of a p-value based strategy for estimating the

baseline requires some sort of spatial smoothing, similar to the one–dimensional

case as considered in Mallik et al. (2011). The estimation procedure from Section

2 can be easily adapted from the (m,n) setting to the regression setting. How-

ever, it appears difficult to establish the expected optimal rate of convergence

n−2/(4p+3) using such a procedure, owing to a bias term arising in the analysis

that cannot be adequately controlled. We refer the reader to Mallik, Banerjee

and Woodroofe (2013) where this problem is analyzed and a slightly slower rate

of n−1/(2p+2) is obtained; see their Remark 5 for more details on the bias issue.

We do believe that a more fruitful alternative, one that is likely to produce an

estimate with an optimal convergence rate, is to consider the excess–mass–based

approach from Polonik and Wang (2005) with appropriate modifications to ac-

count for the fact that the level of the function that we deal with in this problem

is at the boundary of the range of µ. While this promises to be an interesting

direction, it is outside the scope of this paper, and we leave it for future research.
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Appendix A: Proofs

A.1. Proof of Theorem 1

Here, we establish consistency with respect to the (stronger) Hausdorff met-

ric,

dH(S1, S2) = max

{
sup
x∈S1

ρ(x, S2), sup
x∈S2

ρ(x, S1)

}
.
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We only require min(m,n) → ∞ instead of taking m to be of the form m0n
β,

β > 0.

To exhibit the dependence on m, we denote Mn by Mm,n. Recall that Mm(S)

= E[Mm,n(S)] converges to M(S) for each S ∈ S. Also, Var(Mm,n(S)) =

(1/n)Var
(
(Φ(
√
mȲ1)− γ)1S(X)

)
≤ 1/n. Hence, Mm,n(S) converges in prob-

ability to M(S) for any S ∈ S, as min(m,n)→∞.

The space (S, dH) is compact (Blaschke Selection Theorem) and M is a

continuous function on S. The desired result will be a consequence of argmin

continuous mapping theorem van der Vaart and Wellner (1996, Thm. 3.2.2) pro-

vided we can justify that supS∈S |Mm,n(S) −M(S)| converges in probability to

zero. To this end, let

M1
m,n(S) = Mm,n(S) + Pnγ1X(S) = PnΦ

(√
mȲ

)
1S(X)

and M1(S) = M(S) + Pγ1X(S). We have

sup
S∈S
|Mm,n(S)−M(S)| ≤ γ sup

S∈S
|(Pn − P )(S)|+ sup

S∈S
|M1

m,n(S)−M1(S)|.

The first term in this expression converges in probability to zero Ranga Rao

(1962). As for the second term, notice that M1
m,n(S) converges in probability to

M1(S) for each S and M1
m,n is monotone in S, M1

m,n(S1) ≤M1
m,n(S2) whenever

S1 ⊂ S2. As the space (S, dH) is compact, there exist S(1), . . . , S(l(δ)) such that

supS∈S min1≤l≤l(δ) dH(S, S(l)) < δ, for any δ > 0. Hence,

sup
S∈S
|M1

m,n(S)−M1(S)|

= max
1≤l≤l(δ)

sup
dH(S,S(l))<δ

|M1
m,n(S)−M1(S)|

≤ 2 max
1≤l≤l(δ)

sup
dH(S,S(l))<δ

|M1
m,n(S)−M1(S(l))|

≤ 2 max
1≤l≤l(δ)

max(|M1
m,n(Sδ)−M1(S(l))|, |M1

m,n(Sδ)−M1(S(l))|,

where Sδ = {x : d(x, S) < δ} and Sδ = {x; d(x, Sc) > δ}. The right side here con-

verges in probability to 2 max1≤l≤l(δ) max(|M1(Sδ)−M1(Sl)|, |M1(Sδ)−M1(Sl)|
and can be made arbitrarily small by choosing small δ (as M1 is continuous).

Also, as the map S 7→ dF (S, S0) from (S, dH) to R is continuous, we have con-

sistency in the dF metric as well. This completes the proof.

A.2. Proof of Proposition 2

Note that
√
mn(τ̂ − τ0) = OP (1). So, given α > 0, there exists Lα > 0 such

that for Vn,α = (τ0 − Lα/
√
mn, τ0 + Lα/

√
mn), P (τ̂ ∈ Vn,α) > 1− α. Let Ŝn(τ)



BASELINE ZONE DETECTION 1499

denote the estimate of S0 based on Mn(S, τ). We have

P ∗
{
d(Ŝn(τ̂), S0) > δn

}
≤ P ∗

{
d(Ŝn(τ̂), S0) > δn, τ̂ ∈ Vn,α

}
+ α.

Following the arguments for the proof of Proposition 1, the term on the right

side can be bounded by∑
k≥0,2kδn≤1

P ∗
{

inf
S∈Sn,k

Mn(S, τ̂)−Mn(S0, τ̂) ≤ 0, τ̂ ∈ Vn,α
}
.

This is further bounded by

kn∑
k=0

P ∗
[

sup
S∈Sn,k,τ∈Vn,α

|{Mn(S, τ)−M(S)} − {Mn(S0, τ)−M(S0)}|

> inf
S∈Sn,k

{M(S)−M(S0)}
]
. (A.1)

For c(γ) = min(γ − 1/2, 1− γ),

M(S)−M(S0) =

(
γ − 1

2

)
{F (S0)−F (S0∩S)}+(1−γ)F (S0∩S) ≥ c(γ)F (S4S0)

and hence (A.1) is bounded by

kn∑
k=0

P ∗

 sup
S∈Sn,k,
τ∈Vn,α

|(Mn −Mm)(S, τ)− (Mn −Mm)(S0, τ)| > c(γ)2kδn
3


+

kn∑
k=0

1

 sup
S∈Sn,k,
τ∈Vn,α

|{Mm(S, τ)−Mm(S, τ0)}−{Mm(S0, τ)−Mm(S0, τ0)}| ≥
c(γ)2kδn

3


+

kn∑
k=0

1

{
sup
S∈Sn,k

|(Mm −M)(S, τ0)− (Mm −M)(S0, τ0)| ≥
c(γ)2kδn

3

}
. (A.2)

The third term can be shown to be zero for sufficiently large n in the same manner

as in the proof of Proposition 1. The first term can be written as

kn∑
k=0

P ∗

[
sup

S∈Sn,k,τ∈Vn,α

∣∣Gngm,τ (Ȳ ){1S(X)− 1S0
(X)}

∣∣ > c(γ)2k−1δn
√
n

3

]
, (A.3)

where gm,τ (y) = Φ (
√
m(y − τ))−γ. We are now in a position to apply Theorem 2

to each term of (A.3). In the setup of Theorem 2, N = 2k−1δn
√
n. The concerned

class of functions is Gn,k = {gm,τ (Ȳ )(1S(X)− 1S0
(X)) : S ∈ Sn,k, τ ∈ Vn,α}. For

any S ∈ Sn,k, ‖gm,τ (1S−1S0
)‖L2(Pm) ≤ [E1S4S0

(X)]1/2 ≤ (2k+1δn)1/2. So we can
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pick R = Rn,k = (2k+1δn)1/2. By our calculations in the proof of Proposition 1,

HB(u, {1S − 1S0
: S ∈ Sn,k}, L2(P )) ≤ Ã0u

−1

for some constant Ã0 > 0. Also, for the class of functions Tn = {gn,τ (·) : τ ∈
Vn,α}, it can be shown by a simple partitioning argument thatN[ ](u, Tn, L2(P )) ≤
A1/u

√
n ≤ A1/u, for some constant A1 > 0. As the class Gn,k is formed by

multiplying functions from two classes Sn,k and Tn, and the brackets for these

two classes can be taken to be bounded in absolute magnitude by 1 and 2,

respectively, the bracketing number for Gn,k is bounded above by,

HB{u,Gn,k, L2(P )} ≤ 3 Ã0u
−1 + logA1 + log

(
3

u

)
≤ A2u

−1.

In light of this, the first term in (A.2) can be shown to go to zero by arguing in

the same manner as in the proof of Proposition 1.

For the second term in (A.2), |Φ(
√
m(Ȳ − τ))−Φ(

√
m(Ȳ − τ0))| ≤ supu |Φ(u

+
√
m(τ0 − τ)) − Φ(u)|, which equals |Φ(

√
m(τ0 − τ)/2) − Φ(−

√
m(τ0 − τ)/2)|.

As Φ is Lipschitz of order 1, this is further bounded above by
√
m|τ0 − τ |/σ.

Hence, for sufficiently large n, the supremum appearing in the second line of

(A.2) is bounded by

2

(
Lα√
n

)
sup
S∈Sn,k

Pm|1S(X)− 1S0
(X)| ≤ Lα2k+2δn√

n
.

This is eventually smaller that c(γ)2kδn/3 and hence, each term in the second

sum of (A.2) is eventually zero. This completes the proof.
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Bronštĕın, E. M. (1976). ε-entropy of convex sets and functions. Sibirsk. Mat. Žh. 17, 508–514,
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Härdle, W., Park, B. U. and Tsybakov, A. B. (1995). Estimation of non-sharp support bound-

aries. J. Multivariate Anal. 55, 205–218.

Hartigan, J. A. (1987). Estimation of a convex density contour in two dimensions. J. Amer.



BASELINE ZONE DETECTION 1501

Statist. Assoc. 82, 267–270.
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