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Abstract: Generally the Likelihood Ratio statistic Λ for standard hypotheses is

asymptotically χ2 distributed, and the Bartlett adjustment improves the χ2 ap-

proximation to its asymptotic distribution in the sense of third-order asymptotics.

However, if the parameter of interest is on the boundary of the parameter space,

Self and Liang (1987) show that the limiting distribution of Λ is a mixture of χ2

distributions. For such “nonstandard setting of hypotheses”, the present paper

develops the third-order asymptotic theory for a class S of test statistics, which

includes the Likelihood Ratio, the Wald, and the Score statistic, in the case of ob-

servations generated from a general stochastic process, providing widely applicable

results. In particular, it is shown that Λ is Bartlett adjustable despite its non-

standard asymptotic distribution. Although the other statistics are not Bartlett

adjustable, a nonlinear adjustment is provided for them which greatly improves

the χ2 approximation to their distribution and allows a subsequent Bartlett-type

adjustment. Numerical studies confirm the benefits of the adjustments on the ac-

curacy and on the power of tests whose statistics belong to S.

Key words and phrases: Bartlett adjustment, boundary parameter, high-order

asymptotic theory, likelihood ratio test, nonstandard conditions, score test, Wald
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1. Introduction

Let Xn = (X1, . . . , Xn) be a collection of p-dimensional random vectors

generated by a stochastic process and let pn,θ(xn), with xn ∈ Rnp and θ =(
θ1, . . . , θq

)
∈ Θ ⊂ Rq, denote the probability density function of Xn. The

interest focuses on the statistical hypothesis

H : θ = θ0. (1.1)

Notice that the data Xn can be dependent and/or not identically distributed,

hence the problem considered here has applications in multivariate analysis and

in time series analysis.

If the statistical model is a regular one whose probability density function is

smooth with respect to θ, its derivatives have finite moments, and the value θ0
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of the parameter under H is an “interior” point of the parameter space Θ, then

inference is carried out under “standard conditions”.

The Likelihood Ratio (LR) statistic for (1.1) is given by

Λ = 2 log
{
ln(θ̂Ml)− ln(θ0)

}
, (1.2)

where ln(θ) = log {pn,θ(Xn)} and θ̂ML is the Maximum Likelihood Estimator

(MLE). Under standard conditions, Λ is asymptotically χ2
q distributed, where

q = dimθ0. To enhance the χ2
q approximation to the distribution of the test

statistic, Bartlett (1937) introduces - for i.i.d. data - the adjusted statistic Λ∗ =

(1 +B/n)Λ, where (1 +B/n) ≈ q/E(Λ), n is the sample size, and B is called the

Bartlett adjustment factor.

Under these conditions we have

Pθ0(Λ ≤ x) = Fχ2
q
(x) + n−1AΛ(x) + o(n−1), (1.3)

where Fχ2
q
(x) is the distribution function of a χ2

q random variable (r.v.). Lawley

(1956) shows that

Pθ0

{(
1 +

B

n

)
Λ ≤ x

}
= Fχ2

q
(x) + o(n−1), (1.4)

hence the n−1-order term in (1.3) vanishes. Henceforth, if the test statistic

satisfies (1.4), we say that the test is Bartlett adjustable (B-adjustable).

The hypothesis (1.1) can also be tested through the Wald statistic. In case

q = 1, the statistic is

W = n
(
θ̂ML − θ0

)2
I(θ̂ML), (1.5)

where I(θ) is the Fisher information. Alternatively the modified Wald statistic

can be used

MW = n
(
θ̂ML − θ0

)2
I(θ0),

where I(θ) is evaluated at θ0 instead of at θ̂ML.

Under standard conditions, W is asymptotically χ2
1 distributed. Further-

more T = W 1/2sign
(
θ̂ML − θ0

)
is asymptotically distributed as a N(0, 1) r.v..

Hayakawa and Puri (1985), Phillips and Park (1988), Ferrari and Cribari-Neto

(1993) derive the asymptotic expansion

Pθ0(W ≤ x) = Fχ2
1
(x) + n−1AW (x) + o(n−1). (1.6)

Under standard conditions and in the context of i.i.d. data, Bartlett-type

adjustments for the Wald statistic have been introduced by Phillips and Park

(1988) and Ferrari and Cribari-Neto (1993) to enhance the χ2
1 approximation to

the distribution of W (see also the book by Cordeiro and Cribari-Neto (2014)).
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The adjusted statistic is given by W ∗ =
{

1 + B(W )/n
}
W , where B(W ) is the

Bartlett-type adjustment factor. Unlike the Bartlett adjustment for Λ, in the

case of the Wald test the adjustment is nonlinear and depends on W . Ferrari

and Cribari-Neto (1993) show that

Pθ0(W
∗ ≤ x) = Fχ2

1
(x) + o(n−1),

hence the Bartlett correction eliminates the n−1-order term in (1.6).

The score test may also be carried out on the hypothesis (1.1). The test

statistic, when q = 1, is

SC = n

{
∂ln(θ)

∂θ

∣∣∣∣
θ=θ0

}2

I(θ0)−1.

An expansion analogous to (1.3) and (1.6) holds also for SC (Harris (1985)), and

Bartlett-type adjustments have been investigated by Kakizawa (1997) (see also

Cordeiro and Cribari-Neto (2014)).

The Bartlett adjustments have been mainly developed in the context of i.i.d.

data. Nevertheless for the case of dependent data and/or non identically dis-

tributed data, Taniguchi (1991) and Taniguchi and Kakizawa (2000) introduce

a class S of test statistics that includes the LR statistic, the Wald statistic, and

the Score statistic as special cases, and they derive third-order asymptotic ex-

pansions analogous to (1.3) and (1.6). Such expansions allow one to determine

sufficient conditions for a statistic T ∈ S to be B-adjustable. Accordingly, the

higher order asymptotic theory for tests has been extensively developed when θ0

is an interior point of the parameter space Θ.

If θ0 is on the boundary of the parameter space, we say that the conditions

are “nonstandard”. These conditions arise when a parameter is known to be not

smaller (or not greater) than a given threshold. For example, when testing the

presence of an upward tendency in financial data against absence of this tendency

in a given period, implying a non-negative parameter.

When the value of the parameter θ0 is on the boundary of Θ, Chant (1974)

shows (in the i.i.d. case) that the asymptotic distribution of the MLE is mixed

normal. This result, in turn, implies that the asymptotic distribution of W for

the null hypothesis (1.1), with θ0 on the boundary of Θ, is given by a mixtures

of χ2 distributions. For the same testing problem Self and Liang (1987) show

(again for the i.i.d. case) that the limiting distributions of the LR statistics are

mixtures of χ2 distributions. Nevertheless, for i.i.d. data, DiCiccio and Monti

(2017) provide empirical evidence that the Bartlett adjustment can be applied to
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improve the χ2 approximation to the distribution of the LR statistic when the

parameter is on the boundary.

The present paper develops higher order asymptotic theory for a class S of

test statistics, that includes the LR, the Wald and the Score statistic, under

nonstandard conditions in the context of non-i.i.d. data. Initially the case of

a scalar parameter is considered. This allows one to focus on the case that

the parameter of interest is a scalar function of a vector of parameters θ. In

particular, a sufficient condition for the LR statistic to be B-adjustable is given.

A nonlinear transformation of the other statistics is proposed which leads to

a more accurate χ2 approximation to their distributions. For the Wald and

the Score test, a sufficient condition for the modified test statistics to be B-

adjustable is given, though the Bartlett-type adjustment, in these cases, is a

nonlinear function of θ̂ML. Numerical studies are provided which support the

theoretical results.

The paper is organized as follows. In Section 2, observations may be depen-

dent and/or non-identically distributed, and the focus is on the testing problem

H : θ = θ0, A : θ > θ0, (1.7)

where θ ∈ Θ ⊂ R1 is a scalar parameter and θ0 is on the boundary of Θ. We

derive the third-order asymptotic expansion of the distribution of Λ under H,

and prove that its limiting distribution is a mixture of 0 and a χ2
1 distribution.

Bartlett adjustments are discussed, and a sufficient condition is given for Λ to be

B-adjustable. Bartlett coefficients for concrete statistical models are provided.

Section 2 also provides the third-order asymptotic expansion of the distribu-

tion of W under H. The statistic W usually is not B-adjustable, but we provide

a nonlinear adjustment after which Wald statistics are B-adjustable.

Section 3 introduces a family of curved probability distributions pn,θ(u)(xn),

where u ∈ H ⊂ R, and θ = θ(u) ∈ Rq, embedded in F = {pn,θ(xn)}. The focus

is on the testing problem

H : u = u0, A : u > u0 (1.8)

under nonstandard conditions.

This setting is general and arises any time the parameter of interest is a func-

tion of θ. A motivating example for this testing problem is given by the optimal

portfolio problem. Let {Xt; t = 1, . . . , n} be a p-dimensional asset return process

with mean vector µ and variance-covariance matrix V . Let w = (w1, . . . , wp)′ be

the portfolio coefficient on the p assets. The portfolio return mean and variance
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are given, respectively, by

µ(w) = w′µ, η2(w) = w′V w. (1.9)

Suppose that a risk-free asset exists, whose return is denoted by R0 and whose

amount by w0. The mean-variance optimal portfolio is determined by

max
w0,w

{
µ(w) +R0w0 − βη2(w)

}
subject to

p∑
j=0

wj = 1, (1.10)

where β is a given positive number. The solution for w is

wopt =
1

2β
V −1 (µ−R0e) (1.11)

(e.g., Taniguchi, Hirukawa and Tamaki (2008, p.278)), where e = (1, . . . , 1)′.

When the interest focuses on the optimal portfolio coefficient on one asset, say

the first one, w1
opt, then u = w1

opt can be set. Let θ = (µ′, vech(V )′)′; by (1.11)

we get

u = u(θ) = u {µ, vech(V )} . (1.12)

Consequently hypotheses on the elements of (1.11) are in the framework of (1.8).

This example, and similar ones, highlight the need for investigating procedures

to handle the statistical problem introduced by (1.8).

For (1.8), Section 3 introduces a class S of test statistics which includes the

LR, the Wald, and the Score statistic as special cases. Under the assumption

that the third central moment of the score function K vanishes, the third-order

asymptotic expansion of the distribution of a test statistic T ∈ S is derived under

nonstandard conditions. This allows one to derive a sufficient condition for T to

be adjustable up to third-order when K = 0. This assumption holds in many

situations of interest, though there are some constraints to its application, as

discussed in Section 3.

Section 4 investigates the benefits of the proposed adjustments, including the

Bartlett adjustment, through various numerical studies. The results highlight

the enhancement in the approximation to the asymptotic distributions of the

test statistics which can be achieved by the adjustments, and their impact on

the significance level and on the power of the test.

Proofs are in Section 5.

2. Higher Order Asymptotic Theory

The current section considers the case when pn,θ(xn), the probability density

function of the collection Xn = (X1, . . . , Xn) of p-dimensional random vectors



1442 MONTI AND TANIGUCHI

generated by a stochastic process, depends on an unknown scalar parameter

θ ∈ Θ, and Θ = [θ0, b) (or (b, θ0]), where b is a finite constant.

We need some assumptions.

Assumption 1. pn,θ = pn,θ(xn) is continuously five times differentiable with

respect to θ ∈ Θ. At θ = θ0, the derivative ∂/∂θ is taken from the right.

Assumption 2. The derivative ∂/∂θ and the expectation Eθ with respect to pn,θ
are interchangeable.

Assumption 3. If ln(θ) = log {pn,θ(Xn)} and

Zi = n−1/2

{
∂iln(θ)

∂θi
− Eθ

[
∂iln(θ)

∂θi

]}
, (i = 1, 2, 3),

the cumulants of Zi have asymptotic expansions of the form

cumθ{Zi, Zj} = κ
(1)
ij (θ) + n−1κ

(2)
ij (θ) + o(n−1), (2.1)

cumθ{Zi, Zj , Zk} = n−1/2κ
(1)
ijk(θ) + o(n−1), (2.2)

cumθ{Zi, Zj , Zk, Zm} = n−1κ
(1)
ijkm(θ) + o(n−1), (2.3)

i, j, k,m = 1, 2, 3, and the Jth-order (J ≥ 5) cumulants satisfy

cum
(J)
θ {Zi1 , . . . , ZiJ} = O

(
n−J/2+1

)
, (2.4)

where i1, . . . , iJ ∈ {1, 2, 3}.

These assumptions are mild, e.g. Gaussian piecewise smooth time series

models (see Taniguchi and Kakizawa (2000)) satisfy them.

Henceforth we write I = κ
(1)
11 (θ), J = κ

(1)
12 (θ), K = κ

(1)
111(θ), M = κ

(1)
22 (θ),

N = κ
(1)
112(θ), and H = κ

(1)
1111(θ). The Zi and these quantities are functions of θ,

but - when no ambiguity occurs - this argument is dropped for simplicity.

For the LR statistic for the hypotheses in (1.7), the Bartlett adjustment

factor is

B = B(θ0) ≡ J2

4I3
+
−M + 2N +H

4I2
,

which yields the adjusted statistic

Λ∗ ≡
(

1 +
B

n

)
Λ.

Theorem 1. If K = 0, we have

Pn,θ0(Λ ≤ x) =


1

2
+O(n−1), if x = 0,

1

2

{
1 + Fχ2

1
(x)
}

+O(n−1), if x > 0;

(2.5)
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Pn,θ0(Λ
∗ ≤ x) =


1

2
+ o(n−1), if x = 0,

1

2

{
1 + Fχ2

1
(x)
}

+ o(n−1), if x > 0.

(2.6)

We turn then to the asymptotic distributions of W and MW under H.

Theorem 2. If K = 0, we have

Pn,θ0(W ≤ x) =


1

2
+O(n−1), if x = 0,

1

2

{
1 + Fχ2

1
(x)
}

+O(n−1), if x > 0;

(2.7)

Pn,θ0(MW ≤ x) =


1

2
+O(n−1), if x = 0,

1

2

{
1 + Fχ2

1
(x)
}

+O(n−1), if x > 0.

(2.8)

In the general non-i.i.d. case, then, the distribution of the Wald statistics

- under nonstandard conditions - is the same as in the i.i.d. context. Since the

hypothesis (1.7) concerns a scalar parameter, the Wald test can also be carried

out through T or MT = MW 1/2.

To use a linear Bartlett correction factor of the form 1 + B/n, where B is

a constant, it is necessary to apply a nonlinear correction to the Wald statistics

(Taniguchi and Kakizawa (2000)). Let hW (θ) be a function with derivatives

∂hW (θ)

∂θ
= −3J +K

3I
,

∂2hW (θ)

∂θ2
= −12M + 18N + 8L+ 3H

6I
+

27J2 + 20JK + 4K2

6I2
;

and let hMW (θ) be a function whose derivatives satisfy

∂hMW (θ)

∂θ
=

3J + 2K

3I
,

∂2hMW (θ)

∂θ2
=

12N + 4L+ 3H

6I
+
J2

2I2
.

The corrected statistics are W̃ = hW (θ̂ML)W and M̃W = hMW (θ̂ML)MW . The

Bartlett adjustment factor

B = B(θ0) ≡ ∆

I
+
N − JKI−1

I2
+

H

4I2
− 5K2

12I3
(2.9)

yields the Bartlett-adjusted statistics

W̃ ∗ ≡
(

1 +
B

n

)
W̃ , M̃W

∗
≡
(

1 +
B

n

)
M̃W.
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Theorem 3. If K = 0, we have

Pn,θ0(W̃ ≤ x) =


1

2
+OBA(n−1), if x = 0,

1

2

{
1 + Fχ2

1
(x)
}

+OBA(n−1), if x > 0;

Pn,θ0(M̃W ≤ x) =


1

2
+OBA(n−1), if x = 0,

1

2

{
1 + Fχ2

1
(x)
}

+OBA(n−1), if x > 0.

The terms OBA(n−1) in Theorem 3 are such that they reduce to o(n−1) after

the Bartlett adjustment.

Theorem 4. If K = 0, we have

Pn,θ0(W̃
∗ ≤ x) =


1

2
+ o(n−1), if x = 0,

1

2

{
1 + Fχ2

1
(x)
}

+ o(n−1), if x > 0;

Pn,θ0(M̃W
∗
≤ x) =


1

2
+ o(n−1), if x = 0,

1

2

{
1 + Fχ2

1
(x)
}

+ o(n−1), if x > 0.

The Bartlett-adjusted version of T and MT are

T̃ ∗ = (W̃ ∗)1/2 ≡
(

1 +
ρ

n

)1/2

hW (θ̂ML)1/2T,

M̃T
∗

= (M̃W
∗
)1/2 ≡

(
1 +

ρ

n

)1/2

hMW (θ̂ML)1/2MT.

3. General Asymptotic Theory

The current section develops the general asymptotic theory under nonstan-

dard conditions. Let Xn = (X1, . . . , Xn) be a collection of p-dimensional random

vectors generated by a stochastic process. Let pn,θ(xn), with xn ∈ Rnp and θ =(
θ1, . . . , θq

)
∈ Θ ⊂ Rq, denote the probability density function of Xn. Interest

focuses on a family of curved probability densitiesM = {pn,θ(u)(xn);u ∈ Ω = [u0,

b), b < +∞} (b is a finite constant). The assumptions of Section 2 are adapted

to the new context as follows.

Assumption 4.

(i) pn,θ = pn,θ(xn) is continuously five times differentiable with respect to θ ∈
Θ. At θ = θ(u0), the derivative ∂/∂θ is taken from the right.
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(ii) The embedding map θ = θ(u) is continuously five times differentiable with

respect to u ∈ [u0, b). At u = u0, the derivative ∂/∂u is taken from the

right.

Assumption 5. The derivative ∂/∂θi and the expectation Eθ are interchange-

able.

Let ln(θ) = log {pn,θ(Xn)} and take

Zi = n−1/2∂ln(θ)

∂θi
,

Zij = n−1/2

{
∂2ln(θ)

∂θi∂θj
− Eθ

[
∂2ln(θ)

∂θi∂θj

]}
,

Zijk = n−1/2

{
∂3ln(θ)

∂θi∂θj∂θk
− Eθ

[
∂3ln(θ)

∂θi∂θj∂θk

]}
,

where i, j, k = 1, . . . , q, and at θ = θ(u0), the derivative ∂/∂θ is taken from the

right.

Assumption 6. The moments and cumulants of Zi, Zij, and Zijk satisfy

E(ZiZj) = Iij +O(n−1),

E(ZiZjk) = Jijk +O(n−1),

E(ZiZjZk) = n−1/2Kijk +O(n−3/2),

E(ZiZjkm) = Lijkm +O(n−1),

cum(Zij , Zkm) = Mijkm +O(n−1),

E(ZiZjZkm) = n−1/2Nijkm +O(n−3/2),

cum(Zi, Zj , Zk, Zm) = n−1Hijkm +O(n−2),

and the Jth-order cumulants of Zi, Zij and Zijk are O(n−J/2+1) for J ≥ 3.

We estimate u ∈ [u0, b) initially by estimating θ in the ambient large class

F = {pn,θ;θ ∈ Θ} by the MLE θ̂ML, which is known to be asymptotically

sufficient. Estimation of u in M requires solving θ̂ML = θ(û) with respect

to û; this problem cannot be solved because dimθ = q > dimu = 1. New

extra coordinates v = (v1, . . . , vq−1) are introduced so that w = (w1, . . . , wq) =

(u,v) = (u, v1, . . . , vq−1) becomes a coordinate system in F . Then the equation

θ̂ML = θ(û, v̂) (3.1)

can be uniquely solved with respect to û and v̂. It is assumed that θ(u, 0) = θ(u).

By fixing u, we locally define the ancillary space A(u) = {(u,v) | (u,v) ∈ F} so

that the family {A(u)} defines a local foliation of F . The determination of the
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estimator û of u is a one-to-one correspondence of the local foliation of {A(u)},
which is called the ancillary family associated with the estimator û (for i.i.d.

curved exponential families, see Amari (1985))

Assumption 7. The map θ = θ(w) is continuously five times differentiable with

respect to w. At w = (u0, 0), the derivatives are taken from the right.

Let ûML be the MLE of u obtained by (3.1). Then by Taniguchi and

Watanabe (1994), we obtain the higher-order stochastic expansion and asymp-

totic expansion for the distribution of ûML in terms of Zi, Zij , Zijk, Iij , Jijk,

Kijk, . . ., and Bi
α = ∂θi/∂wα and B̄α

i = ∂wα/∂θi.

In this case ûML is a function of the q-dimensional MLE θ̂ML. If the dis-

tribution of Xn is specified by u as itself, pn,u(Xn), then the MLE of u is given

by

ūML = arg max
u

[log {pn,u(Xn)}] . (3.2)

While ûML and ūML differ, if the curvature of the larger model vanishes,

Miji′j′ − JkijJk′i′j′I
kk′

= 0 (3.3)

for all i, j, i′, j′ = 1, . . . , q, we have a result essentially due to Taniguchi and

Watanabe (1994).

Theorem 5. Under Assumptions 4-7, if (3.3) holds, the Edgeworth expansions

of the distribution of ûML and that of ūML are the same up to the term of order

n−3/2.

We return to the general model pn,θ(u)(·), where u is a function of θ =(
θ1, . . . , θq

)
, u = u

(
θ1, . . . , θq

)
, and u ∈ [u0, b), with the purpose of handling the

testing problem (1.8) under nonstandard conditions.

This setting is general and optimal portfolio choice problems provide a rel-

evant motivating example. In this context we usually use test statistics based

on ûML = u
{
µ̂ML, vech(V̂ML)

}
. However, if the return process {Xt} is i.i.d.

Gaussian, it can be verified that (3.3) holds, and, by Theorem 5, we can use ûML

instead of ūML. Therefore the theoretical results of Section 2 can be applied for

the general testing problem (1.8).

On the basis of Theorem 5, we assume that the distribution of Xn depends

on a scalar u. We write Z1 = Z1(θ), Z2 = Z2(θ), . . . , I = I(θ), J = J(θ), . . . , etc.

as Z1 = Z1(u), Z2 = Z2(u), . . . , I = I(u), J = J(u), . . . , etc. Take W1 = Z1/I
1/2,

W2 = Z2−JI−1Z1, and W3 = Z3−LI−1Z1. For (1.8) we introduce a class of test

statistics S = {T} such that, conditionally on X{W1 > 0}, T has the stochastic

expansion
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T = W 2
1 + n−1/2

(
a1W

2
1W2 + a2W

3
1

)
+ n−1

(
b1W

2
1 + b2W

2
1W

2
2 + b3W

4
1 + b4W

3
1W2 + b5W

3
1W3

)
+ op

(
n−1

)
, (3.4)

where ai (i = 1, 2) and bi (i = 1, . . . , 5) are nonrandom constants.

Let ln(u) = log {pn,u(Xn)} and define

Λ (ūML) = 2 {ln(ūML)− ln(u0)} ,
W (ūML) = n (ūML − u0)2 I (ūML) ,

MW (ūML) = n (ūML − u0)2 I (u0) ,

SC = W 2
1X (W1 > 0).

Theorem 6. If K = 0 then

(i) the test statistics Λ (ūML), W (ūML), MW (ūML), and SC belong to S;

(ii) for T ∈ S,

Pn,u0
(T ≤ x) =


1

2
+O(n−1), if x = 0,

1

2

{
1 + Fχ2

1
(x)
}

+O(n−1), if x > 0.

(3.5)

Theorem 7.

(i) Suppose h = h(u) is continuously three times differentiable with respect to

u and h(u0) = 1. If K = 0 and the derivatives h′ = h′(u) and h′′ = h′′(u)

satisfy

h′ = −I1/2a2 (3.6)

h′′ = −I
2

(
M − J2

I

)
a2

1 −Na1 − 2Ib3 +
a2

I1/2

(
2I3/2a2 − J

)
− H

6I
, (3.7)

then the modified test statistic T̃ = h {ūML}T is B-adjustable.

(ii) If B is the Bartlett adjustment factor, for T̃ ∗ = (1 +B/n) T̃ we have

Pn,u0
(T̃ ∗ ≤ x) =


1

2
+ o(n−1), if x = 0,

1

2

{
1 + Fχ2

1
(x)
}

+ o(n−1), if x > 0.

(3.8)

Remark 1. If (3.3) holds, then by applying Theorem 5 it can be shown that

Λ (ûML), W (ûML), MW (ûML), and SC belong to S. Thus the results of Theo-

rems 6 and 7 hold, and Λ (ûML), W (ûML), MW (ûML), and SC can be applied

to test the hypothesis (1.8) as required.
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Remark 2. There are contexts in which K = 0 does not hold. A noteworthy

case is the test on the variance in random/mixed effect models. In other cases

when K(u) 6= 0, an alternative parameterization θ(u′) can be introduced such

that

I(u′) ≡ dθi

du′
dθj

du′
Iij(θ) 6= 0,

K(u′) ≡ dθi

du′
dθj

du′
dθk

du′
Kijk(θ) = 0,

for q ≥ 2 (c.f., Taniguchi and Kakizawa (2000, p.222)). These functional equa-

tions might be not easy to solve, and the transformation u → u′ changes the

meaning of the parameter. Extensions of Theorems 6 and 7 to the case of non-

vanishing K are still under investigation.

4. Numerical Analysis

Let X1, · · · , Xn be generated from the AR(1) process

Xt = θXt−1 + ut, (X0 ≡ 0), (4.1)

where the parameter θ is known to be nonnegative

θ ∈ Θ = [0, 1), (4.2)

and the u′ts are i.i.d. N(0, σ2) random variables. Interest focuses on testing the

hypotheses

H : θ0 = 0, A : 0 < θ0 < 1, (4.3)

which are in the framework of (1.7) if σ2 is known, and in the framework of (1.8)

in the general case of unknown innovation variance.

Under (4.1) and (4.2) the MLE of θ is given approximately by

θ̃ML =

{
(1− n−1)(

∑n−1
t=1 XtXt+1)(

∑n−1
t=2 X

2
t )−1 if

∑n−1
t=1 XtXt+1 > 0,

0 if
∑n−1

t=1 XtXt+1 ≤ 0.

where (e.g., Fujikoshi and Ochi (1984))
√
n(θ̃ML−θ0) =

√
n(θ̂ML−θ0)+op(n

−1)

under H, and θ̂ML is the exact MLE.

Let ût = Xt − θ̃MLXt−1 be the ML residuals for t = 1, . . . n, where û1 = X1

since X0 ≡ 0. For the hypotheses in (4.3), the LR statistic when σ2 is known is

Λ =
1

σ2

(
n∑
t=1

X2
t −

n∑
t=1

û2
t

)
.

Obviously Λ = 0 when θ̃ML = 0.
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Figure 1. QQ-plot of the percentiles of Λ (left panel) and of Λ∗ (right panel) versus the
percentiles of the asymptotic distribution (n = 15, 10,000 simulations).

In this case the Bartlett adjustment factor is B(θ0) = 2 (c.f. Taniguchi and

Kakizawa (2000, p.257)), hence the Bartlett adjusted statistic is

Λ∗ =

(
1 +

2

n

)
Λ.

By Theorem 1, the asymptotic distributions of Λ and Λ∗ are given by the

same mixture of 0 and a χ2
1 r.v., though with a different rate of convergence.

Figure 1 shows the QQ-plot of the percentiles of Λ (left panel) and of Λ∗ (right

panel) versus the percentiles of the asymptotic distribution when n = 15 and

σ2 = 1, based on 10,000 simulations. It can be appreciated how the Bartlett

adjustment greatly enhances the approximation by the asymptotic distribution

even for such a small sample size, and even far out in the tail of the distribution.

Remark 3. The AR(1) model with known innovation variance provides some

insight on the relevance of Theorem 5. If Xt ∈ F is generated by an AR(1)

model with autoregressive parameter θ and unknown variance σ2, (3.3) is satisfied

(Taniguchi and Kakizawa (2000, p.232)). The assumption that σ2 is known turns

the model to a curved AR(1) model M. Let θ̂ML be the MLE for θ in F and

let θ̃ML be the MLE in M; since (3.3) holds for F , Theorem 5 implies that the

third-order Edgeworth expansions of θ̂ML and ūML are identical.

The LR statistic when σ2 is unknown is

Λp = n log

(∑n
t=1X

2
t∑n

t=1 û
2
t

)
,
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Table 1. Simulated significance level of the test based on Λp and Λ∗
p (100,000 simulations).

Λ Λ∗

n 10% 5% 1% 10% 5% 1%
10 8.90 4.31 0.75 10.92 5.83 1.32
15 9.25 4.48 0.83 10.67 5.49 1.20
20 9.46 4.56 0.82 10.55 5.39 1.10
30 9.62 4.63 0.90 10.36 5.15 1.07
50 9.55 4.64 0.90 9.99 4.95 1.03

Table 2. Simulated Power of the test based on Λ and Λ∗ (5% significance level, 100,000
simulations).

θ = 0.05 θ = 0.10 θ = 0.15 θ = 0.25
n Λp Λ∗

p Λp Λ∗
p Λp Λ∗

p Λp Λ∗
p

10 5.72 7.56 7.46 9.78 9.65 12.50 15.72 19.63
15 6.51 7.94 9.10 10.81 12.38 14.59 21.80 24.93
20 7.07 8.18 10.37 11.87 14.79 16.70 27.28 29.89
30 8.00 8.81 12.65 13.78 19.07 20.53 37.23 39.24
50 9.23 9.76 16.42 17.29 26.70 27.77 53.63 54.86

and the Bartlett adjusted statistic is

Λ∗p =

(
1 +

2

n

)
Λp.

By virtue of Theorems 6 and 7, the asymptotic distributions of Λp and Λ∗p are

still given by a mixture of 0 and a χ2
1 r.v. with an error which is O

(
n−1

)
for the

former statistic and o
(
n−1

)
for the latter.

To investigate the impact of the Bartlett adjustment, a simulation experi-

ment was carried out by generating 100,000 samples from (4.1), under H, for

various samples sizes (n = 10, 15, 20, 30, 50). Table 1 shows the simulated signif-

icance level of the test based on Λp and on Λ∗p, when the nominal level is 10%,

5%, and 1%. The Bartlett adjustment enhances the accuracy of the test.

Table 2 shows the power (simulated again on 100,000 samples) of the two

tests when θ = 0.05, 0.10, 0.15, 0.25, the nominal level is 5% and the sample sizes

are those of Table 1. The results show that the Bartlett adjustment produces

considerable benefits in terms of power.

For the testing problem (4.3), the Wald statistic and the modified Wald

statistic are

W = nθ̃2
ML

(
1− θ̃2

ML

)−1
, MW = nθ̃2

ML

(whether σ2 is known or unknown). The nonlinear corrections, which make the
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Figure 2. QQ-plot of the percentiles of W (left panel) and of MW (right panel) versus
the percentiles of the asymptotic distribution (n = 15, 10,000 simulations).

statistics B-adjustable, are

hW (θ̃ML) = 1−
θ̃2
ML

2
, hMW (θ̃ML) = 1 +

θ̃2
ML

2
.

Consequently the Bartlett-adjusted statistics are

W̃ = hW (θ̃ML)W = nθ̃2
ML

(
1−

θ̃2
ML

2

)
(1− θ̃2

ML)−1,

M̃W = hMW (θ̃ML)M̃W = n

(
1 +

θ̃2
ML

2

)
θ̃2
ML.

In this case, (2.9) yields the Bartlett adjustment factor B(θ0) = −1/2 (c.f.

Taniguchi and Kakizawa (2000, p.257)), hence the Bartlett adjusted statistics

are

W̃ ∗ =

(
1− 1

2n

)
W̃ , M̃W

∗
=

(
1− 1

2n

)
M̃W.

Figure 2 shows the QQ-plot of the percentiles of W (left panel) and MW

(right panel) versus the percentiles of the asymptotic distribution when n = 15,

obtained from 10,000 simulations. For the same samples, Figure 3 shows the QQ-

plot for W̃ and M̃W and Figure 4 shows the QQ-plot for W̃ ∗ and M̃W
∗
. The

correction that leads from W and MW to W̃ and M̃W largely enhances the ap-

proximation by the asymptotic distribution, and a further sensible improvement

is achieved by applying the Bartlett adjustment.

In order to investigate the impact of the correction of the test statistics and

of the Bartlett adjustment on the significance level, a simulation experiment was
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Figure 3. QQ-plot of the percentiles of W̃ (left panel) and of M̃W (right panel) versus
the percentiles of the asymptotic distribution (n = 15, 10,000 simulations).

Figure 4. QQ-plot of the percentiles of W̃ ∗ (left panel) and of M̃W ∗ (right panel) versus
the percentiles of the asymptotic distribution (n = 15, 10,000 simulations).

carried out by generating 100,000 samples from (4.1) with θ = 0, for various

samples sizes (n = 10, 15, 20, 30). Table 3 shows the simulated level of the tests

based on W and related enhanced statistics, whereas Table 4 shows the signif-

icance level of the tests (performed on the same samples) based on MW and

related statistics, when the nominal level is 10%, 5%, and 1%. The accuracy of

the Bartlett-adjusted test is remarkable.

We return to the optimal portfolio problem (1.10). SupposeX(1), X(2), . . . ,
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Table 3. Simulated significance level of the test based on W , W̃ and W̃ ∗ (100,000
simulations).

W W̃ W̃ ∗

n 10% 5% 1% 10% 5% 1% 10% 5% 1%
10 12.17 7.43 2.84 11.38 6.39 2.01 10.85 5.96 1.84
15 11.19 6.35 1.98 10.64 5.63 1.39 10.25 5.33 1.28
20 10.80 5.85 1.58 10.33 5.30 1.15 10.04 5.07 1.07
30 10.40 5.40 1.31 10.11 5.04 1.03 9.91 4.88 0.99

Table 4. Simulated significance level of the test based on MW , M̃W and M̃W
∗

(100,000
simulations).

MW M̃W M̃W
∗

n 10% 5% 1% 10% 5% 1% 10% 5% 1%
10 10.47 5.10 0.92 11.35 6.20 1.65 10.80 5.76 1.44
15 9.94 4.75 0.73 10.57 5.49 1.21 10.19 5.18 1.09
20 9.86 4.62 0.70 10.29 5.23 1.04 10.01 4.99 0.96
30 9.78 4.61 0.76 10.10 5.00 1.00 9.89 4.85 0.95

X(t), . . . are generated by a 2-dimensional i.i.d. N(µ,V ) return process where

µ = (µ1, 0) and V = {vij , i, j = 1, 2}. We assume that µ1 ≥ 0. In this problem,

for simplicity, we set R0 = 0, w0 = 0, and β = 1/2. If we are interested in the

first portfolio coefficient w1, then its optimal value is given by

u ≡ wopt1 = v11µ1, (4.4)

where v11 is the (1, 1)-element of V −1. Consider the testing problem

H : u = 0, A : u > 0, (4.5)

which is analogous to (1.8) with u0 = 0. Let {X1(1), X2(1)}′ , . . . , {X1(n), X2(n)}′

be the observed stretch. The estimators of the elements of µ and V are given by

µ̂i =
1

n

n∑
t=1

Xi(t) i = 1, 2;

v̂ij =
1

n

n∑
t=1

{Xi(t)− µ̂i} {Xj(t)− µ̂j} i, j = 1, 2.

The Wald statistic for (4.5) (by neglecting the op(n
−1) term) is W = nµ̃2

1/v̂11

where µ̃1 = µ̂1X {µ̂1 > 0}. It is easily proved that W is B-adjustable with

B = −3, so W ∗ ≡ (1− 3/n)W is the Bartlett-adjusted statistic.

Figure 5 shows the QQ-plot of the percentiles of W (left panel) and W ∗

(right panel) versus the percentiles of the asymptotic distribution when n = 30,
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Figure 5. QQ-plot of the percentiles of W (left panel) and of W ∗ (right panel) versus
the percentiles of the asymptotic distribution in the portfolio problem (n = 30, 10,000
simulations).

obtained from 10,000 simulations when the correlation coefficient between X1(t)

and X2(t) was ρ = 0.7. Although the asymptotic distribution provides already

a fairly good approximation to the actual distribution of the test statistics, the

Bartlett adjustment yields a large improvement.

Table 5 shows the performance of the Wald test evaluated through a simula-

tion experiment on 100,000 samples of sizes n = 30, 50, 100, generated under H

of (4.5). The elements of V are v11 = v22 = 1, while v12 = ρ = 0.10, 0.30, 0.50,

0.70, 0.90. The simulated level of the tests based on W and W ∗ are compared

for the nominal levels 10%, 5%, and 1%. The results provide further evidence

on the substantial increase in accuracy of the test that can be achieved by the

Bartlett adjustment, for the correlation scenarios, even for fairly small samples.

5. Proofs

Let L = κ
(1)
13 (θ), ∆ = κ

(2)
11 (θ), and denote by W1 = Z1/

√
I the standardized

score function. Let W2 = Z2 − J · I−1Z1, and W3 = Z3 − L · I−1Z1.

Proposition 1. If K = 0, we have

Pn,θ(W1 ≥ 0) =
1

2
+ o(n−1). (5.1)

Proof. From (4.1.3) of Taniguchi and Kakizawa (2000, p.170) and (2.1)-(2.4),

the asymptotic expansion of the distribution of W1 is given by
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Table 5. Simulated significance level of the test based on W and W ∗ for the portfolio
problem - n = 30, 50, 100 (100,000 simulations).

W W ∗

ρ 10% 5% 1% 10% 5% 1%
n = 30

0.10 10.96 5.91 1.44 9.77 5.03 1.08
0.30 11.04 5.92 1.52 9.84 5.04 1.12
0.50 10.87 5.76 1.49 9.69 4.87 1.14
0.70 10.89 5.79 1.46 9.73 4.87 1.07
0.90 10.82 5.86 1.49 9.67 4.94 1.10

n = 50
0.10 10.63 5.57 1.26 9.93 5.03 1.05
0.30 10.62 5.53 1.27 9.94 5.01 1.07
0.50 10.60 5.42 1.27 9.89 4.89 1.06
0.70 10.43 5.47 1.27 9.78 4.95 1.06
0.90 10.60 5.41 1.24 9.87 4.90 1.03

n = 100
0.10 10.46 5.39 1.19 10.13 5.10 1.08
0.30 10.30 5.20 1.15 9.95 4.95 1.06
0.50 10.18 5.19 1.15 9.87 4.92 1.06
0.70 10.33 5.24 1.14 9.98 4.97 1.04
0.90 10.28 5.34 1.15 9.95 5.07 1.05

Pn,θ(W1 ≤ y) = Φ(y)− φ(y)

{
1

2n
4 · y +

K

6n1/2
(y2 − 1)

+
H

24n
(y3 − 3y) +

K2

72n
(y5 − 10y3 + 15y)

}
+ o(n−1), (5.2)

where φ(y) and Φ(y) are the standard normal density and distribution function.

If K = 0, from (5.2) we obtain (5.1).

Proof of Theorem 1. For all θ (θ ≥ θ0) such that θ − θ0 = Op(n
−1/2), we obtain

2 {log pn,θ(Xn)− log pn,θ0(Xn)} = −{Z1(θ0)− n1/2I(θ0)(θ − θ0)}2I(θ0)−1

+ Z1(θ0)2I(θ0)−1 +Op(n)|θ − θ0|3, (5.3)

(see Chernoff (1954) and Self and Liang (1987)). Let

W̃1 ≡W1 · X{W1 > 0}. (5.4)

From (5.3) it follows that

n1/2(θ̂ML − θ0) =
1√
I
W̃1 +Op(n

−1/2). (5.5)

Hence, conditionally on X{W1 > 0} = 1,
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n1/2(θ̂ML − θ0) =
1√
I
W1 +Op(n

−1/2). (5.6)

Since

0 =
∂

∂θ
log p

n,θ̂ML
(Xn), and θ̂ML ≥ θ0, (5.7)

by expanding (5.7) at θ0 from the right, we have

0 =
∂

∂θ
log pn,θ0(Xn) +

{
∂2

∂θ2
log pn,θ0(Xn)

}
(θ̂ML − θ0) + · · ·+ op(n

−3/2). (5.8)

By rewriting (5.8) and making the replacement Un = n1/2(θ̂ML − θ0), condition-

ally on W1 ≥ 0 we obtain

n1/2(θ̂ML − θ0) =
1√
I
W1 +

1

n1/2
{polynominal of W1 and W2}

+
1

n
{polynominal of W1,W2 and W3}

+ op(n
−1) (5.9)

(see (4.2.71) of Taniguchi and Kakizawa (2000, pp.180-205)).

By expanding Λ at θ0, and making the replacement (5.9), conditionally on

X{W1 > 0} = 1, one has

Λ = W 2
1 + n−1/2(a1W

2
1W2)

+ n−1(b1W
2
1 + b2W

2
1W

2
2 + b3W

4
1 + b4W

3
1W2 + b5W

4
1W3)

+ op(n
−1).

(5.10)

By applying Theorem 4.5.3 of Taniguchi and Kakizawa (2000, p.256) to (5.10)

conditionally on X{W1 > 0} = 1, we see that

(1) Pn,θ0(Λ ≤ x|W1) =

{
Fχ2

1
(x) +O(n−1), if W1 ≥ 0,

F{0}(x) +O(n−1), if W1 < 0,
(5.11)

(2) Pn,θ0(Λ
∗ ≤ x|W1) =

{
Fχ2

1
(x) + o(n−1), if W1 ≥ 0,

F{0}(x) + o(n−1), if W1 < 0,
(5.12)

where

F{0}(x) =

{
0, if x < 0,

1, if x ≥ 0,

which leads to (2.5) and (2.6).

Because the proofs of Theorems 2 - 4 are essentially included in Theorems 6

and 7, they are omitted.

Proof of Theorem 5. Conditionally on W1 > 0, we can apply Theorems 5, 8,
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and 10 of Taniguchi and Watanabe (1994) to our setting. Then, multiplying the

Edgeworth expansions by P(W1 > 0) leads to the conclusion.

Proof of Theorem 6. By recalling (5.9) for ūML, conditionally on W1 > 0, we

have

n1/2(ūML − u0) =
1√
I
W1 +

1

n1/2
{polynominal of W1 and W2}

+
1

n
{polynominal of W1,W2 and W3}

+ op(n
−1). (5.13)

Substitution of (5.13) in the four statistics yields the result. The proof of (3.8)

is analogous to that of (5.11) and (5.12).
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