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Abstract: We address two important issues in Gaussian process (GP) modeling.

One is how to reduce the computational complexity in GP modeling and the other

is how to simultaneous perform variable selection and estimation for the mean

function of GP models. Estimation is computationally intensive for GP models

because it heavily involves manipulations of an n-by-n correlation matrix, where n

is the sample size. Conventional penalized likelihood approaches are widely used

for variable selection. However the computational cost of the penalized likelihood

estimation (PMLE) or the corresponding one-step sparse estimation (OSE) can be

prohibitively high as the sample size becomes large, especially for GP models. To

address both issues, this article proposes an efficient subsample aggregating (sub-

agging) approach with an experimental design-based subsampling scheme. The

proposed method is computationally cheaper, yet it can be shown that the result-

ing subagging estimators achieve the same efficiency as the original PMLE and

OSE asymptotically. The finite-sample performance is examined through simula-

tion studies. Application of the proposed methodology to a data center thermal

study reveals some interesting information, including identifying an efficient cooling

mechanism.

Key words and phrases: Bagging, computer experiment, experimental design, Gaus-

sian process, Latin hypercube design, model selection.

1. Introduction

Gaussian process (GP) models, also known as kriging models, are widely

used in many fields, including geostatistics (Cressie (1993), Stein (1999)), ma-

chine learning (Smola and Bartlett (2001), Snelson and Ghahramani (2006)),

and computer experiment modeling (Santner, Williams and Notz (2003), Fang,

Li and Sudjianto (2006)). In this article, we focus on two issues in GP model-

ing. One is the study of simultaneous variable selection and estimation of GP

models for the mean function, in particular, and the other is how to alleviate the

computational complexity in GP modeling.

Various examples of variable selection in GP models can be found in the lit-

erature, such as in geostatistics (Hoeting et al. (2006), Huang and Chen (2007),
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Chu, Zhu and Wang (2011)) and computer experiments (Welch et al. (1992), Lin-

kletter et al. (2006), Joseph, Hung and Sudjianto (2008), Kaufman et al. (2011)).

In this article, we mainly focus on identifying active effects through the mean

function. Several empirical studies report that, by a proper selection of impor-

tant variables in the mean function, the prediction accuracy of GP models can

be significantly improved, especially when there are some strong trends (Joseph,

Hung and Sudjianto (2008), Hung (2011), Kaufman et al. (2011)). Compared

with nonlinear effects identified from the covariance function (Linkletter et al.

(2006)), linear effects are relatively easy to interpret, and of scientific interest in

many applications. Conventional approaches based on penalized likelihood func-

tions, such as the penalized likelihood estimators (PMLEs) and the corresponding

one-step sparse estimators (OSEs), are conceptually attractive, but computation-

ally difficult in practice, especially with massive data observed on irregular grid.

This is because estimation and variable selection heavily involve manipulations

of an n× n correlation matrix that require O(n3) computations, where n is the

sample size. The calculation is computationally intensive and often intractable

for massive data.

The computational issue is well recognized in the literature and various meth-

ods are proposed, either changing the model to one that is computationally con-

venient or approximating the likelihood for the original data. Examples of the

former includes Rue and Tjelmeland (2002), Rue and Held (2005), Cressie and

Johannesson (2008), Banerjee et al. (2008), Gramacy and Lee (2008), and Wikle

(2010); approximation approaches includes Nychka (2000), Smola and Bartlett

(2001), Nychka, Wikle and Royle (2002), Stein, Chi and Welty (2004), Furrer,

Genton and Nychka (2006), Snelson and Ghahramani (2006), Fuentes (2007),

Kaufman, Schervish and Nychka (2008), and Gramacy and Apley (2015). How-

ever, these methods focus mainly on estimation and prediction, not variable

selection, and most of them are developed for datasets collected from a regu-

lar grid under a low-dimensional setting. Recent studies address the issues by

imposing a sparsity constraint on the correlation matrix, including covariance ta-

pering and compactly supported correlation functions (Kaufman, Schervish and

Nychka (2008); Kaufman et al. (2011), Chu, Zhu and Wang (2011), Nychka et al.

(2015)). However, it has been shown that this does not work well for purposes

of parameter estimation (Stein (2013), Liang et al. (2013)), which is crucial in

selecting important variables. In addition, the connection between the degree of

sparsity and computation time is nontrivial.

In this paper, we provide an alternative framework that alleviates the com-
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putational difficulties in estimation and variable selection by utilizing the idea

of subsample aggregating, also known as subagging (Büchlmann and Yu (2002)).

This framework includes a subagging estimator and a new subsampling scheme

based on a special class of experimental designs called Latin hypercube designs

(LHDs), that have a one-dimensional projection property. By borrowing the in-

herited one-dimensional projection property of LHDs and a block structure, the

new subsampling scheme not only provides an efficient data reduction but also

takes into account the spatial dependency in GP models. The computational

complexity of the proposed subagging estimation is dramatically reduced, yet

the subagging estimators achieve the same efficiency as the original PMLE and

OSE, asymptotically.

The remainder of the paper is organized as follows. In Section 2, the con-

ventional penalized likelihood approach is discussed. The new variable selection

framework, including the new subsampling scheme and the subagging estimators

are introduced in Section 3. Theoretical properties are derived in Section 4. In

Section 5, finite-sample performance of the proposed framework is investigated in

simulation studies. A data center example is illustrated in Section 6. Discussions

are given in Section 7.

2. Variable Selection in Gaussian Process Models

For a domain of interest Γ in Rd, we consider a Gaussian process {Y (x) :

x ∈ Rd} such that

Y (x) = xTβ + Z(x), (2.1)

where β is a vector of unknown mean function coefficients and Z(x) is a station-

ary Gaussian process with mean 0 and covariance function σ2ψ. The covariance

function is cov{Y (x + h), Y (x)} = σ2ψ(h;θ), where θ is a vector of correla-

tion parameters for the correlation function ψ(h;θ), and ψ(h;θ) is a positive

semidefinite function with ψ(0;θ) = 1 and ψ(h;θ) = ψ(−h;θ).

Suppose n observations are collected, denoted by

Dn =
{(
xt1 , y(xt1)

)
, . . . ,

(
xtn , y(xtn)

)}
= {(x1, y1), . . . , (xn, yn)}.

Let yn = (y1, . . . , yn)T , Xn = (x1, . . . ,xn)T , φ = (θT ,βT , σ2)T be the vector of

all the parameters, and Θ be the parameter space. Based on (2.1), the likelihood

function can be written as

f(yn,Xn;φ) =
|Rn(θ)|−1/2

(2πσ2)n/2
exp

{
− 1

2σ2
(yn −Xnβ)TR−1n (θ)(yn −Xnβ)

}
,
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where Rn(θ) is an n × n correlation matrix with elements ψ(xi − xj ;θ). Thus

the log-likehood function, ignoring a constant, is

`(yn,Xn,φ) = − 1

2σ2
(yn −Xnβ)TR−1n (θ)(yn −Xnβ)

−1

2
|Rn(θ)| − n

2
log(σ2), (2.2)

where β, θ, and σ are the unknown parameters.

To achieve simultaneous variable selection and parameter estimation, we

focus on penalized likelihood approaches, which are increasingly popular in recent

years. A penalized log-likelihood function for GP models can be written as

`p(yn,Xn,φ) = `(yn,Xn,φ)− n
p∑
j=1

pλ(|βj |), (2.3)

where pλ(·) is a pre-specified penalty function with a tuning parameter λ. There

are various choices of penalty functions such as LASSO (Donoho and Johnstone

(1994), Tibshirani (1996)), the adaptive LASSO (Zou (2006)), and the minimax

concave penalty (Zhang (2010)). In this article, we focus on the smoothly clipped

absolute deviation (SCAD) penalty (Fan and Li (2001)) defined by

pλ(|β|) =



λ|β| if |β| > λ,

λ2 + (a− 1)−1
(
aλ|β| − β2

2
− aλ2 +

λ2

2

)
if λ < |β| ≤ aλ,

(a+ 1)λ2

2
if |β| > aλ,

for some a > 2. By maximizing (2.3), the penalized maximum likelihood estima-

tors (PLMEs) of φ can be obtained as φ̂n = arg maxφ `p(yn,Xn,φ).

To compute PMLEs under the SCAD penalty, Zou and Li (2008) develop a

unified algorithm to improve computational efficiency by locally linear approxi-

mation (LLA) of the penalty function. They propose an one-step LLA estimation

that approximates the solution after just one iteration in a Newton-Raphson-type

algorithm starting at the maximum likelihood estimates (MLEs). Chu, Zhu and

Wang (2011) extend the one-step LLA estimation to approximate the PMLEs for

the spatial linear models and the resulting estimate is called the one-step sparse

estimate (OSE).

Following the idea of Chu, Zhu and Wang (2011), the OSE of β in GP

models, denoted by β̂OSE , is obtained by maximizing

Q(β) = − 1

2σ̂2(0)
(yn −Xnβ)TR−1n (θ̂(0))(yn −Xnβ)− n

p∑
j=1

p′λ(|β̂(0)j |)|βj |, (2.4)
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where β̂(0), θ̂(0) and σ̂2(0) are the MLEs obtained from (2.2). We also update θ

and σ2 by maximizing (2.4) evaluated at β̂OSE with respect to θ and σ2. The

resulting OSE of θ and σ2 is denoted by θ̂OSE and σ̂2OSE . We fix the tuning

parameter a = 3.7 as recommended by Fan and Li (2001). To determine λ, a

Bayesian information criterion (BIC) proposed by Chu, Zhu and Wang (2011) is

incorporated.

The implementation of the penalized likelihood approach, including the cal-

culation of PMLEs and OSEs is computationally demanding; it relies heavily

on the calculation of R−1n (θ) and |Rn(θ)|, computationally intensive and often

intractable due to numerical issues. It is particularly difficult for massive data

collected on irregular grids, because no Kronecker product techniques can be uti-

lized for computational simplification (Rougier (2008)). A similar issue has also

been recognized in calculating the MLEs in GP models.

3. Variable Selection for GP via Subagging

3.1. A new block bootstrap subsampling scheme

Subagging, modified based upon bagging (bootstrap aggregating), is one of

the most effective and computationally efficient procedures to improve on unsta-

ble estimators (Efron and Tibshirani (1993), Breiman (1996), Büchlmann and

Yu (2002)). Although originally proposed to reduce variance in estimations and

predictions, the idea of subsampling is attractive in many applications to achieve

computational reduction. It is particularly appealing to GP modeling because of

its high computational demand in estimating PMLEs and OSEs. However, di-

rect application of subagging with random bootstrap subsamples is not efficient

in estimation and variable selection of GP because the data are assumed to be

dependent. This is not surprising because similar issues occur in the conventional

bootstrap when the data are dependent, such as in time series and spatial data,

and various block bootstrap techniques are introduced (Künsch (1989), Liu and

Singh (1992), Lahiri (1995, 1999, 2003), Politis and Romano (1994)). Therefore,

as an analogous result to the conventional block bootstrap, a new subsample

scheme for dependent data based on blocks is called for.

We introduce a block bootstrap subsampling method based on Latin hy-

percube designs (LHDs). It is called LHD-based block bootstrap. LHD is a

class of experimental designs such that the projection of an LHD onto any di-

mension has exactly one observation for each level and therefore the resulting

design can spread out more uniformly over the space. An m-run LHD in a
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Figure 1. Two examples of LHDs.

d-dimensional space, denoted by LHD(m, d) can be easily constructed by per-

muting (0, 1, . . . ,m − 1) for each dimension. Given the sample size, there are

(m!)d−1 LHDs. Two randomly generated LHD(6,2) are illustrated in Figure 1.

It is clear that the projection onto either dimension has exactly one observation

for each level. After decomposing the complete data into disjoint equally-spaced

hypercubes/blocks, a LHD-based block bootstrap subsample can be obtained by

collecting blocks according to the structure of a randomly generated LHD. One

example of a LHD-based block bootstrap subsample using the LHD in Figure

1(a) is given in Figure 2, where the circles are the observations, gray areas are

the LHD-based blocks, and the red dots are the resulting subsamples.

The LHD-based block bootstrap has distinct advantages. The block struc-

ture takes into account the spatial dependency and therefore improves the es-

timation accuracy for correlation parameters in GP models. Because of the

one-dimensional balance properties inherited from LHDs, the block bootstrap

subsamples can be spread out more uniformly over the complete data and the

resulting subsamples can represent the complete data effectively. As well, the

LHD can result in variance reduction in estimation compared with simple ran-

dom samples (McKay, Beckman and Conover (1979), Stein (1987)). Therefore,

the subagging estimates calculated by the proposed LHD-based subsamples are

expected to outperform those calculated by the naive simple random subsamples

in terms of estimation variance.
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3.2. Variable selection using LHD-based block subagging

The procedure can be described in three steps:

Step 1: Divide each dimension of the interested region Γ ∈ [0, l]d into m

equally spaced intervals so that Γ consists of md disjoint hypercubes/blocks.

Define each block by mapping i to a d-dimensional hypercube

Bn(i) = {x ∈ Rd : bij ≤ xj ≤ b(ij + 1) and j = 1, . . . , d},

where i = (i1, . . . , id), ij ∈ (0, . . . ,m−1), represents the index of each block

and b = l/m is the edge length of the hypercube. Let |Bn(i)| be the number

of observations in the ith hypercube/block. For simplicity, assume the data

points are equally distributed over the blocks, |Bn(i)| = n/md.

Step 2: Select m blocks according to a randomly generated LHD(m, d).

Each column of the LHD is a random permutation of {0, . . . ,m−1}, denoted

by πi = (πi(1), . . . , πi(m))T for 1 ≤ i ≤ d. An m-run LHD is denoted by

i∗j = (π1(j), . . . , πd(j)), j = 1, . . . ,m, and the corresponding selected blocks

are denoted by Bn(i∗1), . . . ,Bn(i∗m). The bootstrapped subsamples, denoted

by y∗1(x∗1), . . . , y
∗
N (x∗N ), are the observations in the selected blocks, where

N =
∑m

i=1 |Bn(i∗i )|. Based on the subsamples, φ̂∗N and its OSE φ̂∗N,OSE are

obtained by maximizing (2.3) and (2.4) respectively.

Step 3: Repeat Step 2 K times to obtain PMLEs φ̂∗N(j) and the correspond-

ing OSEs φ̂∗N,OSE(j), where j = 1, . . . ,K. The subagging estimators are

defined by φ̂N = (1/K)
∑K

i=1 φ̂
∗
N(i) and φ̂N,OSE = (1/K)

∑K
i=1 φ̂

∗
N,OSE(i).

Figure 2 is an example with experimental region Γ ∈ [0, 24]2, d = 2, l = 24.

A common practice is that the data are collected by normalizing the experimental

region to a unit cube. In such a case, we have l = 1. The circles represent the

settings in which the experiments are performed and the total sample size is

n = 216. The design, LHD(6, 2), implemented here is denoted by i∗1 = (0, 4),

i∗2 = (1, 0), i∗3 = (2, 2), i∗4 = (3, 5), i∗5 = (4, 1), i∗6 = (5, 3) and m = 6. According

to this design, the LHD-based blocks are presented by the gray areas with b = 4

and |Bn(i)| = 6. The red dots are the resulting LHD-based block subsamples

with size N = 36.

Based on our procedure, the complexity isO(n3/m3(d−1)) for each subsample,

which is computationally cheaper than O(n3) using the complete data, especially

for large d. We assume data points are equally distributed over blocks in order

to simplify the notation in the proof; the results still hold as long as the number
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Figure 2. An example of LHD-based block bootstrap constructed from Figure 1(a).

of observations in each block is in the same order, |Bn(i∗i )| = O(n/md). For

example, if the original data is collected by an orthogonal array-based Latin

hypercube design (Tang (1993)), common in computer experiments, the proposed

procedure can be successfully implemented. Based on our empirical experience,

as long as each bootstrap subsample contains a small amount of empty blocks, we

can still have an efficient representation of the original data. Empty blocks often

occur when the original design has only few levels for some particular variables,

such as qualitative variables. This issue can be addressed by modifying the

LHDs by space-filling designs for quantitative and qualitative factors (Qian and

Wu (2009); Deng, Hung and Lin (2015)) and as a result, empty blocks can be

avoided. Given the total sample size n, we have 1 ≤ m ≤ n1/(d−1), since each

bootstrap subsample has size N in the order of O(n/md−1). If N = n/md−1, then

we havem ≤ n1/(d−1) to ensureN ≥ 1. Clearly, m = 1 provides no computational

reduction because the full data is utilized. As m increases, the subsample size N

decreases and a larger K is affordable given the same computational constraints.

Instead of selecting subsamples based on all the variables, this procedure can

be modified to be based on a subset of variables. To do this, we can first select a

subset of variables with dimension d̃, where d̃ < d. This subset can be chosen ran-

domly or according to some prior knowledge. Then, replace LHD(m, d) in Step 2

by LHD(m, d̃) and select the subsamples only according to the d̃ variables. This

is practically useful when d is large because the size of each subsample, n/md−1,

can be relatively small increasing to n/md̃−1 by applying to subset variables.
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While, the proposed framework is constructed based on rectangular or hyper-

cubic regions, it can be extended to regions with irregular shape by replacing

the LHD in Step 2 by other space-filling designs constructed for nonrectangu-

lar regions, e.g., Draguljić, Dean and Santner (2012) and Hung, Qian and Wu

(2012).

4. Theoretical Properties

To understand the asymptotic properties of the subagging estimators, there

are two distinct frameworks: increasing domain (Cressie (1993), Mardia and Mar-

shall (1984)) asymptotics, where more and more data are collected in increasing

domains while the sampling density stays constant, and fixed-domain asymp-

totics (Stein (1999), Liang et al. (2013)), where data are collected by sampling

more and more densely in a fixed domain. The results in this research focus on

increasing domain asymptotics. The results under fixed-domain asymptotics are

more difficult to derive in general and rely on stronger assumptions, as discussed

in the literature (Ying (1993), Zhang (2004)). It is shown by Zhang and Zim-

merman (2005) that, given quite different behavior under the two frameworks

in a general setting, their approximation quality performs about equally well for

the exponential correlation function under certain assumptions. Results given

here can then provide some insights about the subagging estimators in both

frameworks. In ongoing work, we are exploring fixed domain asymptotics. More

discussions are given in Section 7. Assumptions and the proofs are given in the

Appendix and Supplemental Material.

We can show that the subagging estimator φ̂N converges to the original

PMLE φ̂n in probability. Given the underlying probability space (Ω,F , P ) of a

Gaussian process, a sample of size n with settings x1(ω), . . . ,xn(ω) and responses

y(x)’s are observed from a given realization ω ∈ Ω. Let (Λ,G) be a measurable

space on the realization. For each ω ∈ Ω, let P ∗N,ω be the probability measure

induced by the m-run LHD-based block bootstrap on (Λ,G). The proposed

bootstrap is a method to generate a new dataset on (Λ,G, P ∗N,ω) conditional on

the n original observations. For any LHD-based block bootstrapped statistic T̂ ∗N ,

we write T̂ ∗N → 0 if for any ε > 0 and any δ > 0, limn→∞ P{P ∗N,ω(|T̂ ∗N > ε| >
δ)} = 0.

Theorem 1. Under the assumptions (A.1)-(A.6), if m = o(n−1/d) and m→∞,

then φ̂N − φ̂n → 0.

Next we study the distributional consistency of the subagging estimators.
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Assume β0 =
(
βT10,β

T
20

)T
to be the true regression coefficients, where, without

loss of generality, β10 is an s × 1 vector of nonzero regression coefficients and

β20 = 0 is a (p − s) × 1 zero vector. Let γ0 = (θ0, σ0) denote the vector of

true covariance parameters, φ̂∗N = (β̂∗N,1, β̂
∗
N,2, γ̂

∗
N ), φ̂N = (β̂N,1, β̂N,2, γ̂N ), and

φ̂n = (β̂n,1, β̂n,2, γ̂n). When the OSE approach is applied, we take φ̂∗N,OSE =

(β̂∗N,1,OSE , β̂
∗
N,2,OSE , γ̂

∗
N,OSE), φ̂N = (β̂N,1,OSE , β̂N,2,OSE , γ̂N,OSE), and φ̂n,OSE =

(β̂n,1,OSE , β̂n,2,OSE , γ̂n,OSE). Let an = maxj{p′λn
(|βj |) : βj 6= 0} and bn =

maxj{p′′λn
(|βj |) : βj 6= 0}. Let g(φ) = (p′λ(φ)) and G(φ) = diag(p′′λ(φ)). Par-

ticularly, g(β) = (p′λ(|β1|sgn(β1)), . . . , p
′
λ(|βp|sgn(βp))) and g(γ) = 0; G(β) =

diag(p′′λ(|β1|), . . . , p′′λ(|βp|)) and G(γ) = 0. The function J is the Hessian matrix

and the detailed definition is given in the supplemental material.

Theorem 2. Under assumptions (A.1)-(A.15), if m = o(n−1/d) and m → ∞,

then

(i) Sparsity: β̂N,2 = 0 with probability tending to 1.

(ii) Asymptotic normality: for the mean function coefficients,√
Kn

md−1 {J(β10) + G(β10)}(β̂N,1 − β̂n,1)→ N
(

0,J(β10)
)

;

for the correlation parameters,√
Kn

md−1 (γ̂N − γ̂n)→ N
(
0,J(γ0)

−1) .
In Theorem 3, it shows that when the OSE algorithm is applied, the resulting

subagging estimators are asymptotically consist to the original OSEs using the

complete data.

Theorem 3. Under assumptions (A.1)-(A.15), if m = o(n−1/d) and m → ∞,

then

(i) Sparsity: β̂N,2,OSE = 0 with probability tending to 1.

(ii) Asymptotic normality: for the mean function coefficients,√
Kn

md−1

(
β̂N,1,OSE − β̂n,1,OSE

)
→ N

(
0,J(β10)

−1) ;

for the correlation parameters,√
Kn

md−1

(
γ̂N,OSE − γ̂n,OSE

)
→ N

(
0,J(γ−10 )

)
.
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5. Numerical Studies

In this section, we report on two sets of simulations conducted to study the

finite-sample performance of the proposed method. One demonstrates the per-

formance of the subagging approach compared with the original approach using

all the data. The other illustrates the advantages of the proposed experimental

design-based subsampling scheme by comparison with simple random sampling.

The performance was evaluated in two aspects: the accuracy of variable selection

and the parameter estimation, including the mean function coefficients and the

correlation parameters using one-step sparse estimation as described in (2.4). The

accuracy of variable selection was measured by two scores: the average number

of the nonzero regression coefficients correctly identified in the repeated simu-

lations, denoted by AC: the average number of the zero regression coefficients

misspecified, denoted by AM. All the simulations were conducted by a 2.7GHz,

16G RAM workstation. Hereafter, we omit the subscript OSE for notational

convenience.

5.1. Subagging vs. the estimation using all data

Three sample sizes, n = 1,000, n = 2,000 and n = 3,000, were considered and

the data were generated from a regular grid in a four-dimensional space, [0, 1]4.

The proposed method is particularly useful for data collected from irregular grids.

The reason to generate the simulations from a regular grid in this simulation was

that the original PMLE calculation using full data can be further speeded up

by Kronecker product techniques and some matrix singularity can be avoided

(Rougier (2008)). These techniques are only applicable to data sets collected

from a regular grid; a favorable comparison of the proposed method would make

an even stronger case for the proposed procedure.

Simulations were generated from a Gaussian process with the mean function

coefficients β = (1, 0.5, 0, 0) and the correlation function

ψ(x1,x2) = exp

(
−

4∑
i=1

θi|x1i − x2i|
)
,

where θ1 = θ2 = θ3 = θ4 = 1 and σ = 0.1. For each choice of sample size, 50 data

sets were simulated. For each simulated data set, 10 LHD-based block bootstrap

samples were collected with m = 4. Due to the computation time needed for the

complete data, the tuning parameter λ = 0.1 was fixed for all simulations.

In Table 1, the parameter estimation and the computing time are reported.

Standard deviations are given in parenthesis. The rows AC/2 and AM/2 rep-
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Table 1. Comparisons with all data.

n = 1,000 n = 2,000 n = 3,000

LHD AllData LHD AllData LHD AllData

θ1 1.91(0.55) 1.14(0.05) 1.38(0.35) 1.02(0.02) 1.10(0.10) 0.97(0.02)

θ2 1.94(1.20) 1.08(0.07) 1.16(0.14) 1.00(0.03) 1.17(0.08) 1.03(0.03)

θ3 1.70(0.68) 1.03(0.04) 1.14(0.20) 0.92(0.03) 1.15(0.07) 1.06(0.02)

θ4 1.77(0.83) 1.04(0.04) 1.37(0.45) 1.02(0.04) 1.10(0.03) 1.00(0.03)

β1 1.00(3.2×10−3) 1.02(3.6×10−3) 0.99(4.2×10−3) 0.99(7.9×10−3) 1.01(3.4×10−3) 1.00(3.7×10−3)

β2 0.46(1.7×10−2) 0.43(3.6×10−2) 0.51(3.3×10−3) 0.50(6.1×10−3) 0.49(5.5×10−3) 0.50(3.7×10−3)

AC/2 1 0.93 1 1 1 1

AM/2 0 0 0 0 0 0

time 243 464 990 2,402 2,524 8,623

resent the correct identification rate and the variable misspecification rate, re-

spectively. The results in Table 1 suggest that the estimated parameters using

LHD-based subagging are consistent with those obtained using complete data, as

is the variable selection performance. In terms of computing time, the proposed

subagging is much faster to compute compared with the conventional approach,

especially when the sample size of the complete data is large.

5.2. LHD-based block subsampling vs. random subsampling

An important feature of the proposed subsampling scheme is that it borrows

the idea of space-filling design to achieve an efficient data reduction. To demon-

strate this, we compared its performance, denoted by LHD, with two alternatives:

simple random sampling, denoted by SRS, and random blocks sampling, denoted

by RBS, with the same sample size. We first compared the performance of LHD

with SRS in two different settings of subsampling scheme: m = 4 and m = 6.

The data were generated from a six-dimensional space, [0, 1]6 with sample

size n = 3,600. We consider the same correlation function as before with the

mean function coefficients β = (1, 0.5, 0.3, 0, 0, 0), three non-zero coefficients with

different signal strength and three zero coefficients. Results are summarized

based on 100 simulations and 20 LHD-based block bootstrap samples collected

for each simulation. To focus on the capability of selecting active factors, the

proposed subsampling was performed on the first three variables and the resulting

sample sizes for m = 4 and m = 6 were approximately 225 and 100, respectively.

In Table 2, the estimated parameters, the correct identification rates, and

the variable misspecification rates are reported. In terms of parameter estima-

tion, LHD performs similarly to SRS in estimating the mean function coeffi-

cients. For estimating the correlation parameters, LHD outperforms SRS with a

much smaller estimation variance, especially when the subsample size is smaller
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Table 2. Comparisons with simple random subsampling.

m = 4 m = 6
LHD SRS LHD SRS

θ1 1.91(0.60) 1.89(4.11) 2.63(1.63) 2.61 (9.93)
θ2 2.24(1.71) 1.90(3.73) 2.64(2.01) 2.95(10.56)
θ3 1.96(0.79) 1.99(2.66) 2.49(1.14) 3.18(10.97)
θ4 1.93(0.58) 1.92(4.11) 2.69(1.74) 2.90(12.78)
θ5 1.78(0.35) 1.72(1.91) 2.58(0.84) 2.50(12.55)
θ6 1.89(0.48) 1.94(3.84) 2.74(1.78) 1.80 (8.65)
β1 1.01(1.5× 10−3) 0.99(3.3× 10−3) 1.03(1.6× 10−3) 0.99 (1.5× 10−3)
β2 0.52(3.2× 10−3) 0.52(2.9× 10−3) 0.53(4.4× 10−3) 0.55 (6.7× 10−3)
β3 0.14(1.2× 10−2) 0.10(2.1× 10−2) 0.15(1.1× 10−2) 0.15 (2.5× 10−2)

AC/3 0.98 0.81 1 0.87
AM/3 0 0 0 0
Fre(β1) 1 1 1 1
Fre(β2) 1 1 1 1
Fre(β3) 0.93 0.40 1 0.60

(m = 6). In general, it appears that the proposed subsampling based on LHDs

provides an effective variance reduction in parameter estimation, which is consis-

tent with the theoretical justifications in experimental design literature (McKay,

Beckman and Conover (1979), Stein (1987)). In terms of variable selection, the

correct identification rate for the LHD-based subsampling is 21% higher than

SRS when m = 4 and 13% higher when m = 6. Both methods perform equally

well with zero misspecification rate. To further assess the variable selection ac-

curacy, the frequencies of individual variables identified from 100 simulations are

reported in the last three rows of the table: Fre(β1), Fre(β2) and Fre(β3). The

identification frequencies for β3 decrease as expected due to its weak signal. But

the proposed subsampling can still identify such a weak signal with at least 66%

higher frequency compared with simple random subsamples.

In the next simulation, the proposed sampling scheme was compared with

RBS in which blocks are selected randomly without the one-dimensional projec-

tion property. The data were generated from a 4-dimensional space with n =

2,000. We took the same correlation function as before with the mean function

coefficients set to be β = (1, 0.5, 0.1, 0): three non-zero coefficients with different

signal strength and one zero coefficient. Results are summarized in Table 3 based

on 100 simulations and K = 20. The results of SRS with the same subsample

size are also listed for comparison. In general, LHD outperforms the other two

sampling and RBS performs slightly better than SRS. Compared with RBS, the



1472 YIBO ZHAO, YASUO AMEMIYA AND YING HUNG

Table 3. Comparisons with simple random sampling of blocks.

m=4 θ1 θ2 θ3 θ4
LHD 1.21(0.26) 1.29(0.38) 1.27(0.32) 1.34(0.17)
RBS 1.44(0.30) 1.50(0.34) 1.43(0.37) 1.50(0.33)
SRS 1.77(0.88) 1.59(0.38) 1.55(0.72) 1.53(1.34)

β1 β2 β3 AC/3 Freq(β4 = 0)
LHD 1.00(1.9× 10−6) 0.50(2.3× 10−6) 0.09(1.8× 10−6) 1.0 0.95
RBS 1.00(7.5× 10−6) 0.51(3.0× 10−6) 0.08(3.1× 10−6) 1.0 0.85
SRS 1.00(3.7× 10−6) 0.51(1.1× 10−6) 0.09(1.2× 10−6) 1.0 0.63

Table 4. Analysis for the data center example.

Variable β̂ θ̂
x1 CRAC unit 1 flow rate −7.5 5.3
x2 CRAC unit 2 flow rate −13.1 1.3
x3 CRAC unit 3 flow rate −2.7 0.3
x4 CRAC unit 4 flow rate −7.1 13.2
x5 Room temperature setting 0 0.9
x6 Tile open area percentage 0 0.6
x7 Location in x-axis −11.3 21.44
x8 Location in y-axis 2.1 9.5
x9 Height 17.8 0.8

proposed method has a higher frequency of identifying the nonactive variable:

0.95 vs. 0.85. Moreover, LHD has less bias and a smaller variance in parame-

ter estimation, empirically demonstrating the advantage of the one-dimensional

balance property of LHD.

6. Data Center Thermal Management

A data center is a computing infrastructure facility that houses large amounts

of information technology equipment used to process, store, and transmit digital

information. Data center facilities constantly generate large amounts of heat to

the room, which must be maintained at an acceptable temperature for reliable

operation of the equipment. A significant fraction of the total power consumption

in a data center is for heat removal, and determining the most efficient cooling

mechanism has become a major challenge. Since the thermal process in a data

center is complex and depends on many factors, a crucial step is to model the

thermal distribution at different experimental settings and identify important

factors that have significant impacts on the thermal distribution (Hung, Qian

and Wu (2012)).
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Figure 3. Main effect plot.

For a data center thermal study, physical experiments are not always feasible

because some settings are highly dangerous and expensive to perform. Therefore,

simulations based on computational fluid dynamics (CFD) are widely used. Such

simulations using complex mathematical models are often called computer ex-

periments (Santner, Williams and Notz (2003), Fang, Li and Sudjianto (2006)).

In this example, CFD simulations were conducted at IBM T. J. Watson Re-

search Center based on an actual data center layout. Detailed discussions about

the CFD simulations can be found in (Lopez and Hamann (2011)). There were

27,000 temperature outputs generated from the CFD simulator based on an ir-

regular grid over an 9-dimensional space. The nine variables are listed in Table

4, including four computer room air conditioning (CRAC) units with different

flow rates (x1, . . . , x4), the overall room temperature setting (x5), the perforated

floor tiles with different percentage of open areas (x6), and spatial location in

the data center (x7 to x9).

Gaussian process models are widely used for the analysis of computer exper-

iments because they provides a flexible interpolator for the deterministic simula-

tion outputs (Santner, Williams and Notz (2003)). However, in this example, it

is computationally prohibitive to build a GP model based on the complete CFD

data. So we implemented the proposed LHD-based subagging approach with

m = 3 for the first seven variables.

The fitted GP model is reported in the last two columns of Table 4, where

β̂ represents the estimated mean function coefficients and θ̂ represents the cor-

relation parameters estimated using the exponential covariance function. From

the fitted model, it appears that seven out of the nine variables have significant
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effects on the mean function. The main effects plot based on the fitted GP model

is given in Figure 3. It also appears that the two variables, x5 and x6, which are

identified as nonactive have relatively small impacts on cooling. This result pro-

vides important information regarding the efficiency of different cooling methods,

because the variables are associated with two cooling mechanisms, a conventional

cooling approach and a chilled water based cooling system. Among the active

variables, the height (x9) has a relatively large positive effect, which agrees with

the general understanding of thermal dynamics that temperature increases sig-

nificantly with height in a data center. The results also indicate that, among

the four CRAC units in different locations of a data center, the first two CRAC

units have significant effects on reducing the room temperature. This can help

engineer locations of the CRAC units more effectively and improve the efficiency

of the cooling mechanism.

7. Discussion

Future work will be explored in several directions. Extensions of the proposed

procedure to optimal designs with better space-filling properties are appealing.

For example, it is known that randomly generated LHDs can contain some struc-

ture. To further enhance desirable space-filling properties, various modifications

are proposed. Numerical comparisons and theoretical developments of the gen-

eralization to different types of optimal space-filling designs will be studied. An

interesting and important issue of the LHD-based block bootstrap is to determine

the optimal block size. This topic has been discussed for conventional block boot-

strap methods (Nordman, Lahiri and Fridley (2007)), but the solutions therein

are not directly applicable to GP models. We plan to study the optimal block

size for our procedure based on a new criterion defined for GP. Theoretical de-

velopment under fixed-domain asymptotics will be explored by extending the

results of Ying (1993) and Hung (2011), and subagging predictors will also be

developed. As pointed out by the referees, another interesting extension of the

proposed work is to perform variable selection not only in the mean function

but also in the correlation function. We are currently developing an extension to

address this issue so that identification of linear effects in the mean function and

nonlinear effects in the covariance function can be both achieved.

Supplementary Materials

The supplementary material consists of the proofs of Theorem 1 to Theo-
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rem 3.
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Appendix: Assumptions

(A.1) (n/md)Cov{(ȳi−µ)2, (ȳj−µ)2} = O(1), i = (i1, . . . , id) 6= j = (j1, . . . , jd).

(A.2) |τ2n| = O(1).

(A.3) limn→∞ supθ λmax(En(θ)) = 0 when the block space b = l/m→∞.

(A.4) ∀ φ1, φ2 ∈ Θ, |qs(·,φ1) − qs(·,φ2)| ≤ Ls|φ1 − φ2|a.s.P, where Ls is

Lipschitz constant and supn{n−1
∑n

s=1 ELs} = O(1).

(A.5) Θ is compact.

(A.6) The functions qs(ω,φ) and rn(ω,φ) are such that qs(·,φ) and rn(·,φ)

are measurable for all φ ∈ Θ, a compact subset of Rp. In addition,

qs(ω, ·) : Θ −→ R and rn(ω, ·) : Θ −→ R are continuous on Θ a.s.-P ,

s = 1, . . . , n.

(A.7) Qn(ω, ·) : Θ→ R is continuously differentiable of order 2 on Θ a.s. P .

(A.8) There exists a sequence Jn(φ) : Θ → Rp×p such that ∇2Qn(·,φ) −
Jn(φ)

P−→ 0 as n→∞ uniformly on Θ.

(A.9) limn→∞ J
−1
n (φ0) = 0.

(A.10) Q∗N (λ, ω, ·) : Θ → R are continuously differentiable of order 2 on Θ a.s.

P . The function ∇2Qn(ω,φ) is such that ∇2Qn(·,φ) is measurable for

all φ ∈ Θ and ∇2Qn(ω, ·) : Θ→ R is continuous on Θ a.s.-P .

(A.11) ∀ φ1, φ2 ∈ Θ,|∇2Qn(·,φ1)−∇2Qn(·,φ2)| ≤Ms|φ1−φ2|a.s.P, where Ms

is Lipschitz constant and supn{n−1
∑n

s=1 EMs} = O(1).

(A.12) an = O(n−1/2) and bn → 0 as n→∞

(A.13) There exit positive constants c1 and c2 such that when β1, β2 > c1λn,

|p′′λn
(β1)− p′′λn

(β2)| ≤ c2|β1 − β2|.
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(A.14) λn → 0, n1/2λn →∞ as n→∞.

(A.15) lim infn→∞ lim infβ→0+ λ−1n p′λn
(β) > 0.

Assumption (A.3) controls the correlation between bootstrapped blocks. (A.4)

and (A.5) are required in order to achieve uniform convergency of the boot-

strapped likelihood function. (A.6) ensures the existence of the estimators.

(A.7)-(A.9) are regularity conditions for standard MLE consistency in GP mod-

els, analogous to the conditions in Mardia and Marshall (1984). (A.10) ensures

the existence of the covariance matrix. (A.11) is the global Lipschitz condition

for ∇2Qn(ω, ·) which guarantees the convergence of the covariance matrix calcu-

lated based on the LHD-based block bootstrap. (A.12)-(A.15) are mild regularity

conditions regarding the penalty function.
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