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Abstract: We propose a method with better predictions at extreme values than the

standard method of Kriging. We construct our predictor in two ways: by penalizing

the mean squared error through conditional bias and by penalizing the conditional

likelihood at the target function value. Our prediction exhibits robustness to the

model mismatch in the covariance parameters, a desirable feature for computer sim-

ulations with a restricted number of data points. Applications on several functions

show that our predictor is robust to the non-Gaussianity of the function.
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regression.

1. Introduction

In many fields of engineering and science, computer experiments have become

an essential tool in studying physical processes. Kriging is a popular way to

build metamodels in computer experiments, because Kriging exactly interpolates

the experimental data and produces predictions at unobserved inputs. Sacks

et al. (1989), Koehler and Owen (1996), Stein (1999), and Switzer (2006) give

summaries and in-depth discussions of computer experiments and Kriging.

There are several limitations of Kriging. Kriging prediction depends on the

covariance hyperparameters that are usually unknown, and need to be estimated.

The variability of the predicted process depends on the hyperparameters, and the

likelihood of the hyperparameters, usually computationally expensive to com-

pute, can be quite flat, so that the variance of the maximum likelihood esti-

mator can be huge. Stein (1999) gives asymptotic results showing that there is

asymptotically no loss using the misspecified covariance function if the true and

assumed covariance functions yield equivalent Gaussian measures. In practice

we might face functions that behave quite differently from the assumed covari-

ance structure, and with only a small number of observations. Bachoc (2013)

states that the fixed-domain asymptotics does not solve completely the issue of

the estimation of the covariance function. There have been several approaches

to stabilize the estimation of the hyperparameters, such as penalized Kriging by
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Li and Sudjianto (2005). We would like to find a predictor that is less affected

by the hyperparameters.

Kriging prediction depends on the mean function whose specification needs

form before looking at the data. In Kriging, there is a “regression effect”, in

which the predictions are pulled towards the mean function. This can give bad

predictions at extreme function values. Using a better design of input points,

such as Maximum Projection Designs (Joseph, Gul and Ba (2015)), can be ef-

fective. But, with a small number of observations, finding a good model can be

challenging.

There are several approaches to mitigate the regression effect. Compos-

ite Gaussian process models (Ba and Joseph (2012)), Fractional Brownian Fields

(Zhang and Apley (2014)), and Gaussian process model with Brownian integrated

covariance functions (Zhang and Apley (2015)) use flexible covariance functions

that capture the nonstationarity of functions. Blind Kriging (Joseph, Hung and

Sudjianto (2008)) incorporates variable selection procedure in the mean func-

tion. Limit Kriging (Joseph (2006)) and Kernel Interpolation (Kang and Joseph

(2016)) modify the standard Gaussian process regression model or the predictor

for more accurate prediction in certain situations. Conditional Bias-Penalized

Kriging (CBPK) (Seo (2013)) suggests minimizing the mean squared error plus

the squared conditional bias to improve the performance at the extreme values.

All these methods, except Limit Kriging and CBPK, introduce more complexity

in the model than the stationary Gaussian process model.

In this paper, we propose a new prediction method which we call Single

Nugget Kriging (SiNK). We show that SiNK has several desirable properties

with the same model complexity and computational cost as standard Kriging. In

Section 2, we briefly introduce Kriging. In Section 3, we discuss conditioning the

likelihood at the target, a fundamental idea of the SiNK. In Section 5, we define

SiNK, and show that it gives smaller mean squared prediction error than usual

Kriging when the function value is far from the mean function. In other words,

SiNK is robust to misspecifying the mean function. In Section 6, comparison

between the performance of SiNK and the performance of usual Kriging and limit

Kriging are given in several numerical experiments. Proofs are in the appendix,

and additional proofs and details are provided in the supplementary material.

2. Kriging

Kriging treats the deterministic function f(x) as a realization of a real-valued
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random field

Y (x) = m(x) + Z(x), (2.1)

where x ∈ Rd, m(x) is a deterministic mean function, and Z(x) is a centered

(mean zero) square-integrable process with covariance function K(·, ·).
For the covariance function, stationary covariance functions that are tensor

products of one-dimensional kernels are popular. Let Cθ : R → [−1, 1] be a

covariance kernel with length-scale parameter θ. Let

K(x, z) = σ2C(h) = σ2
d∏
j=1

Cθj (|hj |) = σ2
d∏
j=1

C1

(
|hj |
θj

)
,

where h = x− z. Parameters σ2 and (θ1, . . . , θd) are usually estimated from the

data. Matérn covariance kernels (Matérn (1986)) have the form

Cν,θ(d) =
(
√

2ν dθ )ν

Γ(ν)2ν−1
Kν

(√
2ν
d

θ

)
,

where Kν(·) is the modified Bessel function of the second kind. Matérn covari-

ance kernels are commonly used in practice because of the smoothness of the

associated Gaussian process, defined in terms of its mean square differentiability

parametrized through ν. If there is a measurement error or noise in the function,

then adding a nugget effect to the covariance function handles the discontinuity

in the function.

Throughout the paper, we only consider deterministic computer experiments

and we use the simple Kriging (or ordinary Kriging) model with a known (or esti-

mated) constant mean β, for simplicity. The simplification of the mean function

to a constant does not affect predictive performance in general; see Sacks et al.

(1989). We assume that the hyperparameters of the covariance function are

known (or estimated from the data), and we focus on the prediction at a new

point x0.

Now suppose we observe y = (Y (x1), . . . , Y (xn)), and let K = (Kij) be the

n × n covariance matrix of y, k(x0,x0) be the variance of Y (x0), and k(x0) be

the covariance vector between y and Y (x0). Let 1 be the n-length vector of all

ones. The Kriging predictor is the Best Linear Predictor (BLP) that minimizes

the mean squared prediction error (MSPE) E[(Y (x0)− Ŷ (x0))
2].

The Kriging predictor can be also derived from the Gaussian process assump-

tion on Y ; this approach is called Gaussian process regression. Throughout this

paper, we assume that Z in (2.1) is a centered Gaussian process with covariance
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function K(·, ·). Then,

Y (x0)
∣∣ (Y (x1), . . . , Y (xn)) = y ∼ N(m, s2),

where m = β + k(x0)
TK−1(y − β1), and s2 = k(x0,x0) − k(x0)

TK−1k(x0).

The simple Kriging predictor is the conditional mean ŶK(x0) = E[Y (x0)
∣∣y] =

β + k(x0)
TK−1(y − β1).

With

ρ(x0) =

√
k(x0)TK−1k(x0)

k(x0,x0)
,

ρ(x0)
2 is the variance explained by conditioning divided by the marginal variance

of y0. The quantity ρ(x0) always lies in [0, 1], and can be understood as the

correlation between the target function value and the data.

3. Conditional Likelihood at the Target and Conditional Bias

In this section, we investigate the idea of maximizing the conditional likeli-

hood given the target function value, which is the supporting idea of the SiNK.

We also define a class of predictors by generalizing the Conditional Bias-Penalized

Kriging.

3.1. Conditional likelihood at the target

We formulate the prediction problem as an estimation problem. From the

Gaussian process assumption, the density (which can be also viewed as the aug-

mented likelihood in Jones (2001)) of (Y (x0), Y (x1), . . . , Y (xn)) is known. In-

stead of conditioning on the observed function values as in the Gaussian process

regression, we condition on the unknown function value at the target point and

compute the likelihood. We easily find that

(Y (x1), . . . , Y (xn))
∣∣ Y (x0) = y0 ∼ N(m̃, K̃), where (3.1a)

m̃ = β1 + k(x0,x0)
−1(y0 − β)k(x0) and (3.1b)

K̃ = K − k(x0,x0)
−1k(x0)k(x0)

T . (3.1c)

Thus, we reverse the perspective by seeing y0 as a parameter. The conditional

log likelihood is

l(y0|y) = l(y0) = −1

2
(y − m̃)T K̃−1(y − m̃) + constant. (3.2)

The maximizer of the conditional likelihood with respect to y0 with penalty

−(y0 − β)2/(2k(x0,x0)), which is the maximum a posteriori estimate of y0 with

the prior distribution y0 ∼ N(β, k(x0,x0)), is the simple Kriging predictor. How-
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ever, when k(x0) 6= 0, the maximizer of the conditional likelihood without penalty

(CMLE) exists and it is

ŶCMLE(x0) = β +
k(x0,x0)

k(x0)TK−1k(x0)
k(x0)

TK−1(y − β1). (3.3)

The derivation is in the supplementary material, section S1. The CMLE is ob-

tained by inflating the residual term of the simple Kriging predictor by 1/ρ(x0)
2.

3.2. Conditional bias

In the geostatistical literature, there are two types of conditional bias (Katz

and Murphy (1997), Seo (2013)). Type 1 conditional bias is defined as E[Y (x0)|
Ŷ (x0) = ŷ]−ŷ, which measures the degree of correspondence between the mean of

the unknown function value given a particular prediction. This quantity has been

used to measure the reliability of the forecast in geostatistics. For example, the

simple Kriging predictor is type 1 conditionally unbiased. Type 1 conditionally

unbiased predictors have been discussed with an interest in the issue of predicting

tails better (Isaaks (2005), David, Marcotte and Soulie (1984)).

Type 2 conditional bias is defined as E[Ŷ (x0)|Y (x0) = y0] − y0, which is

computed by conditioning the true function value. If this bias is large for some

y0, then it means that the prediction could be bad for these y0. There has

not been much discussion on type 2 conditional bias, until Seo (2013) explicitly

defined the Conditional Bias-Penalized Kriging, which will be discussed in the

following subsection. In this paper, we focus on type 2 conditional bias. Our

intuition behind the new suggested predictor is that by reducing type 2 bias by

the appropriate amount, it has better performance at the extreme values and it

has analogous behavior as the nearest neighborhood regression.

For simple Kriging, we have E[ŶK(x0)
∣∣Y (x0) = y0] = β + ρ(x0)

2(y0 − β),

which is not y0 in general. Thus, ŶK(x0) is type 2 conditionally biased in general.

We can expect that for a given y0 that is far from the prior mean, the performance

of standard Kriging can be poor.

3.3. Conditional bias-penalized Kriging

Conditional Bias-Penalized Kriging (CBPK) is defined as the linear predictor

Ŷ (x0) = β + λT (y − β1) that minimizes the MSPE plus a multiple of squared

type 2 conditional bias (CB2)

E[(y0 − Ŷ (x0))
2] + δE[(y0 − E[Ŷ (x0)

∣∣y0])2] (for some δ ≥ 0) (3.4)

with respect to λ. Seo (2013) suggests that we use δ = 1. We show in proposition
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1 that using δ = 1 in (3.4) leads to the predictor

ŶCBPK(x0) = β +
2

1 + ρ(x0)2
k(x0)

TK−1(y − β1). (3.5)

We observe that it is again a predictor with an inflated residual term. Dif-

ferent choices of δ in (3.4) lead to different predictors. If δ = 0, (3.4) is the

objective for simple Kriging, and thus the minimizer ŶCBPK(x0) is the simple

Kriging predictor. If δ → ∞, the minimizing predictor approaches the CMLE.

This accords with the fact that the CMLE is type 2 conditionally unbiased,

E[ŶCMLE(x0)
∣∣Y (x0) = y0] = y0.

The main question when using a CBPK is over the ratio to use between

MSPE and CB2. We seek an automatic way to choose δ instead of simply using

δ = 1 or applying a cross-validation-style approach. We suggest varying the

ratio spatially, using an appropriate function of x0 as δ. To distinguish from

Seo’s CBPK (δ = 1), we call the linear predictor Ŷ that minimizes (3.4) (for

general δ) the generalized CBPK predictor. The proof of the following is in the

Appendix, Section A.

Proposition 1. For any nonnegative δ in (3.4), the generalized CBPK predictor

for a constant mean model is of the form

Ŷ (x0) = β + w(x0)k(x0)
TK−1(y − β1),

where w(x0) ∈ [1, 1/ρ(x0)
2) (if ρ(x0) = 0, then the range is [1,∞)). For every

nonnegative δ, there is a corresponding w(x0) ∈ [1, 1/ρ(x0)
2).

In the next section, we focus on a generalized CBPK with specific δ that has

desirable properties.

4. Single Nugget Kriging

In this section, we define the Single Nugget Kriging and discuss its properties.

Verification of Definition 1 is in the Appendix, Section B.

4.1. Definition of SiNK

Definition 1. The Single Nugget Kriging (SiNK) predictor is defined as

ŶSiNK(x0) =

β +
1

ρ(x0)
k(x0)

TK−1(y − β1) if ρ(x0) 6= 0,

β otherwise,

which is the maximizer of the conditional likelihood given Y (x0) = y0 with penalty
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pen(y0) = − (y0 − β)2

2k(x0,x0)

ρ(x0)

1 + ρ(x0)
.

Thus, the implicit prior distribution on y0 is y0 ∼ N(β, k(x0,x0)(1 + 1/ρ(x0)).

SiNK is defined as the maximum a posteriori estimator with a prior dis-

tribution on Y (x0). We inflate the prior variance only at x0 by the amount of

uncertainty measured by ρ(x0), to reduce the dependency on the prior. This

is equivalent to assuming that there exist a nugget effect only on Y (x0), so we

call the method Single Nugget Kriging. We choose the specific penalty, or prior

variance, because it yields two desirable properties which will be discussed in

section 4.2.

In the geostatistical literature, the nugget effect is designed to model func-

tions that are discontinuous (Stein (1999)). In our definition, we inflate the prior

variance, like a nugget of size k(x0,x0)/ρ(x0) would, but only on Y (x0) to in-

troduce the additional uncertainty. This nugget is not from any additional noise

assumption, and thus SiNK is also an interpolator like simple Kriging. If one

wants to introduce a nugget effect or Gaussian noise to the Gaussian process, the

SiNK predictor can be adjusted accordingly.

Remark 1. The SiNK predictor is the CBPK predictor with δ = 1/ρ(x0) in

(3.4); it is the linear predictor Ŷ (x0) = β + λT (y − β1) where λ is the solution

of the optimization problem

minimize
λ

E[(y0 − Ŷ (x0))
2] +

1

ρ(x0)
E[(y0 − E[Ŷ (x0)

∣∣y0])2].
This can be verified by plugging in δ = 1/ρ(x0) to (A.1).

Remark 2. The SiNK prediction can be discontinuous at points where ρ(x0) = 0,

which happens if and only if k(x0) = 0. However, k(x0) = 0 means that we do

not have any information at the point x0, so predicting with the prior mean is

the best we can do. Note that k(x0) = 0 could only happen if we use a kernel

that has 0 in its range. If we use a strictly positive kernel, such as the Matérn

kernel, then ρ(x0) > 0 for every x0. In practice, even though the prediction is

theoretically well defined, dividing by ρ(x0) can be numerically unstable when ρ

is close to zero. A practical fix is to use

ŶSiNK,ε(x0) = β +
1

max(ρ(x0), ε)
k(x0)

TK−1(y − β1) (4.1)

for a small ε. We use ε = 10−3 in our numerical work. A larger ε would pro-

tect from bad estimators of length-scale parameters, something that we did not

encounter in our numerical experiments.
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Remark 3. One can construct the credible interval around the SiNK predic-

tor based on the posterior from the implicit new prior y0 ∼ N(β, k(x0,x0)(1 +

1/ρ(x0)) at x0, which is wider than the credible interval from standard Kriging.

Further theoretical and empirical study on constructing prediction intervals of

SiNK is of interest.

As mentioned in Section 3, the ratio δ is now a function of x0. The condi-

tional bias penalty is larger when we have less information on the target function

value. Penalizing by the conditional bias by an appropriate multiple of the con-

ditional bias squared improves performance at extreme values. The rationale of

using δ = 1/ρ(x0) will be discussed in Section 4.2.

4.2. Properties

The main feature of SiNK is its stability which will be represented as bound-

edness and localness in this section. We find that the SiNK predictor is the unique

predictor with these properties in the class of generalized CBPK predictors with

MSPE-CB ratio δ as a function of ρ(x0).

If the covariance function is stationary, then the SiNK predictor is bounded.

On the contrary, CMLE is unbounded when ρ(x0) approaches 0. The proof is

given in the Appendix, Section C.

Proposition 2 (Boundedness).

|ŶSiNK(x0)− β| ≤
√
k(x0,x0)

√
(y − β1)TK−1(y − β1). (4.2)

Thus, if the covariance function is stationary, with probability 1,

sup
x0∈Rd

|ŶSiNK(x0)| <∞. (4.3)

For a predictor with inflated residual of simple Kriging predictor to be

bounded, the maximum amount of inflation is of order 1/ρ(x0). Roughly speak-

ing, SiNK is the predictor with maximum inflation of the residual term that

satisfies boundedness.

To discuss the localness property, we consider a more specific covariance class

that contains many widely used covariance functions. A measurable function

f : R+ → R+ is called rapidly varying of index −∞, in the sense of de Haan

(1970), if for any t > 1,

lim
x→∞

f(tx)

f(x)
= 0

holds. The class of rapidly varying functions is important in asymptotic analysis

(see Bingham, Goldie and Teugels (1989)). The Matérn kernel with ν > 0 is
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rapidly varying of index −∞, because the modified Bessel function of the second

kind satisfies Kν(z) ∝ exp(−z)/
√
z (1+O(1/z)) as z →∞. The Gaussian kernel

is also rapidly varying of index −∞. This technical assumption is necessary only

for proving the localness property stated in Proposition 3. There are kernels that

are not rapidly varying of index −∞ such as rational quadratic covariance kernel

(Rasmussen (2006)).

Now let Jk be a set of points that have different distances from observations

in the k’th coordinate,

Jk := {x0

∣∣ |(x0 − xj)k| 6= |(x0 − xl)k| for all j 6= l, j, l ∈ {1, 2, . . . , n}}, (4.4)

where k ∈ {1, 2, · · · , d}. In Proposition 3 and Theorem 1, we assume that the new

point x0 is in Jk to break the ties; we remove a measure zero set to simplify the

argument. Also, define the neighborhood of an observation xj for j ∈ {1, 2, . . . , n}
as

B(xj) := {x0

∣∣ K(x0,xj) > K(x0,xl) ∀l 6= j, l ∈ {1, 2, . . . , n}}. (4.5)

Thus, if x0 ∈ B(xj), then xj is the closest observation to x0 in terms of covari-

ance.

Proposition 3 (Localness). Suppose that the covariance function is a tensor

product of stationary, rapidly varying of index −∞, positive kernels with length

scale parameter θ = (θ1, . . . , θd). Then

lim
θk→0

sup
x0∈B(xj)∩Jk

|Ŷ (x0)− Y (xj)| = 0

with probability 1, where Jk and B(xj) are sets of points defined in (4.4) and

(4.5), respectively.

Thus, as θk → 0, if xj is the closest observation (in k’th coordinate) to

x0, then the SiNK predictor Ŷ (x0) converges to Y (xj). We can then show that

the SiNK predictor is the only predictor that satisfies localness in the class of

generalized CBPK predictors. As θk → 0, the simple Kriging predictor converges

to the prior mean β.

Theorem 1 (Uniqueness). Consider a conditional biased penalized Kriging pre-

dictor

Ŷ (x0) = β + w(x0)k(x0)
TK−1(y − β1),

such that the covariance function is a tensor product of stationary, rapidly varying

of index −∞, positive kernels with length scale parameter θ = (θ1, . . . , θd), and

w(x0) ∈ [1, 1/ρ(x0)
2] is a continuous function of ρ(x0). Suppose that x1, . . . ,xn ∈
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Jk (4.4). If there exists a k ∈ {1, 2, . . . , d} such that

lim
θk→0

sup
x0∈B(xj)∩Jk

|Ŷ (x0)− Y (xj)| = 0 (4.6)

holds with probability 1, where Jk and B(xj) are sets of points defined in (4.4)

and (4.5), respectively, then w(ρ(x0)) = 1/ρ(x0), and Ŷ (x0) is the SiNK predic-

tor.

The proofs of Proposition 3 and Theorem 1 are given in the Appendix,

Section D. Restricting w(x0) to be a function of ρ(x0) enables us to guarantee that

w(x0) ∈ [1, 1/ρ(x0)
2]. For example, w(x0) = 1/ρ(x0) is always in [1, 1/ρ(x0)

2].

Another example for necessity of this condition is limit Kriging (Joseph (2006))

where the predictor has w(x0) = 1/(k(x0)
TK−11). The limit Kriging predictor

has the localness property, but is not guaranteed to be a CBPK with nonnegative

ratio δ, which means we cannot guarantee better performance at extreme values.

Figures 1 and 2 illustrate the property of SiNK and the difference from

ordinary Kriging. The function used in Figure 1 is the 2-dimensional Zakharov

function in [0, 1]2 is

f(x) =

d∑
i=1

x2i +

( d∑
i=1

0.5ixi

)2

+

( d∑
i=1

0.5ixi

)4

, (4.7)

where d = 2, and the input points are 4 midpoints of the edges of a unit square.

We fitted ordinary Kriging and SiNK with an estimated constant mean and

tensor product Matérn 5/2 covariance. To visualize the difference, we evaluated

the predictors on x1 = x2, the dashed diagonal line on the square. Figure 2

shows the predictions with two different sets of parameters. For θ1 = θ2 = 1, the

predictions are quite similar because ρ(x0) ≈ 1 for all x0 ∈ [0, 1]2. However, when

θ1 = θ2 are close to zero (0.05), we observe significant differences between the two

predictions. We also observe the localness property of SiNK. The ρ(x0) are close

to zero for most of the plotted points, and thus the ordinary Kriging predictor is

close to the estimated constant mean for points far from the observations. The

SiNK predictor uses the function value of the observation that is the closest to

the target point.

The localness property of SiNK is also related to the fact that the SiNK

prediction at x0 only depends on the ratios of the correlations with observed

function values. For instance, suppose that we predict at another point x′0 with

covariance vector k(x′0) = ck(x0), where c is in (0, 1). Then

ŶSiNK(x′0) = β +
k(x′0)

TK−1(y − β1)√
k(x′0)

TK−1k(x′0)
= ŶSiNK(x0).



SINGLE NUGGET KRIGING 659

Figure 1. Two-dimensional Zakharov function. The gray surface is the true function,
four points on the surface are the observations. We compare the SiNK predictions and
ordinary Kriging predictions on the dotted line x1 = x2 in Figure 2.

(a) θ = 1. (b) θ = 0.05.

Figure 2. Illustration of the difference between ordinary Kriging and SiNK. SiNK per-
forms better at extreme values than ordinary Kriging, more significantly when the cor-
relations between function values are smaller.

Thus, the SiNK prediction at x′0 is the same as the prediction at x0. However,

the simple Kriging prediction is shrunk to β by a factor of c. Thus, even if x′0
is far away from inputs, only the ratios of the correlation determine the SiNK

prediction. Accordingly, SiNK does not automatically converge to the prior mean

β as k(x0)→ 0, for instance if one of the θj → 0.
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4.3. Mean squared prediction error at extreme values

Since the simple Kriging predictor is the BLUP, the SiNK predictor has

larger MSPE than the simple Kriging predictor. However, we can show that

SiNK will be only slightly inferior; the ratio of MSPEs is bounded. The proof is

given in the supplementary material, Section S2.

Proposition 4 (MSPE comparison).

E[(ŶSiNK(x0)− Y (x0))
2] =

2

1 + ρ(x0)
E[(ŶK(x0)− Y (x0))

2],

the RMSPE of SiNK is at most
√

2 times larger than the RMSPE of Kriging.

Here we show that SiNK has improved performance at extreme values. This

can be represented in two ways; conditioning on a single extreme value of Y (x0),

and conditioning on a region of extreme Y (x0) values.

Proposition 5. For a input x0 with ρ(x0) > 0, if∣∣∣∣ y0 − β√
k(x0,x0)

∣∣∣∣ ≥
√

(1 + ρ(x0))2

(1 + ρ(x0))2 − 1

holds, then

E[ (ŶSiNK(x0)− Y (x0))
2
∣∣Y (x0) = y0 ] ≤ E[ (ŶK(x0)− Y (x0))

2
∣∣Y (x0) = y0 ].

Proof. Directly follows from (S2.1) in the proof of Proposition 4.

Proposition 6. Let φ(·) and Φ(·) be the density function and distribution func-

tion of the standard normal, respectively. Let S(x0) = |(Y (x0)−β)/(
√
k(x0,x0))|.

For M > 0, if

ρ(x0) ≥ −1 +

√
1 +

1− Φ(M)

Mφ(M)

holds, then

E
[
(ŶSiNK(x0)− Y (x0))

2
∣∣S(x0) ≥M

]
≤ E

[
(ŶK(x0)− Y (x0))

2
∣∣S(x0) ≥M

]
.

The proof of Proposition 6 is given in the supplementary material, Section

S3. S(x0) represents the z-score of the function value.

Figure 3 shows the relation between ρ(x0) and the critical z-score or the

threshold M for the z-score. The ratio of the region-conditional mean squared

prediction error

CMSPESiNK

CMSPEK
=

E
[
(ŶSiNK(x0)− Y (x0))

2
∣∣S(x0) ≥M

]
E
[
(ŶK(x0)− Y (x0))2

∣∣S(x0) ≥M
] (4.8)
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ρ

�

(a) The level curve for the mean squared error.
SiNK outperforms simple Kriging in the region
above and to the right of the given curves.

ρ

(b) Contour plot of CMSPESiNK/CMSPEK (4.8).
The ratio decreases as the threshold M increases.

Figure 3. Relation between ρ(x0) and z-score.

decreases as the threshold M increases.

5. Numerical Experiments

For numerical simulations, we used the DiceKriging package in R by Roustant,

Ginsbourger and Deville (2012). We fit the constant mean model for ordinary

Kriging and SiNK, with the maximum likelihood estimator of the constant mean

β̂ = (1TK−11)−11TK−1y. For the covariance function, we used tensor products

of Matérn ν = 5/2 kernels with maximum likelihood estimators of the length-

scale parameters θ1, . . . , θd, unless specified otherwise. We used ε = 10−3 in

(4.1).

To measure the performance of a predictor, we computed the empirical in-

tegrated squared error (EISE)

1

nT

nT∑
j=1

(Ŷ (xtest,j)− Y (xtest,j))
2

with an independent set of nT test points. Note that EISE is different from

the MSPE; MSPE is the expected squared prediction error at a fixed point

x0. The EISE ratio of SiNK is computed by dividing the EISE of SiNK by

the EISE of ordinary Kriging. We also report the test R2 of the predictors,

1−EISE/(sample variance of Y (xtest)), to understand the relative errors of pre-

dictors. To measure the performance of a predictor at extreme values, we also

computed the extreme empirical integrated squared error (EEISE)
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Table 1. Performance comparison of ordinary Kriging and SiNK for a realization of
Gaussian process and piston function. The EISE ratios are the EISE of SiNK divided
by the EISE of ordinary Kriging.

Function Gaussian Process Piston Function
Number of observations 100 14
EEISE Ratio (SiNK/Ordinary Kriging) 0.820 0.814
EISE Ratio (SiNK/Ordinary Kriging) 1.020 0.887
R2 Ordinary Kriging 0.818 0.674

nT∑
j=1

(Ŷ (xtest,j)− Y (xtest,j))
21{S(xtest,j)≥2}

nT∑
j=1

1{S(xtest,j)≥2}

.

5.1. Gaussian process

We generated a realization of a 7-dimensional Gaussian process with zero

mean and Matérn covariance with length-scale hyperparameters θ = (1, 1, 1, 1, 1,

1, 1) and stationary variance k(x,x) = σ2 = 1. The chosen observations were 100

points i.i.d. uniform in [0, 1]7 and the test points were 2,000 points i.i.d. uniform

in [0, 1]7.

To emulate the situation where the hyperparameters are unknown, we esti-

mated the hyperparameters by maximizing the likelihood. The estimated mean

was β̂ = 0.143, the estimated length-scale hyperparameters were θ̂ = (1.29, 0.92,

1.18, 1.41, 0.95, 0.76, 1.32), and the estimated stationary variance was σ̂2 = 0.94.

The performance comparison between SiNK and ordinary Kriging is in Table 1.

We observe that SiNK had slightly inferior EISE, but showed better performance

at extreme values.

Figure 4 shows the prediction at test points with extreme function values.

We first sorted the test points by the true function values and see the 1% largest

and smallest function values. We observe that SiNK reduces the conditional bias

by inflating the residual term. Differences are small but consistently in the right

direction.

5.2. Piston function

We examined the performance of SiNK in a computer experiment. The

piston simulation function in Zacks (1998) models the circular motion of a piston

within a cylinder. The response C is the time it takes to complete one cycle, in

seconds. The formula for the function is
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(a) Prediction at test points with 1% largest func-
tion values.

���
(b) Prediction at test points with 1% smallest
function values.

Figure 4. Ordinary Kriging and SiNK for a realization of 7-dimensional Gaussian process.
Rank is the order of the true function values of the test points.

Table 2. Input variables x for the piston function.

M ∈ [30, 60] piston weight (kg)
S ∈ [0.005, 0.020] piston surface area (m2)
V0 ∈ [0.002, 0.010] initial gas volume (m3)
k ∈ [1, 000, 5, 000] spring coefficient (N/m)
P0 ∈ [90, 000, 110, 000] atmospheric pressure (N/m2)
Ta ∈ [290, 296] ambient temperature (K)
T0 ∈ [340, 360] filling gas temperature (K)

C(x) = 2π

√
M

k + S2(P0V0/T0)(Ta/V 2)
,

where

V =
S

2k

(√
A2 + 4k

P0V0
T0

Ta −A

)
and A = P0S + 19.62M − kV0

S
.

The description of the input variables is in Table 2. For this example, we adopted

the Randomized QMC design (Faure sequence base 7) for observations and test

points, because the number of observation is small. In Table 1, we see that

in this case SiNK performs better not only at extreme values but also overall.

This result possibly comes from the model mismatch of Gaussian process for the

piston function; more specifically, the reduction of conditional bias may have had

a large effect on the test error here.
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(a) Prediction at the test points with 1% largest
function values.

(b) Prediction at the test points with 1% small-
est function values.

Figure 5. ordinary Kriging and SiNK for the piston function. Rank is the order of the
true function values of the test points.

Again, in Figure 5 the SiNK predictions are better at the test points with

extreme function values than the ordinary Kriging predictions, and the difference

is significant at the test points with 1% smallest function values. The inflation

of the residual is consistently in the right direction, and larger than that of the

Gaussian process example.

5.3. Other functions

We fitted ordinary Kriging, limit Kriging, and SiNK for several deterministic

functions and compared the performances. The test function codes are from

Bingham’s website (Bingham (2013)). See the supplementary materials, Section

S4 for the details of the test functions. For each test function, we trained with

100 independent sets of input points and computed the averages and standard

deviations of metrics. The training points and test points were independent and

uniformly distributed in the domain of inputs. Table 3 shows the dimension of

the function, the number of observed points and test points, covariance type, R2,

EISE ratio, and EISE ratio at extreme values for each function. The number of

training points for fitting each function was chosen so that the R2 of ordinary

Kriging is roughly 0.95, for all but the Robot Arm function which is a comparably

difficult function to fit with our prediction methods.

We observe that for the five functions that we considered, SiNK performed

better than ordinary Kriging in terms of EISE, and the performance gets even

better for extreme values in terms of EISE. For instance, for the Welch function,



SINGLE NUGGET KRIGING 665

Table 3. Performance comparison among ordinary Kriging, limit Kriging and SiNK.
The average and standard deviation of metrics from 100 independent set of inputs are
reported. The EISE ratios are the EISE of SiNK or limit Kriging divided by the EISE
of ordinary Kriging. The Friedman function did not have extreme values for most of the
simulations.

Borehole Welch Piston Friedman Robot Arm

Dimension 8 20 7 5 8

Training, test 32, 5,000 320, 5,000 49, 5,000 50, 5,000 512, 5,000

Covariance type Matérn 5/2 Matérn 5/2 Matérn 5/2 Matérn 5/2 Matérn 5/2

Fraction of extremes 0.091 (± 0.050) 0.249 (± 0.026) 0.072 (± 0.037) 0.000 (± 0.001) 0.051 (± 0.015)

EEISE Ratio (SiNK) 0.718 (± 0.084) 0.554 (± 0.068) 0.819 (± 0.063) NA 0.696 (± 0.040)

EEISE Ratio (Limit) 0.694 (± 0.134) 0.675 (± 0.033) 0.802 (± 0.121) NA 0.877 (± 0.035)

EISE Ratio (SiNK) 0.838 (± 0.095) 0.813 (± 0.070) 0.939 (± 0.064) 0.978 (± 0.021) 1.008 (± 0.027)

EISE Ratio (Limit) 0.754 (± 0.102) 0.781 (± 0.023) 0.903 (± 0.083) 0.966 (± 0.033) 0.985 (± 0.012)

R2 (OK) 0.970 (± 0.015) 0.948 (± 0.005) 0.967 (± 0.011) 0.973 (± 0.013) 0.838 (± 0.011)

the SiNK predictions at points with extreme function values (function values

such that |z-score| > 2) have roughly half EISE of the EISE of ordinary Krig-

ing predictions. In addition, we observe that the performance of limit Kriging

and SiNK is very similar in terms of EISE. Limit Kriging also shows improved

performance at extreme values compared to ordinary Kriging, but the improve-

ment is smaller or no different than the improvement of SiNK. For the Friedman

function, there was not a test point function value which had |z-score| larger

than 2 for most of the simulations, due to the large estimate of the stationary

variance σ2 = k(x,x). A suspicious estimate of the stationary variance can be

found occasionally in practice, but it is not a problem for prediction because all

three predictors that we are comparing do not depend on the estimate of σ2.

6. Discussion

We have presented an alternative to Kriging with improved predictions at

the extreme values. We first found a link between conditional likelihood at the

target and CBPK, and used it to define SiNK. In addition, we showed that

SiNK has a boundedness and a localness property. In numerical experiments,

we observed that SiNK generally performs better not only at extreme values but

also in terms of overall integrated squared error. This result is possibly because

the functions used in the examples may not behave like typical realizations of

stationary Gaussian processes.

Supplementary Materials

The online supplementary materials contain proofs of the theoretical results
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and details on the test functions used in the numerical experiments.
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Appendix

A. Proof of Proposition 1 (Generalized CBPK)

Proof. Without loss of generality, let β = 0. Expanding (3.4), we get

E[(y0 − λTy)2] + δE[(y0 − E[λTy|y0])2]
= k(x0,x0)− 2λTk(x0) + λTKλ+ δE[(y0 − λT m̃)2]

= k(x0,x0)− 2λTk(x0) + λTKλ+ δ

(
1− λTk(x0)

k(x0,x0)

)2

k(x0,x0).

This is a quadratic function of λ. Thus, the minimzing λ is

λ̂ =

(
K +

δ

k(x0,x0)
k(x0)k(x0)

T

)−1
(k(x0) + δk(x0)) =

δ + 1

δρ(x0)2 + 1
K−1k(x0)

by the Woodbury formula. Then w(x0) = (δ + 1)/(δρ(x0)
2 + 1), and

Ŷ (x0) = β +
δ + 1

δρ(x0)2 + 1
k(x0)

TK−1(y − β1). (A.1)

If ρ(x0) 6= 0, then for δ ≥ 0, w(x0)) ∈ [1, 1/ρ(x0)
2), and lim

δ→∞
w(x0) = 1/ρ(x0)

2.

If ρ(x0) = 0, then for δ ≥ 0, w(x0) ∈ [1,∞), and lim
δ→∞

w(x0) =∞.

B. Definition of SiNK

The logarithm of the posterior probability (up to a constant) is

log p(y0|y) = −1

2
(y − m̃)T K̃−1(y − m̃)− ρ(x0)

2(1 + ρ(x0))

(y0 − β)2

k(x0,x0)
.

Differentiating with respect to y0, we get

∂ log p(y0|y)

∂y0
=

1

k(x0,x0)
(y − m̃)T K̃−1k(x0)−

ρ(x0)

1 + ρ(x0)

(y0 − β)

k(x0,x0)

=
1

(1− ρ(x0)2)k(x0,x0)
(y − m̃)TK−1k(x0)−

ρ(x0)

1 + ρ(x0)

(y0 − β)

k(x0,x0)

from (S1.1). If ρ(x0) 6= 0, then solving ∂ log p(y0|y)/∂y0 = 0 leads to

ŷ0 = β +
1

ρ(x0)
k(x0)

TK−1(y − β1).
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C. Proof of Proposition 2 (Boundedness)

Proof. By the Cauchy-Schwarz inequality,

|ŶSiNK(x0)− β| =
1

ρ(x0)
|k(x0)

TK−1(y − β1)|

≤ 1

ρ(x0)

√
k(x0)TK−1k(x0)

√
(y − β1)TK−1(y − β1)

=
√
k(x0,x0)

√
(y − β1)TK−1(y − β1)

and equality holds when K−1/2k(x0) and K−1/2(y − β1) are parallel. If the

covariance function is stationary, then the right hand side of (4.2) does not

depend on x0, thus (4.3) holds.

D. Proof of Theorem 1 and Proposition 3 (Localness and Uniqueness)

Proof. Let the stationary variance K(x,x) = σ2. Now for a target point x0 ∈
B(xj) ∩ Jk, for l 6= j, from the rapidly varying of index −∞ condition,

lim
θk→0

K(x0,xl)

K(x0,xj)
= lim

θk→0

d∏
i=1

Cθi(|(xl − x0)i|)
Cθi(|(xj − x0)i|)

= lim
θk→0

d∏
i=1

C1 (|(xl − x0)i|/θi)
C1 (|(xj − x0)i|/θi)

= 0.

Thus we obtain

lim
θk→0

1

K(x0,xj)
k(x0) = ej ,

where ej is the j-th unit vector. Noting that xj ∈ B(xj) ∩ Jk, we have

lim
θk→0

1

σ2
K = In,

where In is the n× n identity matrix. Thus,

lim
θk→0

ρ2

K(x0,xj)2
= lim

θk→0

k(x0)
TK−1k(x0)

σ2K(x0,xj)2
=

1

σ4
and

lim
θk→0

σ2k(x0)
TK−1(y − β1)

K(x0,xj)
= yj − β.

Now note that

Ŷ (x0) = β + w(ρ)k(x0)
TK−1(y − β1)

= β + w(ρ)ρ
K(x0,xj)

ρσ2
σ2k(x0)

TK−1(y − β1)

K(x0,xj)
.

Thus, to satisfy (4.6),

lim
θk→0

w(ρ)ρ = 1 (A.2)

is the condition that needs to hold. For the SiNK predictor, w(ρ) = 1/ρ, so the
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condition holds, and therefore SiNK has the localness property and Proposition

3 holds.

The limit range of ρ as θk → 0 needs to be determined. For fixed x0 ∈
B(xj) ∩ Jk, ρ → 0 as θk → 0. Now for any δ ∈ (0, 1], let ε = C−11 (δ) and

x0 = xj+εθkek. For all sufficiently small and positive θk, we have x0 ∈ B(xj)∩Jk.
Then

lim
θk→0

K(x0,xj)

σ2
= lim

θk→0

d∏
i=1

Cθi((xj − x0)i) = lim
θk→0

Cθk(εθk) = C1(ε) = δ.

Thus, lim
θk→0

ρ = δ for our selection of x0. For (A.2) to hold, since w is a continuous

function of ρ, w(δ)δ = 1 must hold for all δ ∈ (0, 1]. To put it differently, if (4.6)

holds, then it is the SiNK predictor.
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