# MULTI-ASSET EMPIRICAL MARTINGALE PRICE ESTIMATORS FOR FINANCIAL DERIVATIVES 

Shih-Feng Huang and Guan-Chih Ciou<br>National University of Kaohsiung, Taiwan

## Supplementary Material

We conducted several simulation scenarios under multivariate Brownian motion, multivariate GARCH models with normal and double exponential innovations, multivariate versions of Merton (1976)'s jump-diffusion models and multivariate versions of Hull and White (1987)'s and Heston (1993)'s stochastic volatility models to investigate the efficiency of the multi-asset EMS and EPMS price estimators. The performance of the asymptotic distribution of the multi-asset EPMS price estimator was also examined under various simulation cases. Detailed proofs were also given in this supplement.

## S1 Simulation study

## S1.1 Multivariate geometric Brownian motion model

Let the underlying assets $\left(S_{1, t}, \ldots, S_{n, t}\right)$ satisfy the following multivariate geometric Brownian motion model:

$$
\begin{equation*}
d S_{i, t} / S_{i, t}=\mu_{i} d t+\sigma_{i} d W_{i, t} \tag{S1.1}
\end{equation*}
$$

where $\mu_{i}$ is the expected return, $\sigma_{i}$ is the volatility and $W_{i, t}$ is the Brownian motion of the $i$ th underlying asset, $i=1, \ldots, n$. Moreover, we assume that $W_{i, t}, i=1, \ldots, n$, are correlated with a time-homogeneous correlation matrix $\boldsymbol{\rho}=\left(\rho_{i, j}\right)$, where $\rho_{i, j}$ denotes the correlation of $W_{i, t}$ and $W_{j, t}$ for $i, j=1, \ldots, n$.

The parameters for computing the prices of the two multi-asset options with (S1.1) are set to be $K=100, S_{i, 0} / K=0.97,1.00$ and 1.03 for the cases of $T=30,270$ days ( 1 year $=365$ days), $r=0.1$ (annualized), $\mu_{i}=0.15$ (annualized), $\sigma_{i}=0.2$ (annualized) for $i=1, \ldots, n, \rho_{j, k}=0.5$ for $j, k=$ $1, \ldots, n$ and $j \neq k$, and $m=10^{4}$ sample paths, where $n=3$ for maximum call options and $n=10$ for geometric average put options. Moreover, we also report the results of a deeper in-the-money (ITM) case for each option when $T=270$ days, that is, $S_{i, 0} / K=1.10$ for the maximum call options and $S_{i, 0} / K=0.90$ for the geometric average put options. For model (S1.1), the change of measure $\Lambda_{T}$ is derived by the multiple dimensional Girsanov Theorem (Shreve, 2004, Theorem 5.4.1) and has the following representation:

$$
\Lambda_{T}=\exp \left\{-L \Sigma^{-1} M\right\},
$$

where $L=\left(\mu_{1}-r, \ldots, \mu_{n}-r\right), M=\left(0.5\left(\mu_{1}-r\right) T+\sigma_{1} W_{1, T}, \ldots, 0.5\left(\mu_{n}-\right.\right.$ $\left.r) T+\sigma_{n} W_{n, T}\right)^{\top}$ and $\Sigma=\left(\sigma_{i j}\right)$ with $\sigma_{i j}=\rho_{i j} \sigma_{i} \sigma_{j}$, for $i, j=1, \ldots, n$.

Under model (S1.1 the theoretical values of the maximum call and geometric average put options can be obtained from their closed-form representations in equation (16) of Huang and Yu (2012) and in Example 3.2 of Huang and Guo (2009), respectively. Table 1 presents the MSE ratios $M R^{Q}$ and $M R^{P}$, which indicate that the EMS and EPMS perform better than the MCQ and MCP under the $Q$ and $P$ measures, respectively, especially for ITM options. For financial risk management and the construction of portfolios, we also care about how to price a vector of options whose payoffs are correlated because they depend on common underlying assets. In Table 1, for each pair of $(K, T)$ and fixed model parameters, the geometric average put option and the maximal call option can be viewed as a 2-dimensional vector of options. The price estimates of these two options are obtained simultaneously by using the same generated underlying asset prices. According to the numerical results given in Table 1, the proposed price estimators can also help to improve the efficiency when pricing a vector of options.

To evaluate the performance of Theorem 2, we compute the coverage rates under various scenarios on the basis of 1,000 replications, where the coverage rate is defined by the percentage of times in which the theoretical value falls into the confidence interval given in (4.1). Simulation results

Table 1: The MSE ratios $\mathrm{MR}^{\mathrm{Q}}$ and $\mathrm{MR}^{\mathrm{P}}$, and the coverage rates of the multi-asset EPMS price estimator by using the asymptotic distribution given in Theorem 2 for pricing the maximum call options and geometric average put options under the multivariate geometric Brownian motion model defined in S1.1.

| Maximum Call Option ( $n=3$ )$S_{0} / K$ | $T=30$ days |  |  | $T=270$ days |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.97 | 1.00 | 1.03 | 0.97 | 1.00 | 1.03 | 1.10 |
| $M R^{\text {Q }}$ | 3.17 | 5.28 | 6.36 | 5.49 | 6.06 | 6.32 | 6.77 |
| $M R^{P}$ | 2.69 | 4.21 | 4.82 | 2.85 | 3.06 | 2.99 | 2.83 |
| 25\% cov. rate | 0.251 | 0.266 | 0.239 | 0.241 | 0.247 | 0.259 | 0.259 |
| $50 \%$ cov. rate | 0.476 | 0.512 | 0.519 | 0.497 | 0.510 | 0.494 | 0.486 |
| $75 \%$ cov. rate | 0.746 | 0.762 | 0.774 | 0.757 | 0.752 | 0.738 | 0.759 |
| 95\% cov. rate | 0.945 | 0.947 | 0.951 | 0.956 | 0.950 | 0.953 | 0.954 |


| Geometric Put Option ( $n=10$ )$S_{0} / K$ | $T=30$ days |  |  | $T=270$ days |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.97 | 1.00 | 1.03 | 0.90 | 0.97 | 1.00 | 1.03 |
| $M R^{\text {Q }}$ | 6.65 | 5.16 | 5.26 | 4.87 | 5.28 | 5.42 | 4.86 |
| $\mathrm{MR}^{\mathrm{P}}$ | 2.93 | 3.85 | 3.62 | 2.40 | 2.21 | 2.05 | 1.78 |
| 25\% cov. rate | 0.234 | 0.245 | 0.275 | 0.252 | 0.234 | 0.254 | 0.254 |
| $50 \%$ cov. rate | 0.487 | 0.502 | 0.533 | 0.504 | 0.490 | 0.483 | 0.483 |
| $75 \%$ cov. rate | 0.761 | 0.749 | 0.740 | 0.760 | 0.752 | 0.731 | 0.731 |
| 95\% cov. rate | 0.957 | 0.943 | 0.947 | 0.957 | 0.950 | 0.951 | 0.951 |

presented in Table 1 indicate that the coverage rates of the multi-asset EPMS price estimator are close to their nominal values. As a result, the asymptotic distribution given in Theorem 2 is a satisfactory approximation to the finite-sample distribution of the EPMS price estimator.

As mentioned in Duan and Simonato (1998) and Huang and Tu (2014) the EMS and EPMS can be combined with two popular variance reduc-

Table 2: The price, $\mathrm{MR}^{\mathrm{Q}}, \mathrm{MR}^{\mathrm{Q} *}, P^{(M C Q)}, P^{(E M S)}$ and $P^{(G H S)}$ for Asian options in the Black-Scholes model.

| $\sigma$ |  | $T=1$ year |  |  |  | $T=3$ years |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $K=40$ | 45 | 50 | 55 | 40 | 45 | 50 | 55 |
| 0.1 | Price | 10.80 | 6.06 | 1.92 | 0.20 | 12.08 | 7.83 | 4.06 | 1.55 |
|  | $\mathrm{MR}^{\mathrm{Q}}$ | 375.7 | 291.7 | 6.5 | 1.3 | 74.6 | 32.9 | 14.3 | 4.2 |
|  | $\mathrm{MR}^{\mathrm{Q} *}$ | 37.6 | 11.1 | 5.9 | 20.3 | 19.3 | 8.6 | 6.6 | 9.4 |
|  | $P^{(M C Q)}$ | 0.95 | 0.94 | 0.62 | 0.12 | 0.86 | 0.83 | 0.65 | 0.35 |
|  | $P^{(E M S)}$ | 0.95 | 0.94 | 0.63 | 0.12 | 0.86 | 0.83 | 0.65 | 0.35 |
|  | $P^{(G H S)}$ | 0.95 | 0.95 | 0.85 | 0.69 | 0.86 | 0.85 | 0.80 | 0.71 |
| 0.3 | Price | 11.09 | 7.15 | 4.17 | 2.21 | 13.08 | 9.94 | 7.37 | 5.37 |
|  | $\mathrm{MR}^{\mathrm{Q}}$ | 67.0 | 6.9 | 5.2 | 3.2 | 18.8 | 14.4 | 6.8 | 6.3 |
|  | $\mathrm{MR}^{\mathrm{Q} *}$ | 12.0 | 4.3 | 8.0 | 10.3 | 7.8 | 8.8 | 9.0 | 10.0 |
|  | $P^{(M C Q)}$ | 0.86 | 0.70 | 0.49 | 0.30 | 0.68 | 0.57 | 0.46 | 0.35 |
|  | $P^{(E M S)}$ | 0.86 | 0.70 | 0.49 | 0.30 | 0.68 | 0.57 | 0.46 | 0.35 |
|  | $P^{(G H S)}$ | 0.93 | 0.88 | 0.82 | 0.76 | 0.82 | 0.79 | 0.75 | 0.72 |

tion techniques, antithetic and control variate simulations. For multi-asset derivatives, one can also combine the proposed method with antithetic and control variate techniques to improve the efficiency of the MC estimator. Another popular and frequently used variance reduction technique is importance sampling. Glasserman, Heidelberger and Shahabud$\operatorname{din}(1999)$ proposed an importance sampling method based on a change of drift for pricing path-dependent options. In the following, we consider the pricing of an arithmetic Asian option on a single underlying asset under standard Black-Scholes assumptions Black and Scholes (1973), which
is a special case of model (S1.1) with $n=1$. The risk-neutral model is described by model (2.2). The payoff of an arithmetic Asian option with strike $K$ is given by $f\left(S_{1,1}, \ldots, S_{1, T}\right)=\max \left(M^{-1} \sum_{i=1}^{M} S_{1, t_{i}}-K, 0\right)$, where $0=t_{0}<t_{1}<\cdots<t_{M}$ and $t_{i}-t_{i-1}$, for $i=1, \ldots, M$, are equidistance. We compare the estimation performance of Glasserman, Heidelberger and Shahabuddin (1999)'s importance sampling price estimator, denoted by GHS, with the EMS. Table 2 presents $\mathrm{MR}^{\mathrm{Q}}$ and $\mathrm{MR}^{\mathrm{Q*}}$, which denotes the MSE ratio of the MCQ to the GHS, with $S_{0}=50, K=40,45,50,55, r=0.05$, $\sigma=0.1,0.3, T=1,3, M=16$ and $10^{4}$ runs. Table 2 also reports the probabilities of $\operatorname{ITM}_{T}=\left\{S_{1, t_{i}}, i=1, \ldots, M: M^{-1} \sum_{i=1}^{M} S_{1, t_{i}}>K\right\}$, where $S_{1, t_{i}}$ are separately generated from the MCQ, EMS and GHS methods, and the corresponding probabilities are denoted by $P^{(M C Q)}, P^{(E M S)}$ and $P^{(G H S)}$, respectively. As shown in Table 2, $P^{(M C Q)}$ and $P^{(E M S)}$ are very close and decrease as $K$ increases for Asian call options. By using the technique of changing drift, $P^{(G H S)}$ are greater than $P^{(M C Q)}$ and $P^{(E M S)}$ in the considered scenarios, especially when $K$ is large. This property of the GHS method helps to generate more samples with positive payoffs than the MC and EMS methods. From the numerical results, this property also leads to more remarkable variance reduction than the EMS for out-of-the-money (OTM) options. On the other hand, when the option is ITM, the absolute
difference between $P^{(G H S)}$ and $P^{(E M S)}$ decreases as $K$ decreases. From this perspective, the superiority of generating samples with positive payoffs by the GHS over the EMS is insignificant for ITM options. Numerical results in Table 2 indicate that the magnitude of reducing variation by the EMS scheme is greater than the GHS for ITM Asian call options.

## S1.2 Multivariate GARCH model

Let the daily prices of the underlying assets, $\left(S_{1, t}, \ldots, S_{n, t}\right)$, satisfy the following multivariate $\operatorname{GARCH}(1,1)$ model:

$$
\left\{\begin{align*}
\log S_{i, t} & =\log S_{i, t-1}+r_{d}+\lambda_{i} \sigma_{i, t}-0.5 \sigma_{i, t}^{2}+\sigma_{i, t} \epsilon_{i, t}  \tag{S1.2}\\
\sigma_{i, t}^{2} & =\beta_{i 0}+\beta_{i 1} \sigma_{i, t-1}^{2}+\beta_{i 2} \sigma_{i, t-1}^{2} \epsilon_{i, t-1}^{2}
\end{align*}\right.
$$

for $i=1, \ldots, n$, where $r_{d}$ denotes the daily risk-free interest rate, $\left(\epsilon_{1, t}, \ldots\right.$, $\epsilon_{n, t}$ ) are assumed to follow a multivariate normal distribution with mean $\mathbf{0} \in \mathbb{R}^{n}$ and a covariance matrix $\Sigma$, denoted by $N(\mathbf{0}, \Sigma)$. In particular, $\Sigma=\left(\rho_{j, k}\right)$ is positive definite and $\rho_{j, k}=1$ if $j=k$, where $j, k=1, \ldots, n$. Moreover, $\beta_{i 0}, \beta_{i 1}, \beta_{i 2}$ are nonnegative, $\beta_{i 1}+\beta_{i 2}<1$, and $\lambda_{i}$ represents the unit risk premium for $i=1, \ldots, n$. We denote model (S1.2) with normal innovations by GARCH-N. In particular, if $n=1$, then model (S1.2) reduces to the GARCH model considered in Duan (1995).

The parameters for computing the prices of the two multi-asset options with S 1.2 are set to be $\sigma_{i, 1}^{2}=\beta_{i 0}\left(1-\beta_{i 1}-\beta_{i 2}\right)^{-1}, \beta_{i 0}=10^{-5}, \beta_{i 1}=$
$0.7, \beta_{i 2}=0.2, \lambda_{i}=0.01$ for $i=1, \ldots, n, \rho_{j, k}=0.5$ for $j \neq k$, where $j, k=1, \ldots, n$, and others are the same as in Table 1. Moreover, let $R_{i, t}=$ $\log \left(S_{i, t} / S_{i, t-1}\right)$ and $\mu_{i, t}=r_{d}+\lambda_{i} \sigma_{i, t}-0.5 \sigma_{i, t}^{2}$ for $i=1, \ldots, n$ and $t=1, \ldots, T$. For model (S1.2), the change of measure $\Lambda_{t}$ is derived by the multivariate Esscher transform (Kijima, 2006) and has the following representation:

$$
\begin{equation*}
\Lambda_{t}=\prod_{k=1}^{t} \exp \left(-L_{k} \Sigma_{k}^{-1} M_{k}\right) \tag{S1.3}
\end{equation*}
$$

where $L_{k}=\left(\lambda_{1} \sigma_{1, k}, \ldots, \lambda_{n} \sigma_{n, k}\right), M_{k}=\left(0.5 \lambda_{1} \sigma_{1, k}+R_{1, k}-\mu_{1, k}, \ldots, 0.5 \lambda_{n} \sigma_{n, k}+\right.$ $\left.R_{n, k}-\mu_{n, k}\right)^{\top}$ and $\Sigma_{k}=\left(\sigma_{i j k}\right)$ with $\sigma_{i j k}=\rho_{i, j} \sigma_{i, k} \sigma_{j, k}$, for $i, j=1, \ldots, n$. Details of the derivation of (S1.3) are presented in Section S2.4.

Table 3 reports the MSE ratios $\mathrm{MR}^{\mathrm{Q}}$ and $\mathrm{MR}^{\mathrm{P}}$. The coverage rates obtained from the asymptotic distribution of the multi-asset EPMS price estimator are also presented. The phenomena shown in Table 3 for the multivariate GARCH-N model are similar to those in Table 1 for the multivariate geometric Brownian motion model. Under the multivariate GARCH-N framework, both the EMS and EPMS price estimators are more efficient than their MC counterparts. In addition, the asymptotic distribution given in Theorem 2 also provides a good approximation in our scenarios.

Next, we demonstrate a particular example to show that the explicit representation of a risk-neutral GARCH model is not convenient to obtain and thus the EMS is not feasible. Suppose that we use the Esscher trans-

Table 3: The MSE ratios $\mathrm{MR}^{\mathrm{Q}}$ and $\mathrm{MR}^{\mathrm{P}}$, and the coverage rates of the multi-asset EPMS price estimator by using the asymptotic distribution given in Theorem 2 for the maximum call options and geometric average put options under the multivariate GARCH-N model.

| Maximum Call Option ( $n=3$ )$S_{0} / K$ | $T=30$ days |  |  | $T=270$ days |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.97 | 1.00 | 1.03 | 0.97 | 1.00 | 1.03 | 1.10 |
| $M R^{\text {Q }}$ | 2.72 | 3.81 | 6.06 | 5.03 | 5.78 | 5.88 | 6.49 |
| $M R^{P}$ | 2.43 | 3.31 | 5.00 | 3.06 | 3.44 | 3.40 | 3.45 |
| $25 \%$ cov. rate | 0.266 | 0.245 | 0.246 | 0.237 | 0.251 | 0.271 | 0.237 |
| $50 \%$ cov. rate | 0.525 | 0.489 | 0.500 | 0.502 | 0.483 | 0.531 | 0.496 |
| $75 \%$ cov. rate | 0.761 | 0.747 | 0.739 | 0.767 | 0.740 | 0.750 | 0.754 |
| 95\% cov. rate | 0.953 | 0.957 | 0.948 | 0.952 | 0.944 | 0.957 | 0.955 |


| $\begin{aligned} & \text { Geometric Put Option }(n=10) \\ & \qquad S_{0} / K \end{aligned}$ | $T=30$ days |  |  | $T=270$ days |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.97 | 1.00 | 1.03 | 0.90 | 0.97 | 1.00 | 1.03 |
| $M R^{Q}$ | 7.93 | 2.95 | 1.61 | 4.69 | 2.36 | 1.97 | 1.72 |
| $\mathrm{MR}^{\mathrm{P}}$ | 10.03 | 3.38 | 1.71 | 8.49 | 3.44 | 2.56 | 2.18 |
| $25 \%$ cov. rate | 0.255 | 0.257 | 0.241 | 0.228 | 0.270 | 0.267 | 0.255 |
| $50 \%$ cov. rate | 0.500 | 0.507 | 0.510 | 0.511 | 0.512 | 0.502 | 0.504 |
| $75 \%$ cov. rate | 0.741 | 0.756 | 0.745 | 0.737 | 0.750 | 0.743 | 0.766 |
| 95\% cov. rate | 0.953 | 0.959 | 0.950 | 0.949 | 0.955 | 0.946 | 0.953 |

form (Gerber and Shiu, 1994) to define the change of measure process for the GARCH model in 1-dimensional case. Let $g_{t}(\cdot)$ be the conditional density function of the $\log$ return $R_{t}=\log \left(S_{t} / S_{t-1}\right)$ given $\mathcal{F}_{t-1}$ and $M_{t}\left(\delta_{t}\right)=$ $E_{t-1}\left\{\exp \left(\delta_{t} R_{t}\right)\right\}$ be the corresponding conditional moment generating function (mgf). The Esscher transform aims to find a risk-neutral density from the family $g_{t}^{*}(x)=\exp \left(\delta_{t} x\right) g_{t}(x) / M_{t}\left(\delta_{t}\right)$ by choosing a $\delta_{t}$ such that the dis-

Table 4: The MSE ratios $\mathrm{MR}^{P}$ for pricing the maximum call options and geometric average put options and the coverage rates of the multi-asset EPMS price estimator by using the asymptotic distribution given in Theorem 2 under the multivariate GARCHDE model.

| Maximum Call Option ( $n=3$ )$S_{0} / K$ | $T=30$ days |  |  | $T=270$ days |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.97 | 1.00 | 1.03 | 0.97 | 1.00 | 1.03 | 1.10 |
| $\mathrm{MR}^{\mathrm{P}}$ | 1.81 | 1.94 | 1.85 | 1.65 | 1.75 | 1.82 | 1.59 |
| $25 \%$ cov. rate | 0.255 | 0.252 | 0.253 | 0.255 | 0.273 | 0.257 | 0.253 |
| $50 \%$ cov. rate | 0.495 | 0.505 | 0.507 | 0.511 | 0.508 | 0.533 | 0.492 |
| $75 \%$ cov. rate | 0.748 | 0.760 | 0.743 | 0.746 | 0.764 | 0.768 | 0.755 |
| 95\% cov. rate | 0.954 | 0.944 | 0.947 | 0.955 | 0.956 | 0.956 | 0.947 |


| Geometric Put Option ( $n=10$ ) | $T=30$ days |  |  | $T=270$ days |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $S_{0} / K$ | 0.97 | 1.00 | 1.03 | 0.90 | 0.97 | 1.00 | 1.03 |
| $M R^{P}$ | 39.64 | 2.95 | 1.09 | 27.11 | 2.86 | 1.77 | 1.24 |
| $25 \%$ cov. rate | 0.227 | 0.243 | 0.220 | 0.265 | 0.222 | 0.228 | 0.254 |
| $50 \%$ cov. rate | 0.475 | 0.504 | 0.488 | 0.511 | 0.476 | 0.482 | 0.496 |
| $75 \%$ cov. rate | 0.727 | 0.753 | 0.738 | 0.753 | 0.739 | 0.744 | 0.742 |
| 95\% cov. rate | 0.943 | 0.944 | 0.943 | 0.955 | 0.950 | 0.947 | 0.943 |

counted stock prices being a martingale, that is, $E_{t-1}^{*}\left\{\exp \left(-r_{d}\right) S_{t}\right\}=S_{t-1}$ or $M_{t}^{*}(1)=\exp \left(r_{d}\right)$, where $E_{t-1}^{*}(\cdot)$ denotes to compute the conditional expectation under $g_{t}^{*}$ and $M_{t}^{*}(z)=M_{t}\left(\delta_{t}+z\right) / M_{t}\left(\delta_{t}\right)$ is the conditional mgf of $R_{t}$ under $g_{t}^{*}$. In the GARCH-N model, we have $M_{t}\left(\delta_{t}\right)=\exp \left\{\left(r_{d}+\lambda \sigma_{t}-\right.\right.$ $\left.\left.0.5 \sigma_{t}^{2}\right) \delta_{t}+0.5 \sigma_{t}^{2} \delta_{t}^{2}\right\}$. By choosing $\delta_{t}=-\lambda / \sigma_{t}$ and after some straightforward calculation, we have $M_{t}^{*}(z)=\exp \left\{\left(r_{d}-0.5 \sigma_{t}^{2}\right) z+0.5 \sigma_{t}^{2} z^{2}\right\}$, which is the mgf of a normal random variable with mean $r_{d}-0.5 \sigma_{t}^{2}$ and variance $\sigma_{t}^{2}$. In the
other words, the risk-neutral density obtained by the Esscher transform is still normally distributed and thus the corresponding risk-neutral GARCHN model can be represented accordingly. However, if we replace the normal assumption of the innovation $\epsilon_{i, t}$ in model (S1.2) by a standardized double exponential distribution, which has fatter tails than $N(0,1)$, and denoted this model by GARCH-DE, the task becomes difficult. In the GARCH-DE model, we have $M_{t}\left(\delta_{t}\right)=\exp \left(\mu_{t} \delta_{t}\right) /\left(1-0.5 \sigma_{t}^{2} \delta_{t}^{2}\right)$ for $\left|\delta_{t}\right|<2^{1 / 2} \sigma_{t}^{-1}$, where $\mu_{t}=r_{d}+\lambda \sigma_{t}-0.5 \sigma_{t}^{2}$. By choosing $\delta_{t}=\left(-\sigma_{t}+\left\{a_{t} \sigma_{t}^{2}+2\left(a_{t}-1\right)^{2}\right\}^{1 / 2}\right) /\left\{\sigma_{t}(1-\right.$ $\left.\left.a_{t}\right)\right\}$, where $a_{t}=\exp \left(\lambda \sigma_{t}-0.5 \sigma_{t}^{2}\right)$, we have $E_{t-1}^{*}\left\{\exp \left(-r_{d}\right) S_{t}\right\}=S_{t-1}$ and $M_{t}^{*}(z)=\exp \left(z \mu_{t}\right)\left(1-0.5 \delta_{t}^{2} \sigma_{t}^{2}\right) /\left\{1-0.5\left(\delta_{t}+z\right)^{2} \sigma_{t}^{2}\right\}$, which is not an mgf of a standard double-exponential random variable anymore. In addition, it is not convenient to derive the distribution from this $M_{t}^{*}(z)$. Therefore, the risk-neutral model for the GARCH-DE case is not convenient to obtain.

For the multivariate GARCH-DE case, we assume that the processes of the underlying assets are independent. Hence, the change of measure process derived by the Esscher transform for the GARCH-DE model can be obtained directly by Proposition 3.3 of Huang (2014):

$$
\Lambda_{t}=\prod_{k=1}^{t} \prod_{i=1}^{n}\left[1-0.5\left(\delta_{i, k}^{*} \sigma_{i, k}\right)^{2}\right] \exp \left\{\delta_{i, k}^{*}\left(R_{i, k}-r_{d}-\lambda_{i} \sigma_{i, k}+0.5 \sigma_{i, k}^{2}\right)\right\}
$$

where $\delta_{i, k}^{*}=\left(-\sigma_{i, k}+\left\{a_{i, k} \sigma_{i, k}^{2}+2\left(a_{i, k}-1\right)^{2}\right\}^{1 / 2}\right) /\left\{\sigma_{i, k}\left(1-a_{i, k}\right)\right\}$ and $a_{i, k}=$ $\exp \left(\lambda_{i} \sigma_{i, k}-0.5 \sigma_{i, k}^{2}\right)$. Since the EMS procedure is not feasible for the

GARCH-DE model under the framework of Esscher transform, only the results of the EPMS and MCP price estimators are presented in Table 4. Numerical results indicate that the EPMS still has better performance than the MCP and the asymptotic distribution of the EPMS still provides a reliable approximation in the GARCH-DE model.

## S1.3 Multivariate jump-diffusion model

In this section, we consider applying the proposed price estimators to multivariate versions of Merton (1976)'s jump-diffusion models for investigating the effects of the jump frequency and jump size on the pricing performance. Let the underlying assets $\left(S_{1, t}, \ldots, S_{n, t}\right)$ satisfy the following multivariate jump-diffusion model under the $P$ measure:

$$
\begin{equation*}
d S_{i, t} / S_{i, t}=\left(\mu_{i}-\lambda_{i} k\right) d t+\sigma_{i} d W_{i, t}+\left(Y_{i, t}-1\right) d N_{i, t}, \tag{S1.4}
\end{equation*}
$$

where $\mu_{i}, \sigma_{i}$ and $W_{i, t}$ are defined the same as in model (S1.1), $N_{i, t}, i=$ $1, \ldots, n$, are independent Poisson processes with intensity $\lambda_{i}, i=1, \ldots, n$, respectively, $\log Y_{i, t}, i=1, \ldots, n$, are i.i.d. $N\left(\alpha, \theta^{2}\right), k \equiv E\left(Y_{i, t}-1\right)=$ $\exp \left(\alpha+0.5 \theta^{2}\right)-1$, and $W_{i, t}, N_{i, t}$ and $Y_{i, t}$ are independent for each $i=$ $1, \ldots, n$. For computing the price of a geometric average put option under model (S1.4), we first have the following diffusion process for $\bar{S}_{T}=$

Table 5: The MSE ratios $M R^{Q}$ and $M R^{P}$ for pricing maximum call options and geometric average put options, and the coverage rates of the multi-asset EPMS price estimator by using the asymptotic distribution given in Theorem 2 under the multivariate jumpdiffusion model (S1.4).

| Maximum Call Option ( $n=3$ ) |  | $T=30$ days |  |  | $T=270$ days |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $S_{0} / K$ | 0.97 | 1.00 | 1.03 | 0.97 | 1.00 | 1.03 | 1.10 |
| $(\lambda, \theta)=(1,0.05)$ | $M R^{\text {Q }}$ | 2.42 | 3.55 | 4.63 | 4.00 | 5.17 | 4.95 | 5.13 |
|  | $\mathrm{MR}^{\mathrm{P}}$ | 2.15 | 3.07 | 3.49 | 2.15 | 2.82 | 2.43 | 2.59 |
|  | $25 \%$ cov. rate | 0.249 | 0.238 | 0.276 | 0.234 | 0.250 | 0.248 | 0.233 |
|  | 50\% cov. rate | 0.507 | 0.488 | 0.529 | 0.501 | 0.512 | 0.478 | 0.465 |
|  | 75\% cov. rate | 0.761 | 0.748 | 0.779 | 0.763 | 0.755 | 0.749 | 0.727 |
|  | 95\% cov. rate | 0.943 | 0.938 | 0.952 | 0.946 | 0.946 | 0.949 | 0.959 |
| $(\lambda, \theta)=(1,0.2)$ | $M R^{\text {Q }}$ | 1.74 | 2.22 | 2.64 | 3.07 | 3.30 | 3.52 | 3.91 |
|  | $\mathrm{MR}^{\mathrm{P}}$ | 1.72 | 2.10 | 2.36 | 2.44 | 2.49 | 2.76 | 2.86 |
|  | $25 \%$ cov. rate | 0.247 | 0.252 | 0.260 | 0.238 | 0.237 | 0.256 | 0.255 |
|  | $50 \%$ cov. rate | 0.493 | 0.513 | 0.508 | 0.507 | 0.485 | 0.490 | 0.493 |
|  | $75 \%$ cov. rate | 0.746 | 0.757 | 0.773 | 0.767 | 0.736 | 0.738 | 0.742 |
|  | 95\% cov. rate | 0.951 | 0.941 | 0.956 | 0.950 | 0.946 | 0.940 | 0.949 |
| $(\lambda, \theta)=(3,0.05)$ | $M R^{\text {Q }}$ | 2.54 | 2.97 | 3.88 | 3.56 | 4.07 | 4.34 | 4.54 |
|  | $M R^{P}$ | 2.27 | 2.63 | 3.04 | 2.30 | 2.31 | 2.36 | 2.74 |
|  | $25 \%$ cov. rate | 0.261 | 0.242 | 0.251 | 0.260 | 0.242 | 0.248 | 0.244 |
|  | $50 \%$ cov. rate | 0.498 | 0.488 | 0.493 | 0.507 | 0.486 | 0.507 | 0.513 |
|  | 75\% cov. rate | 0.751 | 0.759 | 0.740 | 0.758 | 0.732 | 0.747 | 0.761 |
|  | 95\% cov. rate | 0.953 | 0.956 | 0.947 | 0.941 | 0.941 | 0.956 | 0.951 |
| $(\lambda, \theta)=(3,0.2)$ | $M R^{Q}$ | 1.83 | 2.13 | 2.64 | 3.16 | 3.30 | 3.47 | 3.94 |
|  | $M R^{P}$ | 1.81 | 2.17 | 2.45 | 2.90 | 3.09 | 3.14 | 3.29 |
|  | 25\% cov. rate | 0.254 | 0.245 | 0.257 | 0.258 | 0.249 | 0.248 | 0.264 |
|  | $50 \%$ cov. rate | 0.503 | 0.503 | 0.535 | 0.504 | 0.488 | 0.478 | 0.506 |
|  | $75 \%$ cov. rate | 0.767 | 0.735 | 0.765 | 0.741 | 0.751 | 0.773 | 0.739 |
|  | 95\% cov. rate | 0.947 | 0.957 | 0.953 | 0.956 | 0.953 | 0.963 | 0.952 |


| Geometric Put Option ( $n=10$ ) |  | $T=30$ days |  |  | $T=270$ days |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $S_{0} / K$ | 0.97 | 1.00 | 1.03 | 0.90 | 0.97 | 1.00 | 1.03 |
| $(\lambda, \theta)=(1,0.05)$ | $M R^{\text {Q }}$ | 8.70 | 3.65 | 1.76 | 7.43 | 3.55 | 2.86 | 2.15 |
|  | $M R^{P}$ | 12.95 | 4.70 | 2.06 | 20.06 | 7.23 | 5.06 | 3.47 |
|  | $25 \%$ cov. rate | 0.264 | 0.247 | 0.223 | 0.242 | 0.250 | 0.252 | 0.245 |
|  | $50 \%$ cov. rate | 0.504 | 0.510 | 0.478 | 0.519 | 0.505 | 0.498 | 0.503 |
|  | $75 \%$ cov. rate | 0.766 | 0.774 | 0.743 | 0.764 | 0.751 | 0.739 | 0.763 |
|  | $95 \%$ cov. rate | 0.952 | 0.958 | 0.948 | 0.953 | 0.956 | 0.953 | 0.948 |
| $(\lambda, \theta)=(1,0.2)$ | $M R^{\text {Q }}$ | 7.12 | 2.61 | 1.68 | 6.54 | 3.51 | 3.03 | 2.22 |
|  | $\mathrm{MR}^{\mathrm{P}}$ | 10.00 | 5.55 | 2.12 | 17.53 | 7.33 | 5.15 | 3.84 |
|  | 25\% cov. rate | 0.258 | 0.230 | 0.243 | 0.257 | 0.260 | 0.254 | 0.243 |
|  | $50 \%$ cov. rate | 0.480 | 0.488 | 0.498 | 0.500 | 0.508 | 0.497 | 0.502 |
|  | 75\% cov. rate | 0.749 | 0.745 | 0.755 | 0.724 | 0.752 | 0.749 | 0.747 |
|  | 95\% cov. rate | 0.940 | 0.951 | 0.942 | 0.952 | 0.952 | 0.945 | 0.954 |
| $(\lambda, \theta)=(3,0.05)$ | $M R^{\text {Q }}$ | 8.48 | 3.47 | 1.78 | 7.24 | 3.55 | 2.64 | 2.30 |
|  | $M R^{P}$ | 11.95 | 4.59 | 2.23 | 21.09 | 7.10 | 4.67 | 3.75 |
|  | 25\% cov. rate | 0.254 | 0.274 | 0.255 | 0.226 | 0.243 | 0.273 | 0.254 |
|  | $50 \%$ cov. rate | 0.520 | 0.510 | 0.529 | 0.485 | 0.470 | 0.524 | 0.491 |
|  | 75\% cov. rate | 0.762 | 0.764 | 0.762 | 0.731 | 0.739 | 0.759 | 0.742 |
|  | $95 \%$ cov. rate | 0.944 | 0.956 | 0.953 | 0.952 | 0.950 | 0.956 | 0.944 |
| $(\lambda, \theta)=(3,0.2)$ | $M^{\text {Q }}$ | 5.99 | 3.02 | 1.92 | 5.34 | 3.42 | 3.12 | 2.47 |
|  | $M R^{P}$ | 7.36 | 3.85 | 2.10 | 17.83 | 7.30 | 5.90 | 4.99 |
|  | 25\% cov. rate | 0.231 | 0.243 | 0.245 | 0.255 | 0.227 | 0.240 | 0.251 |
|  | $50 \%$ cov. rate | 0.505 | 0.506 | 0.507 | 0.527 | 0.496 | 0.503 | 0.479 |
|  | $75 \%$ cov. rate | 0.748 | 0.746 | 0.758 | 0.759 | 0.747 | 0.738 | 0.745 |
|  | 95\% cov. rate | 0.937 | 0.956 | 0.939 | 0.966 | 0.954 | 0.945 | 0.961 |

$\left(S_{1, T} \cdots S_{n, T}\right)^{1 / n}$ under the $P$ measure:

$$
\begin{equation*}
d \log \bar{S}_{t}=\left(\bar{\mu}-\frac{1}{2 n} \sum_{i=1}^{n} \sigma_{i}^{2}-\bar{\lambda} k\right) d t+\tilde{\sigma} d \widetilde{W}_{t}+\frac{1}{n} \log Y_{t} d \widetilde{N}_{t}, \tag{S1.5}
\end{equation*}
$$

where $\bar{\mu}=n^{-1} \sum_{i=1}^{n} \mu_{i}, \bar{\lambda}=n^{-1} \sum_{i=1}^{n} \lambda_{i}, \tilde{\sigma}=n^{-2} \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{i, j} \sigma_{i} \sigma_{j}, \widetilde{W}_{t}$ is a Brownian motion, $\widetilde{N}_{t}$ is a Poisson process with intensity rate $\tilde{\lambda}=$
$\lambda_{1}+\cdots+\lambda_{n}, \log Y_{t}$ is $N\left(\alpha, \theta_{2}\right)$, and $\widetilde{W}_{t}, \widetilde{N}_{t}$ and $Y_{t}$ are independent. The risk-neutral counterpart of model (S1.5) is

$$
\begin{equation*}
d \log \bar{S}_{t}=\left(r-\frac{1}{2 n} \sum_{i=1}^{n} \sigma_{i}^{2}-\bar{\lambda} k\right) d t+\tilde{\sigma} d \widetilde{W}_{t}^{*}+\frac{1}{n} \log Y_{t} d \widetilde{N}_{t} \tag{S1.6}
\end{equation*}
$$

where $\widetilde{W}_{t}^{*}=\widetilde{W}_{t}+(\bar{\mu}-r) t$ is a Brownian motion under the $Q$ measure derived from the change of measure process $\Lambda_{t}=E_{t}\left(\Lambda_{T}\right)$, in which $\Lambda_{T}$ is defined the same as in model S1.1. In addition, $\Lambda_{t}$ is still independent of $\widetilde{N}_{t}$ and $Y_{t}$, which have the same distributions under the $Q$ measure as in the $P$ measure. By using model (S1.6), the price of a geometric average put option has the following closed-form representation:

$$
\begin{align*}
V_{0}= & e^{-(r-\tilde{r}) T} \sum_{i=0}^{\infty} \frac{e^{-\tilde{\lambda}^{*} T}\left(\tilde{\lambda}^{*} T\right)^{i}}{i!} \\
& \operatorname{BSPut}\left(\bar{S}_{0}, K, r-\tilde{\lambda} k+\frac{i \log (1+k)}{T}, \sqrt{\tilde{\sigma}^{2}+\frac{i \theta^{2}}{T}}, T\right) \tag{S1.7}
\end{align*}
$$

where $\tilde{\lambda}^{*}=\tilde{\lambda}(1+k), \tilde{r}=r-0.5 \sum_{i=1}^{n} \sigma_{i}^{2} / n+0.5 \tilde{\sigma}^{2}-\bar{\lambda} k+\tilde{\lambda} \tilde{k}$ with $\tilde{k}=$ $\exp \left(\alpha / d+0.5 \theta^{2} / d^{2}\right)-1$, and $\operatorname{BSPut}\left(S_{0}, K, r, \sigma, T\right)$ denotes the value of a European put option under the Black-Scholes model with initial stock price $S_{0}$, risk-free interest rate $r$ and instantaneous volatility $\sigma$.

The parameters for computing the prices of the two multi-asset options with S1.4 are set to be the same as in Table 1 except for $r=0.04$ (annualized), $\mu_{i}=0.10$ (annualized), $\lambda_{i}=1,3$ for $i=1, \ldots, n, \alpha=0.06$ and $\theta=0.05,0.2$. The parameters in the jump part are set the same as in Table

1 of Zhu, Ye and Zhou 2015). Table 5 presents the MSE ratios $\mathrm{MR}^{\mathrm{Q}}$ and $M R^{P}$ for geometric average put options, where the true values are obtained by S1.7). Since the derivation of the pricing formula of maximum call options under model (S1.4) is beyond the scope of this study, the expected maximum call option prices are replaced by using the MC method with $10^{5}$ simulations for computing $\mathrm{MR}^{\mathrm{Q}}$ and $\mathrm{MR}^{\mathrm{P}}$ in Table 5. Numerical results in Table 5 indicate that the EMS and EPMS price estimators are capable of improving the efficiency of the MC method. The improvement is significant when applying the EMS to maximum call options with less jump frequency and smaller variance of the jump size, and applying the EMS and EPMS to ITM geometric put options.

## S1.4 Multivariate stochastic volatility model

In this section, we consider applying the proposed price estimators to multivariate versions of Hull and White (1987)'s and Heston (1993)'s stochastic volatility models for investigating the effects of stochastic volatilities on the pricing performance. Let the underlying assets $\left(S_{1, t}, \ldots, S_{n, t}\right)$ satisfy the following multivariate stochastic volatility model under the $P$ measure Hull and White, 1987):

$$
\left\{\begin{align*}
d S_{i, t} / S_{i, t} & =\mu_{i} d t+\sqrt{V_{i, t}} d W_{i, t}^{(1)}  \tag{S1.8}\\
d V_{i, t} / V_{i, t} & =\kappa_{i}\left(\sigma_{i}^{*}-\sqrt{V_{i, t}}\right) d t+\sigma_{i} d W_{i, t}^{(2)}
\end{align*}\right.
$$

Table 6: The MSE ratios $\mathrm{MR}^{\mathrm{Q}}$ and $\mathrm{MR}^{\mathrm{P}}$ for pricing maximum call options and geometric average put options and the coverage rates of the multi-asset EPMS price estimator by using the asymptotic distribution given in Theorem 2 under the multivariate versions of Hull and White (1987)'s stochastic volatility model (S1.8).

| Maximum Call Option ( $n=3$ ) |  | $T=30$ days |  |  | $T=270$ days |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $S_{0} / K$ | 0.97 | 1.00 | 1.03 | 0.97 | 1.00 | 1.03 | 1.10 |
| $(\kappa, \sigma)=(10,0.1)$ | $M R^{\text {Q }}$ | 2.19 | 2.30 | 2.56 | 2.66 | 2.93 | 2.23 | 3.00 |
|  | $M R^{P}$ | 1.92 | 2.01 | 2.10 | 1.91 | 2.04 | 2.03 | 2.08 |
|  | 25\% cov. rate | 0.249 | 0.258 | 0.243 | 0.249 | 0.254 | 0.259 | 0.261 |
|  | 50\% cov. rate | 0.528 | 0.508 | 0.501 | 0.531 | 0.499 | 0.494 | 0.497 |
|  | $75 \%$ cov. rate | 0.761 | 0.737 | 0.748 | 0.775 | 0.758 | 0.747 | 0.753 |
|  | 95\% cov. rate | 0.944 | 0.942 | 0.950 | 0.956 | 0.946 | 0.946 | 0.946 |
| $(\kappa, \sigma)=(5,0.1)$ | $M R^{\text {Q }}$ | 2.17 | 2.44 | 2.89 | 2.74 | 2.69 | 3.06 | 3.16 |
|  | $\mathrm{MR}^{\mathrm{P}}$ | 1.92 | 2.10 | 2.32 | 2.05 | 1.93 | 2.17 | 2.11 |
|  | 25\% cov. rate | 0.238 | 0.286 | 0.257 | 0.245 | 0.261 | 0.264 | 0.245 |
|  | $50 \%$ cov. rate | 0.495 | 0.526 | 0.527 | 0.509 | 0.485 | 0.531 | 0.514 |
|  | 75\% cov. rate | 0.763 | 0.770 | 0.769 | 0.749 | 0.752 | 0.767 | 0.751 |
|  | 95\% cov. rate | 0.952 | 0.958 | 0.966 | 0.946 | 0.945 | 0.959 | 0.952 |
| $(\kappa, \sigma)=(10,1)$ | $M R^{Q}$ | 2.17 | 2.25 | 2.29 | 2.10 | 2.06 | 2.17 | 2.44 |
|  | $M R^{P}$ | 1.81 | 1.86 | 1.82 | 1.51 | 1.42 | 1.62 | 1.50 |
|  | 25\% cov. rate | 0.266 | 0.229 | 0.257 | 0.261 | 0.254 | 0.231 | 0.252 |
|  | 50\% cov. rate | 0.513 | 0.492 | 0.523 | 0.517 | 0.483 | 0.483 | 0.504 |
|  | $75 \%$ cov. rate | 0.759 | 0.746 | 0.761 | 0.726 | 0.731 | 0.745 | 0.750 |
|  | 95\% cov. rate | 0.957 | 0.943 | 0.949 | 0.940 | 0.949 | 0.955 | 0.955 |
| $(\kappa, \sigma)=(5,1)$ | $M R^{\text {Q }}$ | 2.02 | 2.33 | 2.66 | 1.97 | 2.11 | 2.27 | 2.25 |
|  | $M R^{P}$ | 1.70 | 1.94 | 2.09 | 1.17 | 1.36 | 1.36 | 1.46 |
|  | 25\% cov. rate | 0.248 | 0.231 | 0.268 | 0.268 | 0.262 | 0.236 | 0.253 |
|  | $50 \%$ cov. rate | 0.507 | 0.494 | 0.506 | 0.509 | 0.510 | 0.496 | 0.484 |
|  | 75\% cov. rate | 0.751 | 0.731 | 0.763 | 0.758 | 0.772 | 0.753 | 0.747 |
|  | 95\% cov. rate | 0.962 | 0.949 | 0.961 | 0.959 | 0.964 | 0.957 | 0.952 |


| Geometric Put Option ( $n=10$ ) |  | $T=30$ days |  |  | $T=270$ days |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $S_{0} / K$ | 0.97 | 1.00 | 1.03 | 0.90 | 0.97 | 1.00 | 1.03 |
| $(\kappa, \sigma)=(10,0.1)$ | $M R^{\text {Q }}$ | 13.92 | 3.11 | 1.29 | 4.56 | 2.42 | 1.86 | 1.54 |
|  | $M R^{P}$ | 25.89 | 4.09 | 1.43 | 10.46 | 5.09 | 3.09 | 2.18 |
|  | $25 \%$ cov. rate | 0.268 | 0.273 | 0.258 | 0.267 | 0.244 | 0.249 | 0.253 |
|  | 50\% cov. rate | 0.496 | 0.531 | 0.512 | 0.510 | 0.478 | 0.503 | 0.505 |
|  | $75 \%$ cov. rate | 0.748 | 0.769 | 0.741 | 0.754 | 0.738 | 0.753 | 0.768 |
|  | $95 \%$ cov. rate | 0.953 | 0.956 | 0.942 | 0.944 | 0.953 | 0.948 | 0.954 |
| $(\kappa, \sigma)=(5,0.1)$ | $M R^{\text {Q }}$ | 12.89 | 3.07 | 1.35 | 4.59 | 2.46 | 1.93 | 1.48 |
|  | $\mathrm{MR}^{\mathrm{P}}$ | 24.21 | 4.00 | 1.52 | 15.12 | 4.86 | 2.98 | 2.06 |
|  | $25 \%$ cov. rate | 0.252 | 0.252 | 0.248 | 0.269 | 0.256 | 0.247 | 0.252 |
|  | $50 \%$ cov. rate | 0.488 | 0.508 | 0.494 | 0.500 | 0.496 | 0.498 | 0.526 |
|  | $75 \%$ cov. rate | 0.742 | 0.742 | 0.747 | 0.739 | 0.758 | 0.747 | 0.760 |
|  | 95\% cov. rate | 0.941 | 0.954 | 0.948 | 0.953 | 0.957 | 0.947 | 0.952 |
| $(\kappa, \sigma)=(10,1)$ | $M R^{\text {Q }}$ | 14.71 | 3.17 | 1.37 | 5.13 | 2.29 | 1.87 | 1.49 |
|  | $\mathrm{MR}^{\mathrm{P}}$ | 23.34 | 4.08 | 1.48 | 7.50 | 3.61 | 2.69 | 1.92 |
|  | 25\% cov. rate | 0.246 | 0.233 | 0.244 | 0.231 | 0.246 | 0.262 | 0.237 |
|  | $50 \%$ cov. rate | 0.514 | 0.500 | 0.480 | 0.475 | 0.504 | 0.510 | 0.487 |
|  | 75\% cov. rate | 0.773 | 0.734 | 0.744 | 0.750 | 0.764 | 0.749 | 0.736 |
|  | 95\% cov. rate | 0.944 | 0.954 | 0.952 | 0.957 | 0.943 | 0.950 | 0.937 |
| $(\kappa, \sigma)=(5,1)$ | $M R^{\text {Q }}$ | 14.76 | 2.92 | 1.35 | 4.44 | 2.26 | 2.02 | 1.46 |
|  | $\mathrm{MR}^{\mathrm{P}}$ | 26.17 | 3.80 | 1.45 | 4.59 | 2.82 | 2.25 | 1.76 |
|  | 25\% cov. rate | 0.261 | 0.247 | 0.236 | 0.235 | 0.228 | 0.254 | 0.246 |
|  | $50 \%$ cov. rate | 0.487 | 0.493 | 0.499 | 0.497 | 0.479 | 0.496 | 0.514 |
|  | 75\% cov. rate | 0.733 | 0.728 | 0.756 | 0.776 | 0.746 | 0.743 | 0.752 |
|  | $95 \%$ cov. rate | 0.943 | 0.947 | 0.943 | 0.953 | 0.957 | 0.941 | 0.950 |

where $\left\{S_{i, t}, t \geq 0\right\}$ and $\left\{V_{i, t}, t \geq 0\right\}$ are the price and volatility processes, respectively, for the $i$ th underlying asset, $W_{i, t}^{(1)}$ and $W_{i, t}^{(2)}$ are correlated Brownian motions processes with correlation $\rho_{i},\left\{V_{i, t}, t \geq 0\right\}$ is a mean reverting process with rate of reversion $\kappa_{i}$ for $i=1, \ldots, n$. Following Hull
and White (1987)'s derivation, a risk-neutral counterpart of model (S1.8) is

$$
\left\{\begin{align*}
d S_{i, t} / S_{i, t} & =r d t+\sqrt{V_{i, t}} d \widetilde{W}_{i, t}^{(1)}  \tag{S1.9}\\
d V_{i, t} / V_{i, t} & =\kappa_{i}\left(\sigma_{i}^{*}-\sqrt{V_{i, t}}\right) d t+\sigma_{i} d \widetilde{W}_{i, t}^{(2)}
\end{align*}\right.
$$

where $\widetilde{W}_{i, t}^{(1)}=W_{i, t}^{(1)}+t \eta_{i, t}$ with $\eta_{i, t}=\left(\mu_{i}-r\right) / \sqrt{V_{i, t}}, \widetilde{W}_{i, t}^{(2)}=W_{i, t}^{(2)}$, and $d \widetilde{W}_{i, t}^{(1)} d \widetilde{W}_{i, t}^{(2)}=\rho_{i} d t$ for each $i=1, \ldots, n$.

The parameters for computing the prices of the two multi-asset options with S1.8) are set to be the same as in Table 1 . For simplicity, we consider to compute the option prices under the case of independent underlying assets and further set $\sigma_{i}=0.1,1, \sigma_{i}^{*}=0.30$ and $\kappa_{i}=5,10$ for $i=1, \ldots, n$. In addition, the correlation, $\rho_{i}$, of $W_{i, t}^{(1)}$ and $W_{i, t}^{(2)}$ is assumed to be -0.7 and initial value of $V_{i, t}$ is assumed to be $V_{i, 0}=\left(\sigma_{i}^{*}\right)^{2}$ for each $i=1, \ldots, n$. Therefore, the change of measure process can be represented by $\Lambda_{t}=\prod_{i=1}^{n} \exp \left\{-\frac{1}{1-\rho_{i}^{2}}\left(\frac{1}{2} \int_{0}^{t} \eta_{i, s}^{2} d s+\int_{0}^{t} \eta_{i, s} d W_{i, s}^{(1)}-\rho_{i} \int_{0}^{t} \eta_{i, s} d W_{i, s}^{(2)}\right)\right\}$.

By using a daily discretized approximation, model (S1.8) is used to compute the MCP and EPMS price estimates, and model S1.9) is used to compute the MCQ and EMS price estimates. Table 6 presents the MSE ratios $M R^{Q}$ and $\mathrm{MR}^{\mathrm{P}}$ for maximum call options with $n=3$ and for geometric average put options with $n=10$. Numerical results in Table 6 indicate that the

EMS and EPMS price estimators are capable of improving the efficiency of the MC method, especially for ITM options.

Another widely discussed stochastic volatility model in the literature is Heston (1993)'s model. Let the underlying assets ( $S_{1, t}, \ldots, S_{n, t}$ ) satisfy the following multivariate stochastic volatility model under the $P$ measure:

$$
\left\{\begin{align*}
d S_{i, t} & =\mu_{i} S_{i, t} d t+\sqrt{V_{i, t}} S_{i, t} d W_{i, t}^{(1)}  \tag{S1.10}\\
d V_{i, t} & =\kappa_{i}\left(\theta_{i}-V_{i, t}\right) d t+\sigma_{i} \sqrt{V_{i, t}} d W_{i, t}^{(2)}
\end{align*}\right.
$$

where $\left\{S_{i, t}, t \geq 0\right\}$ and $\left\{V_{i, t}, t \geq 0\right\}$ are the price and volatility processes, respectively, for the $i$ th underlying asset, $W_{i, t}^{(1)}$ and $W_{i, t}^{(2)}$ are defined the same as in model S1.8), $\left\{V_{i, t}, t \geq 0\right\}$ is a square root mean reverting process proposed by Cox, Ingersoll and Ross (1985) with long run mean $\theta_{i}$, rate of reversion $\kappa_{i}$, and the volatility of volatility $\sigma_{i}$ for each $i=1, \ldots, n$. Following Heston (1993)'s derivation, a risk-neutral counterpart of model (S1.10) is

$$
\left\{\begin{align*}
d S_{i, t} & =r S_{i, t} d t+\sqrt{V_{i, t}} S_{i, t} d \widetilde{W}_{i, t}^{(1)}  \tag{S1.11}\\
d V_{i, t} & =\kappa_{i}^{*}\left(\theta_{i}^{*}-V_{i, t}\right) d t+\sigma_{i} \sqrt{V_{i, t}} d \widetilde{W}_{i, t}^{(2)}
\end{align*}\right.
$$

where $\widetilde{W}_{i, t}^{(1)}=W_{i, t}^{(1)}+t \eta_{i, t}$ with $\eta_{i, t}=\left(\mu_{i}-r\right) / \sqrt{V_{i, t}}, \widetilde{W}_{i, t}^{(2)}=W_{i, t}^{(2)}+t \xi_{i, t}$ with $\xi_{i, t}=\lambda_{i} \sqrt{V_{i, t}} / \sigma_{i}$, which is called the market price of volatility risk and $\lambda_{i}$ is a constant, $d \widetilde{W}_{i, t}^{(1)} d \widetilde{W}_{i, t}^{(2)}=\rho_{i} d t, \kappa_{i}^{*}=\kappa+\lambda$ and $\theta_{i}^{*}=\kappa_{i} \theta_{i} / \kappa_{i}^{*}$ for each $i=1, \ldots, n$.

Table 7: The MSE ratios $\mathrm{MR}^{\mathrm{Q}}$ and $\mathrm{MR}^{\mathrm{P}}$ for pricing maximum call options and geometric average put options and the coverage rates of the multi-asset EPMS price estimator by using the asymptotic distribution given in Theorem 2 under the multivariate versions of Heston (1993)'s stochastic volatility model (S1.10).

| Maximum Call Option ( $n=3$ ) |  | $T=30$ days |  |  | $T=270$ days |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $S_{0} / K$ | 0.97 | 1.00 | 1.03 | 0.97 | 1.00 | 1.03 | 1.10 |
| $\left(\lambda, \kappa^{*}\right)=(0.01,2)$ | $\mathrm{MR}^{\mathrm{Q}}$ | 2.29 | 2.36 | 2.65 | 2.87 | 2.62 | 2.84 | 2.53 |
|  | $M R^{P}$ | 1.95 | 2.04 | 2.20 | 2.08 | 1.95 | 2.08 | 2.10 |
|  | 25\% cov. rate | 0.257 | 0.227 | 0.262 | 0.234 | 0.246 | 0.235 | 0.254 |
|  | $50 \%$ cov. rate | 0.508 | 0.485 | 0.511 | 0.472 | 0.496 | 0.471 | 0.511 |
|  | $75 \%$ cov. rate | 0.746 | 0.752 | 0.767 | 0.728 | 0.761 | 0.740 | 0.754 |
|  | 95\% cov. rate | 0.940 | 0.955 | 0.949 | 0.954 | 0.962 | 0.959 | 0.955 |
| $\left(\lambda, \kappa^{*}\right)=(0.05,2)$ | $M R^{\text {Q }}$ | 2.13 | 2.37 | 2.85 | 2.60 | 2.82 | 2.72 | 2.66 |
|  | $\mathrm{MR}^{\mathrm{P}}$ | 1.88 | 2.09 | 2.43 | 2.68 | 3.06 | 3.05 | 3.22 |
|  | $25 \%$ cov. rate | 0.240 | 0.237 | 0.231 | 0.263 | 0.262 | 0.240 | 0.239 |
|  | $50 \%$ cov. rate | 0.483 | 0.511 | 0.510 | 0.506 | 0.513 | 0.494 | 0.501 |
|  | $75 \%$ cov. rate | 0.764 | 0.754 | 0.759 | 0.741 | 0.769 | 0.735 | 0.738 |
|  | 95\% cov. rate | 0.952 | 0.955 | 0.958 | 0.934 | 0.946 | 0.947 | 0.955 |
| $\left(\lambda, \kappa^{*}\right)=(0.01,4)$ | $M R^{\text {Q }}$ | 2.24 | 2.42 | 2.48 | 2.60 | 2.54 | 3.05 | 2.86 |
|  | $\mathrm{MR}^{\mathrm{P}}$ | 1.95 | 2.01 | 2.05 | 1.94 | 1.94 | 2.14 | 2.38 |
|  | 25\% cov. rate | 0.238 | 0.251 | 0.237 | 0.250 | 0.220 | 0.235 | 0.259 |
|  | $50 \%$ cov. rate | 0.475 | 0.528 | 0.488 | 0.519 | 0.486 | 0.490 | 0.515 |
|  | 75\% cov. rate | 0.756 | 0.739 | 0.739 | 0.734 | 0.763 | 0.744 | 0.750 |
|  | 95\% cov. rate | 0.955 | 0.954 | 0.947 | 0.944 | 0.943 | 0.952 | 0.954 |
| $\left(\lambda, \kappa^{*}\right)=(0.05,4)$ | $M R^{\text {Q }}$ | 2.15 | 2.42 | 2.49 | 2.49 | 2.74 | 3.04 | 2.82 |
|  | $M R^{P}$ | 1.95 | 2.21 | 2.14 | 2.49 | 2.91 | 3.33 | 3.60 |
|  | 25\% cov. rate | 0.252 | 0.256 | 0.270 | 0.238 | 0.240 | 0.254 | 0.248 |
|  | $50 \%$ cov. rate | 0.499 | 0.502 | 0.507 | 0.513 | 0.472 | 0.498 | 0.479 |
|  | $75 \%$ cov. rate | 0.751 | 0.745 | 0.765 | 0.764 | 0.731 | 0.747 | 0.766 |
|  | 95\% cov. rate | 0.938 | 0.953 | 0.951 | 0.950 | 0.951 | 0.957 | 0.962 |


| Geometric Put Option ( $n=10$ ) |  | $T=30$ days |  |  | $T=270$ days |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $S_{0} / K$ | 0.97 | 1.00 | 1.03 | 0.90 | 0.97 | 1.00 | 1.03 |
| $\left(\lambda, \kappa^{*}\right)=(0.01,2)$ | $M R^{\text {Q }}$ | 15.42 | 3.26 | 1.33 | 4.07 | 2.48 | 1.92 | 1.38 |
|  | $M R^{P}$ | 28.80 | 4.29 | 1.49 | 15.48 | 4.71 | 2.99 | 1.94 |
|  | $25 \%$ cov. rate | 0.241 | 0.268 | 0.240 | 0.251 | 0.254 | 0.271 | 0.257 |
|  | $50 \%$ cov. rate | 0.507 | 0.520 | 0.509 | 0.486 | 0.493 | 0.500 | 0.500 |
|  | $75 \%$ cov. rate | 0.750 | 0.744 | 0.766 | 0.728 | 0.756 | 0.749 | 0.753 |
|  | 95\% cov. rate | 0.950 | 0.951 | 0.944 | 0.948 | 0.947 | 0.955 | 0.952 |
| $\left(\lambda, \kappa^{*}\right)=(0.05,2)$ | $M R^{\text {Q }}$ | 13.99 | 2.97 | 1.36 | 4.58 | 2.38 | 1.77 | 1.40 |
|  | $\mathrm{MR}^{\mathrm{P}}$ | 24.83 | 4.16 | 1.51 | 19.74 | 5.70 | 3.34 | 2.17 |
|  | 25\% cov. rate | 0.239 | 0.251 | 0.259 | 0.250 | 0.246 | 0.227 | 0.243 |
|  | 50\% cov. rate | 0.491 | 0.488 | 0.511 | 0.493 | 0.473 | 0.479 | 0.477 |
|  | 75\% cov. rate | 0.732 | 0.732 | 0.731 | 0.751 | 0.737 | 0.737 | 0.733 |
|  | 95\% cov. rate | 0.948 | 0.949 | 0.950 | 0.948 | 0.950 | 0.940 | 0.935 |
| $\left(\lambda, \kappa^{*}\right)=(0.01,4)$ | $M R^{Q}$ | 14.75 | 3.00 | 1.39 | 4.80 | 2.18 | 2.03 | 1.44 |
|  | $M R^{P}$ | 25.54 | 3.89 | 1.51 | 12.42 | 4.48 | 3.18 | 2.10 |
|  | 25\% cov. rate | 0.269 | 0.249 | 0.251 | 0.248 | 0.281 | 0.275 | 0.247 |
|  | $50 \%$ cov. rate | 0.526 | 0.494 | 0.502 | 0.479 | 0.506 | 0.502 | 0.504 |
|  | 75\% cov. rate | 0.753 | 0.749 | 0.748 | 0.721 | 0.775 | 0.747 | 0.751 |
|  | 95\% cov. rate | 0.944 | 0.951 | 0.951 | 0.948 | 0.965 | 0.957 | 0.957 |
| $\left(\lambda, \kappa^{*}\right)=(0.05,4)$ | $M R^{Q}$ | 14.37 | 2.91 | 1.31 | 4.49 | 2.39 | 1.81 | 1.48 |
|  | $M R^{P}$ | 27.18 | 3.93 | 1.49 | 18.46 | 5.32 | 3.13 | 2.22 |
|  | 25\% cov. rate | 0.265 | 0.245 | 0.259 | 0.251 | 0.259 | 0.244 | 0.256 |
|  | $50 \%$ cov. rate | 0.516 | 0.512 | 0.522 | 0.497 | 0.502 | 0.482 | 0.488 |
|  | $75 \%$ cov. rate | 0.761 | 0.731 | 0.778 | 0.749 | 0.736 | 0.728 | 0.744 |
|  | 95\% cov. rate | 0.946 | 0.946 | 0.961 | 0.949 | 0.944 | 0.932 | 0.946 |

The parameters for computing the prices of the two multi-asset options with (S1.10) are set to be the same as in Table1. For simplicity, we consider to compute the option prices under the case of independent underlying assets and further set $\sigma_{i}=0.1, \theta_{i}=0.09, \kappa_{i}^{*}=\kappa^{*}=2,4$ and $\lambda_{i}=\lambda=$
$0.01,0.05$ for $i=1, \ldots, n$. In addition, the correlation, $\rho_{i}$, of $W_{i, t}^{(1)}$ and $W_{i, t}^{(2)}$ is assumed to be - 0.7 and initial value of $V_{i, t}$ is assumed to be $V_{i, 0}=\theta_{i}=0.09$ for each $i=1, \ldots, n$. The change of measure process can be represented by

$$
\begin{aligned}
\Lambda_{t}=\prod_{i=1}^{n} \exp \{- & \frac{1}{1-\rho_{i}^{2}}\left(\frac{1}{2} \int_{0}^{t}\left(\eta_{i, s}^{2}+\xi_{i, s}^{2}-2 \rho_{i} \eta_{i, s} \xi_{i, s}\right) d s\right. \\
& \left.\left.+\int_{0}^{t}\left(\eta_{i, s}-\rho_{i} \xi_{i, s}\right) d W_{i, s}^{(1)}+\int_{0}^{t}\left(\xi_{i, s}-\rho_{i} \eta_{i, s}\right) d W_{i, s}^{(2)}\right)\right\} .
\end{aligned}
$$

By using a daily discretized approximation, model (S1.10) is used to compute the MCP and EPMS price estimates, and model (S1.11) is used to compute the MCQ and EMS price estimates. Table 7 presents the values of $\mathrm{MR}^{\mathrm{Q}}$ and $\mathrm{MR}^{\mathrm{P}}$ for maximum call options with $n=3$ and for geometric average put options with $n=10$. Numerical results indicate that the EMS and EPMS have satisfactory performance, especially when an option is ITM.

## S2 Theoretical proofs

## S2.1 Proof of Example 1

Proof. In the following, we show that

$$
f\left(S_{1, T}, S_{2, T}\right)=\max \left(K-\sqrt{S_{1, T} S_{2, T}}, 0\right)
$$

is Lipschitz continuous on $A_{1}=\left\{\left(S_{1, T}, S_{2, T}\right):\left(S_{1, T} S_{2, T}\right)^{1 / 2} \leq K\right.$ for $S_{1, T} \geq$ $\eta$ and $\left.S_{2, T} \geq \eta\right\}$, where $0<\eta<K^{1 / 2}$. If $\left(S_{1}, S_{2}\right)$ and $\left(P_{1}, P_{2}\right)$ are two different points in $A_{1}$, then we have

$$
\begin{aligned}
\left|f\left(S_{1}, S_{2}\right)-f\left(P_{1}, P_{2}\right)\right| \leq & \left|\sqrt{P_{1}}\left(\sqrt{P_{2}}-\sqrt{S_{2}}\right) \times \frac{\sqrt{P_{2}}+\sqrt{S_{2}}}{\sqrt{P_{2}}+\sqrt{S_{2}}}\right| \\
& +\left|\sqrt{S_{2}}\left(\sqrt{P_{1}}-\sqrt{S_{1}}\right) \frac{\sqrt{P_{1}}+\sqrt{S_{1}}}{\sqrt{P_{1}}+\sqrt{S_{1}}}\right| \\
\leq & \frac{K}{2 \eta}\left(\left|P_{2}-S_{2}\right|+\left|P_{1}-S_{1}\right|\right) \\
\leq & \frac{K}{\sqrt{2} \eta} \sqrt{\left(P_{1}-S_{1}\right)^{2}+\left(P_{2}-S_{2}\right)^{2}} \\
= & \frac{K}{\sqrt{2} \eta}\left\|\left(S_{1}, S_{2}\right)-\left(P_{1}, P_{2}\right)\right\|,
\end{aligned}
$$

where the second inequality holds because $\left(P_{1} P_{2}\right)^{1 / 2} \leq K,\left(S_{1} S_{2}\right)^{1 / 2} \leq K$ and $P_{1}, P_{2}, S_{1}, S_{2} \geq \eta$, and the last inequality holds by the Cauchy-Schwarz inequality. Hence, the desired result holds.

## S2.2 Proof of Theorem 1

Proof. In the multi-asset EPMS procedure, we define

$$
\Lambda_{j, t}^{*}=\hat{\Lambda}_{j, t} / \bar{\Lambda}_{m, t} \text { and } S_{i, j, t}^{*}=S_{i, 0} e^{r t} \hat{S}_{i, j, t} / \bar{S}_{i, m, t}^{*}
$$

where $\hat{\Lambda}_{j, t}=\Lambda_{t}\left(\hat{S}_{1, j, u}, \ldots, \hat{S}_{n, j, u}, u=1, \ldots, t\right), \bar{\Lambda}_{m, t}=m^{-1} \sum_{j=1}^{m} \hat{\Lambda}_{j, t}$ and $\bar{S}_{i, m, t}^{*}=m^{-1} \sum_{j=1}^{m} \hat{S}_{i, j, t} \Lambda_{j, t}^{*}$. Furthermore, let

$$
a_{i}(m, t)=S_{i, j, t}^{*} / \hat{S}_{i, j, t}=S_{i, 0} e^{r t} / \bar{S}_{i, m, t}^{*},
$$

which is independent of paths $j=1, \ldots, m$ for any fixed $i \in\{1, \ldots, n\}$ and $t \in\{1, \ldots, T\}$. Let

$$
b(m, t)=\Lambda_{j, t}^{*} / \hat{\Lambda}_{j, t}=1 / \bar{\Lambda}_{m, t},
$$

which depends only on $t=1, \ldots, T$.
By the Law of Large Numbers (LLN) and since $\left\{\Lambda_{t}\right\}$ and $\left\{e^{-r t} S_{i, t} \Lambda_{t}\right\}$ are both $P$-martingale processes, we have

$$
\bar{\Lambda}_{m, t}=\frac{1}{m} \sum_{j=1}^{m} \hat{\Lambda}_{j, t} \rightarrow E_{0}\left(\Lambda_{t}\right)=\Lambda_{0}=1
$$

and

$$
e^{-r t} \bar{S}_{i, m, t}^{*}=\frac{1}{m} \sum_{j=1}^{m} e^{-r t} \hat{S}_{i, j, t} \hat{\Lambda}_{j, t} / \bar{\Lambda}_{m, t} \rightarrow E_{0}\left(e^{-r t} S_{i, t} \Lambda_{t}\right)=S_{i, 0}
$$

, almost surely (abbreviated as a.s.), as $m \rightarrow \infty$. Consequently,

$$
\begin{equation*}
a_{i}(m, t) \rightarrow 1 \text { and } b(m, t) \rightarrow 1 \tag{S2.1}
\end{equation*}
$$

a.s. as $m \rightarrow \infty$, for $i=1, \ldots, n$ and $t=1, \ldots, T$.

Next, we show that

$$
\frac{1}{m} \sum_{j=1}^{m} f\left(\mathbf{S}_{j, 1}^{*}, \ldots, \mathbf{S}_{j, T}^{*}\right) \Lambda_{j, T}^{*} \rightarrow E_{0}\left\{f\left(\mathbf{S}_{1}, \ldots, \mathbf{S}_{T}\right) \Lambda_{T}\right\}
$$

a.s. as $m \rightarrow \infty$, where $\mathbf{S}_{j, t}^{*}=\left(S_{1, j, t}^{*}, \ldots, S_{n, j, t}^{*}\right), t=1, \ldots, T$. Since the LLN guarantees that $m^{-1} \sum_{j=1}^{m} f\left(\hat{\mathbf{S}}_{j, 1}, \ldots, \hat{\mathbf{S}}_{j, T}\right) \hat{\Lambda}_{j, T} \rightarrow E_{0}\left\{f\left(\mathbf{S}_{1}, \ldots, \mathbf{S}_{T}\right) \Lambda_{T}\right\}$, a.s. as $m \rightarrow \infty$, it suffices to prove that

$$
\begin{equation*}
\frac{1}{m} \sum_{j=1}^{m}\left|f\left(\mathbf{S}_{j, 1}^{*}, \ldots, \mathbf{S}_{j, T}^{*}\right) \Lambda_{j, T}^{*}-f\left(\hat{\mathbf{S}}_{j, 1}, \ldots, \hat{\mathbf{S}}_{j, T}\right) \hat{\Lambda}_{j, T}\right| \rightarrow 0 \tag{S2.2}
\end{equation*}
$$

a.s. as $m \rightarrow \infty$.

Before proving (S2.2), we define the following notations:
(a) For the $j$ th sample path $\left(\hat{\mathbf{S}}_{j, 1}, \ldots, \hat{\mathbf{S}}_{j, T}\right), j=1, \ldots, m$, we define $\mathbf{x}_{j}$ to be a point in $G$ such that $\left\|\mathbf{x}_{j}-\left(\hat{\mathbf{S}}_{j, 1}, \ldots, \hat{\mathbf{S}}_{j, T}\right)\right\| \leq\left\|\mathbf{y}-\left(\hat{\mathbf{S}}_{j, 1}, \ldots, \hat{\mathbf{S}}_{j, T}\right)\right\|$, for any $\mathbf{y} \in G$, where $G$ is defined in (3.2). Let $B\left(\mathbf{x}_{j}, \delta\right)$ be an open ball with center $\mathbf{x}_{j}$ and radius $\delta>0$. Furthermore, let $B_{j, \delta}=B\left(\mathbf{x}_{j}, \delta\right) \cap D^{f}$.
(b) Let

$$
D_{u}=\left\{\left\|\left(\widehat{\mathbf{S}}_{1}, \ldots, \widehat{\mathbf{S}}_{T}\right)\right\|_{1} \leq u\right\}
$$

where $\left\|\left(\widehat{\mathbf{S}}_{1}, \ldots, \widehat{\mathbf{S}}_{T}\right)\right\|_{1}=\sum_{i=1}^{n} \sum_{t=1}^{T}\left|\widehat{S}_{i, t}\right|$ is the $\ell_{1}$-norm of $\left(\widehat{\mathbf{S}}_{1}, \ldots, \widehat{\mathbf{S}}_{T}\right)$, and let $A_{j, \delta, \ell}^{*}=A_{\ell} \cap B_{j, \delta}^{\mathrm{c}}$ for $\ell=1, \ldots, k$, where $B_{j, \delta}^{\mathrm{c}}$ is the complement of $B_{j, \delta}$. Moreover, let $D_{j, \delta, u}=B_{j, \delta} \cap D_{u}$ and $\mathbf{A}_{j, \delta, u}=\bigcup_{\ell=1}^{k} A_{j, \delta, \ell}^{*} \cap D_{u}$.

By using the above notations, the left-hand-side of (S2.2) can be rewritten
as

$$
\begin{align*}
& \frac{1}{m} \sum_{j=1}^{m}\left|f\left(\mathbf{S}_{j, 1}^{*}, \ldots, \mathbf{S}_{j, T}^{*}\right) \Lambda_{j, T}^{*}-f\left(\hat{\mathbf{S}}_{j, 1}, \ldots, \hat{\mathbf{S}}_{j, T}\right) \hat{\Lambda}_{j, T}\right| \\
= & \frac{1}{m} \sum_{j=1}^{m}\left|f\left(\mathbf{S}_{j, 1}^{*}, \ldots, \mathbf{S}_{j, T}^{*}\right) \Lambda_{j, T}^{*}-f\left(\hat{\mathbf{S}}_{j, 1}, \ldots, \hat{\mathbf{S}}_{j, T}\right) \hat{\Lambda}_{j, T}\right| I_{\mathbf{A}_{j, \delta, u}} \\
& +\frac{1}{m} \sum_{j=1}^{m}\left|f\left(\mathbf{S}_{j, 1}^{*}, \ldots, \mathbf{S}_{j, T}^{*}\right) \Lambda_{j, T}^{*}-f\left(\hat{\mathbf{S}}_{j, 1}, \ldots, \hat{\mathbf{S}}_{j, T}\right) \hat{\Lambda}_{j, T}\right| I_{D_{j, \delta, u}} \\
& +\frac{1}{m} \sum_{j=1}^{m}\left|f\left(\mathbf{S}_{j, 1}^{*}, \ldots, \mathbf{S}_{j, T}^{*}\right) \Lambda_{j, T}^{*}-f\left(\hat{\mathbf{S}}_{j, 1}, \ldots, \hat{\mathbf{S}}_{j, T}\right) \hat{\Lambda}_{j, T}\right| I_{D_{u}^{c}}, \tag{S2.3}
\end{align*}
$$

for any $u>0$ and $\delta>0$, where $I_{D}$ is an indicator function with value 1 when the event $D$ occurs. In the following, we show that the three terms on the right-hand-side (rhs) of (S2.3) converge to 0 , a.s. as $m \rightarrow \infty$.
(i) By using similar arguments used in the proof of Proposition 2 in Duan and Simonato (1998), if $\left(\hat{\mathbf{S}}_{j, 1}, \ldots, \hat{\mathbf{S}}_{j, T}\right) \in A_{j, \delta, \ell}^{*} \subseteq A_{\ell}$ and the event $\mathbf{A}_{j, \delta, u}$ occurs, then there exists an integer $M$ such that for all $m \geq M$, $\left(\mathbf{S}_{j, 1}^{*}, \ldots, \mathbf{S}_{j, T}^{*}\right) \in A_{\ell}$. Consequently, the assumption (A2) yields that

$$
\begin{align*}
& \left|f\left(\mathbf{S}_{j, 1}^{*}, \ldots, \mathbf{S}_{j, T}^{*}\right)-f\left(\hat{\mathbf{S}}_{j, 1}, \ldots, \hat{\mathbf{S}}_{j, T}\right)\right| \\
& \leq c \sum_{i=1}^{n} \sum_{t=1}^{T}\left|S_{i, j, t}^{*}-\hat{S}_{i, j, t}\right| \tag{S2.4}
\end{align*}
$$

for any $j$ th path and for some positive constant $c<\infty$. Hence, S2.4) yields that

$$
\begin{align*}
& \frac{1}{m} \sum_{j=1}^{m}\left|f\left(\mathbf{S}_{j, 1}^{*}, \ldots, \mathbf{S}_{j, T}^{*}\right) \Lambda_{j, T}^{*}-f\left(\hat{\mathbf{S}}_{j, 1}, \ldots, \hat{\mathbf{S}}_{j, T}\right) \hat{\Lambda}_{j, T}\right| I_{\mathbf{A}_{j, \delta, u}} \\
\leq & c(|b(m, T)-1|+1) \sum_{i=1}^{n} \sum_{t=1}^{T}\left[\left|a_{i}(m, t)-1\right|\left(\frac{1}{m} \sum_{j=1}^{m} \hat{S}_{i, j, t} \hat{\Lambda}_{j, T}\right)\right] \\
& +|b(m, T)-1|\left(\frac{1}{m} \sum_{j=1}^{m}\left|f\left(\hat{\mathbf{S}}_{j, 1}, \ldots, \hat{\mathbf{S}}_{j, T}\right)\right| \hat{\Lambda}_{j, T}\right) . \tag{S2.5}
\end{align*}
$$

In addition, by the LLN and (A4), we have

$$
\frac{1}{m} \sum_{j=1}^{m} \hat{S}_{i, j, t} \hat{\Lambda}_{j, T} \rightarrow E\left(S_{i, t} \Lambda_{T}\right)=e^{r t} S_{i, 0}, \text { a.s. }
$$

and

$$
\frac{1}{m} \sum_{j=1}^{m}\left|f\left(\hat{\mathbf{S}}_{j, 1}, \ldots, \hat{\mathbf{S}}_{j, T}\right)\right| \hat{\Lambda}_{j, T} \rightarrow E^{Q}\left(\left|f\left(\hat{\mathbf{S}}_{1}, \ldots, \hat{\mathbf{S}}_{T}\right)\right|\right)<\infty, \text { a.s. }
$$

which together with (S2.1) yield that the rhs of (S2.5) converges to 0 , a.s. as $m \rightarrow \infty$.
(ii) Note that

$$
\begin{aligned}
& \frac{1}{m} \sum_{j=1}^{m}\left|f\left(\mathbf{S}_{j, 1}^{*}, \ldots, \mathbf{S}_{j, T}^{*}\right) \Lambda_{j, T}^{*}-f\left(\hat{\mathbf{S}}_{j, 1}, \ldots, \hat{\mathbf{S}}_{j, T}\right) \hat{\Lambda}_{j, T}\right| I_{D_{j, \delta, u}} \\
\leq & \frac{1}{m} \sum_{j=1}^{m}\left\{\left|f\left(\mathbf{S}_{j, 1}^{*}, \ldots, \mathbf{S}_{j, T}^{*}\right)\right| \Lambda_{j, T}^{*}+\left|f\left(\hat{\mathbf{S}}_{j, 1}, \ldots, \hat{\mathbf{S}}_{j, T}\right)\right| \hat{\Lambda}_{j, T}\right\} I_{D_{j, \delta, u}} \\
\leq & \frac{c}{m} \sum_{j=1}^{m}\left\{\left[1+\left(\sum_{i=1}^{n} \sum_{t=1}^{T} S_{i, j, t}^{*}\right)^{q}\right] \frac{\Lambda_{j, T}^{*}}{\hat{\Lambda}_{j, T}}+\left(1+u^{q}\right)\right\} \hat{\Lambda}_{j, T} I_{D_{j, \delta, u}} \\
\leq & c\left\{\left[1+u^{q}\left(\max _{i, t} a_{i}(m, t)\right)^{q}\right] b(m, T)+\left(1+u^{q}\right)\right\} \\
& \left(\frac{1}{m} \sum_{j=1}^{m} \hat{\Lambda}_{j, T} I_{D_{j, \delta, u}}\right),
\end{aligned}
$$

where the second inequality holds by the assumption (A3), $\|\mathbf{x}\|^{q} \leq$ $\|\mathbf{x}\|_{1}^{q}$ for a vector $\mathbf{x}$ and $\left(\hat{\mathbf{S}}_{j, 1}, \ldots, \hat{\mathbf{S}}_{j, T}\right) \in D_{j, \delta, u} \subset D_{u}$ for each $j=$ $1, \ldots, m$. In addition, the LLN yields that $m^{-1} \sum_{j=1}^{m} \hat{\Lambda}_{j, T} I_{D_{j, \delta, u}}$ converges to $P^{Q}\left(D_{1, \delta, u}\right)$, a.s., as $m \rightarrow \infty$, where $P^{Q}$ is the probability under a $Q$ measure. In addition, $P^{Q}\left(D_{1, \delta, u}\right) \leq P^{Q}\left(B_{1, \delta}\right) \leq K \delta^{n T}$ for some finite positive constant $K$, where the last inequality holds by the assumption (A5). By (S2.1) and since $u$ and $\delta$ are arbitrary positive
numbers, let $\delta=u^{-2 q}$ and thereby the second term on the rhs of S2.3) converges to 0 , a.s. as $u \rightarrow \infty$ and $m \rightarrow \infty$.
(iii) By (A3), we have

$$
\begin{aligned}
& \frac{1}{m} \sum_{j=1}^{m}\left|f\left(\mathbf{S}_{j, 1}^{*}, \ldots, \mathbf{S}_{j, T}^{*}\right) \Lambda_{j, T}^{*}-f\left(\hat{\mathbf{S}}_{j, 1}, \ldots, \hat{\mathbf{S}}_{j, T}\right) \hat{\Lambda}_{j, T}\right| I_{D_{u}^{c}} \\
\leq & c[1+b(m, T)]\left(\frac{1}{m} \sum_{j=1}^{m} \hat{\Lambda}_{j, T} I_{D_{u}^{c}}\right) \\
& +c\left\{1+\left(\max _{j} S_{n}(j, T)\right)^{q} b(m, T)\right\} \\
& \left(\frac{1}{m} \sum_{j=1}^{m}\left\|\left(\hat{\mathbf{S}}_{j, 1}, \ldots, \hat{\mathbf{S}}_{j, T}\right)\right\|^{q} \hat{\Lambda}_{j, T} I_{D_{u}^{c}}\right),
\end{aligned}
$$

where $S_{n}(j, T)=\left\|\left(\mathbf{S}_{j, 1}^{*}, \ldots, \mathbf{S}_{j, T}^{*}\right)\right\| /\left\|\left(\hat{\mathbf{S}}_{j, 1}, \ldots, \hat{\mathbf{S}}_{j, T}\right)\right\|$, which converges to 1 , a.s. as $m \rightarrow \infty$ by (S2.1). In addition, the LLN ensures that

$$
\frac{1}{m} \sum_{j=1}^{m} \hat{\Lambda}_{j, T} I_{D_{u}^{c}} \rightarrow P^{Q}\left(D_{u}^{\mathrm{c}}\right)
$$

and

$$
\frac{1}{m} \sum_{j=1}^{m}\left\|\left(\hat{\mathbf{S}}_{j, 1}, \ldots, \hat{\mathbf{S}}_{j, T}\right)\right\|^{q} \hat{\Lambda}_{j, T} I_{D_{u}^{c}} \rightarrow E^{Q}\left[\left\|\left(\hat{\mathbf{S}}_{1}, \ldots, \hat{\mathbf{S}}_{T}\right)\right\|^{q} I_{D_{u}^{c}}\right],
$$

a.s. as $m \rightarrow \infty$. Since (A5) ensures that $E^{Q}\left[\left\|\left(\hat{\mathbf{S}}_{1}, \ldots, \hat{\mathbf{S}}_{T}\right)\right\|^{q} I_{D_{u}^{c}}\right]$ and $P^{Q}\left(D_{u}^{\mathrm{c}}\right)$ converge to 0 as $u \rightarrow \infty$, thus the third term on the rhs of (S2.3) converges to 0 , a.s. as $m \rightarrow \infty$ and $u \rightarrow \infty$.

According to (S2.3) and (i)-(iii), let $u=m$ and thereby the desired result holds.

## S2.3 Proof of Theorem 2

Proof. Throughout this proof, we use $|\mathbf{a}|$ to denote $\left(\left|a_{1}\right|, \ldots,\left|a_{n}\right|\right)$, use $\mathbf{a}^{-1}$ to denote $\left(a_{1}^{-1}, \ldots, a_{n}^{-1}\right)$, and use $\mathbf{a} \leq \mathbf{b}$ to denote that $a_{i} \leq b_{i}$ for each $i=$ $1, \ldots, n$, where $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ Let $\varepsilon_{M}, M=1,2, \ldots$, be a sequence of decreasing positive numbers and satisfy $\lim _{M \rightarrow \infty} \varepsilon_{M}=0$. By the assumption (A4'), for any $\varepsilon_{M}$, there exists a compact subset of $D^{f}$, denoted by $K_{M}$, such that

$$
\begin{equation*}
\left|C-e^{-r T} E\left[f\left(\mathbf{S}_{T}\right) \Lambda_{T} I_{K_{M}}\right]\right|<\frac{1}{2} \varepsilon_{M}, \tag{S2.6}
\end{equation*}
$$

where $C=e^{-r T} E\left[f\left(\mathbf{S}_{T}\right) \Lambda_{T}\right]$ denotes the theoretical price of the derivative. Note that $K_{1} \subset K_{2} \subset \cdots$ and $\lim _{M \rightarrow \infty} K_{M}=D^{f}$.

Next, since $f\left(\mathbf{S}_{T}\right)$ is continuous on $K_{M}$, by Weierstrass's Approximation Theorem, for any given $\varepsilon_{M}>0$ there exists a polynomial function $\varphi_{M}$ : $K_{M} \rightarrow R$ such that

$$
\begin{equation*}
\sup _{\mathbf{S}_{T} \in K_{M}}\left|f\left(\mathbf{S}_{T}\right)-\varphi_{M}\left(\mathbf{S}_{T}\right)\right|<\frac{1}{2} \varepsilon_{M} . \tag{S2.7}
\end{equation*}
$$

We refer the reader to Timan (1963, page 1) for details of (S2.7). Furthermore, let $G_{M}=\bigcup_{\mathbf{S}_{T} \in G} B\left(\mathbf{S}_{T}, \delta_{M}\right)$, where $B\left(\mathbf{S}_{T}, \delta_{M}\right)$ is an open ball centered at $\mathbf{S}_{T}$ with radius $\delta_{M}$, which satisfies $\lim _{M \rightarrow \infty} \delta_{M}=0$, and $G$ is defined in (3.2). Since $K_{M} \backslash G_{M}$ is a finite union of disjoint compact sets, by (S2.7) and (Duistermaat and Kolk, 2004, page 667) we also can find a
large enough integer $M^{\prime}$ such that for all $M \geq M^{\prime}$

$$
\begin{equation*}
\sup _{\mathbf{S}_{T} \in K_{M} \backslash G_{M}}\left\|\nabla f\left(\mathbf{S}_{T}\right)-\nabla \varphi_{M}\left(\mathbf{S}_{T}\right)\right\|_{1}<\varepsilon_{M} \tag{S2.8}
\end{equation*}
$$

for any given $\varepsilon_{M}>0$. Moreover, for any $\mathbf{S}_{T} \in K_{M}$ we have

$$
\begin{equation*}
\lim _{M \rightarrow \infty}\left\|\nabla \varphi_{M}\left(\mathbf{S}_{T}\right)\right\|_{1} \leq 2 \sum_{\ell \in H}\left\|\nabla f_{\ell}\left(\mathbf{S}_{T}\right)\right\|_{1} \tag{S2.9}
\end{equation*}
$$

where $H \subseteq\{1, \ldots, k\}$ is the collection of the index of $A_{\ell}$, whose closure contains $\mathbf{S}_{T}$. We prove $S 2.9$ in the following two steps. First, if $\mathbf{S}_{T} \notin G$, then there exist only one $\ell$ and an integer $M^{\prime \prime}$ such that for all $M \geq M^{\prime \prime}$ $\mathbf{S}_{T} \in A_{\ell} \cap\left(K_{M} \backslash G_{M}\right)$. That is, $H=\{\ell\}$ and $\mathbf{S}_{T} \in A_{\ell}^{*} \cap G_{M}^{c}$, where $A_{\ell_{i}}^{*}$ denotes the interior of $A_{\ell_{i}}$ and $G_{M}^{c}$ denotes the complement of $G_{M}$. By (S2.8), we have

$$
\begin{equation*}
\left\|\nabla \varphi_{M}\left(\mathbf{S}_{T}\right)\right\|_{1} \leq\left\|\nabla f_{\ell}\left(\mathbf{S}_{T}\right)\right\|_{1}+\varepsilon_{M}, \text { for } \mathbf{S}_{T} \notin G \tag{S2.10}
\end{equation*}
$$

On the other hand, if $\mathbf{S}_{T} \in G$, then there could be more than one $\bar{A}_{\ell}$ containing $\mathbf{S}_{T}$. Let $H=\left\{\ell_{1}, \ldots, \ell_{p}\right\}$, where $\ell_{1}<\cdots<\ell_{p}$ and $p \leq n$. That is, $\mathbf{S}_{T} \in \bigcap_{i=1}^{p} \bar{A}_{\ell_{i}}$. If $\left\|\nabla \varphi_{M}\left(\mathbf{S}_{T}\right)\right\|_{1}=0$, then $(\mathrm{S} 2.9)$ holds. If $\left\|\nabla \varphi_{M}\left(\mathbf{S}_{T}\right)\right\|_{1}>0$, by using the continuity of $\nabla \phi_{M}$ on $K_{M}$, there exists an $\eta_{M}>0$ such that $\left\|\nabla \varphi_{M}(\mathbf{x})\right\|_{1}>0$ and $\left\|\nabla \varphi_{M}\left(\mathbf{S}_{T}\right)\right\|_{1} \leq 2\left\|\nabla \varphi_{M}(\mathbf{x})\right\|_{1}$ for all $\mathbf{x} \in B\left(\mathbf{S}_{T}, \eta_{M}\right)$. By $S 2.10$ and choosing an $\mathbf{x}_{i}$ from the intersection of $A_{\ell_{i}}^{*}$ and $B\left(\mathbf{S}_{T}, \eta_{M}\right)$, we have

$$
\left\|\nabla \varphi_{M}\left(\mathbf{x}_{i}\right)\right\|_{1} \leq\left\|\nabla f_{\ell}\left(\mathbf{x}_{i}\right)\right\|_{1} I_{A_{\ell_{i}}^{*} \cap B\left(\mathbf{S}_{T}, \eta_{M}\right)}\left(\mathbf{x}_{i}\right)+\varepsilon_{M}
$$

and thereby

$$
\left\|\nabla \varphi_{M}\left(\mathbf{S}_{T}\right)\right\|_{1} \leq 2 \sum_{i=1}^{p}\left\|\nabla f_{\ell_{i}}\left(\mathbf{x}_{i}\right)\right\|_{1} I_{A_{\ell_{i}}^{*} \cap B\left(\mathbf{S}_{T}, \eta_{M}\right)}\left(\mathbf{x}_{i}\right)+2 p \varepsilon_{M} .
$$

Moreover, by using the continuity of $\nabla f_{\ell_{i}}$ assumed in (A2'), we have

$$
\left\|\nabla f_{\ell_{i}}\left(\mathbf{x}_{i}\right)\right\|_{1} I_{A_{\ell_{i}}^{*} \cap B\left(\mathbf{S}_{T}, \eta_{M}\right)}\left(\mathbf{x}_{i}\right)-\left\|\nabla f_{\ell_{i}}\left(\mathbf{S}_{T}\right)\right\|_{1} \rightarrow 0, \text { as } \eta_{M} \rightarrow 0,
$$

for $i=1, \ldots, p$, and thereby

$$
\begin{equation*}
\left\|\nabla \varphi_{M}\left(\mathbf{S}_{T}\right)\right\|_{1} \leq 2 \sum_{i=1}^{p}\left\|\nabla f_{\ell_{i}}\left(\mathbf{S}_{T}\right)\right\|_{1}+\tilde{\varepsilon}_{M}, \text { for } \mathbf{S}_{T} \in G \tag{S2.11}
\end{equation*}
$$

where $\tilde{\varepsilon}_{M}>0$ and $\lim _{M \rightarrow \infty} \tilde{\varepsilon}_{M}=0$. Consequently, (S2.10) and (S2.11) yield (S2.9).

By (S2.6), S2.7) and the fact of $E\left(\Lambda_{T}\right)=1$, we have

$$
\left|C-e^{-r T} E\left[\varphi_{M}\left(\mathbf{S}_{T}\right) \Lambda_{T}\right]\right|<\varepsilon_{M}
$$

and thereby

$$
\begin{align*}
& e^{r T} \sqrt{m}\left(C_{\mathrm{EPMS}}^{(m)}-C_{\mathrm{MC}}^{(m)}\right) \\
= & \frac{1}{\sqrt{m}} \sum_{j=1}^{m} \lim _{M \rightarrow \infty}\left\{\varphi_{M}\left(\mathbf{S}_{j, T}^{*}\right) \Lambda_{j, T}^{*}-\varphi_{M}\left(\mathbf{S}_{j, T}\right) \Lambda_{j, T}\right\} \\
= & \frac{1}{\sqrt{m}} \sum_{j=1}^{m} \lim _{M \rightarrow \infty}\left\{\varphi_{M}\left(\mathbf{S}_{j, T}^{*}\right)-\varphi_{M}\left(\hat{\mathbf{S}}_{j, T}\right)\right\} \hat{\Lambda}_{j, T} \\
& +\frac{1}{\sqrt{m}} \sum_{j=1}^{m} f\left(\hat{\mathbf{S}}_{j, T}\right)\left(\Lambda_{j, T}^{*}-\hat{\Lambda}_{j, T}\right) \\
& +\frac{1}{\sqrt{m}} \sum_{j=1}^{m} \lim _{M \rightarrow \infty}\left\{\varphi_{M}\left(\mathbf{S}_{j, T}^{*}\right)-\varphi_{M}\left(\hat{\mathbf{S}}_{j, T}\right)\right\} \times\left(\Lambda_{j, T}^{*}-\hat{\Lambda}_{j, T}\right) . \tag{S2.12}
\end{align*}
$$

In the following, we deal with the three terms on the rhs of (S2.12) separately.

Note that for any fixed $\mathbf{s}>\mathbf{0}$, the function $\mathbf{v} \rightarrow \varphi_{M}\left(\mathbf{s} \circ \mathbf{v}^{-1}\right)$ is continuous and differentiable for $\mathbf{v} \in(0, \infty)^{n}$. Since $\mathbf{S}_{T}$ is a positive random vector, we apply the multi-dimensional mean value theorem to $\varphi_{M}\left(\mathbf{s} \circ \mathbf{v}^{-1}\right)$. That is, there exists a constant $d \in[0,1]$ such that

$$
\begin{align*}
& \varphi_{M}\left(\mathbf{S}_{j, T}^{*}\right)-\varphi_{M}\left(\hat{\mathbf{S}}_{j, T}\right) \\
= & \varphi_{M}\left(e^{r T} \mathbf{S}_{0} \circ \hat{\mathbf{S}}_{j, T} \circ\left(\overline{\mathbf{S}}_{m, T}^{*}\right)^{-1}\right)-\varphi_{M}\left(e^{r T} \mathbf{S}_{0} \circ \hat{\mathbf{S}}_{j, T} \circ\left(e^{r T} \mathbf{S}_{0}\right)^{-1}\right) \\
= & -\left(\overline{\mathbf{S}}_{m, T}^{*}-e^{r T} \mathbf{S}_{0}\right)\left\{\nabla \varphi_{M}\left(\mathbf{W}_{j, 1}^{(M)}\right) \circ\left(\mathbf{W}_{j, 2}^{(M)}\right)^{\top}\right\}, \tag{S2.13}
\end{align*}
$$

where $\overline{\mathbf{S}}_{m, T}^{*}=\left(\bar{S}_{1, m, T}^{*}, \ldots, \bar{S}_{n, m, T}^{*}\right)$, in which $\bar{S}_{i, m, T}^{*}=m^{-1} \sum_{j=1}^{m} \hat{S}_{i, j, T} \Lambda_{j, T}^{*}$, $\mathbf{S}_{j, T}^{*}=e^{r T} \mathbf{S}_{0} \circ \hat{\mathbf{S}}_{j, T} \circ\left(\overline{\mathbf{S}}_{m, T}^{*}\right)^{-1}, \mathbf{W}_{j, k}^{(M)}=e^{r T} \mathbf{S}_{0} \circ \hat{\mathbf{S}}_{j, T} \circ\left(\mathbf{V}_{j, m}^{(M)}\right)^{-k}$, for $k=1,2$, and $\mathbf{V}_{j, m}^{(M)}=(1-d) e^{r T} \mathbf{S}_{0}+d \overline{\mathbf{S}}_{m, T}^{*}$. In addition, by similar arguments used in $\mathrm{S2.13}$ and recalling that $\Lambda_{j, T}^{*}=\hat{\Lambda}_{j, T} / \bar{\Lambda}_{m, T}$, we also have

$$
\begin{equation*}
\Lambda_{j, T}^{*}-\hat{\Lambda}_{j, T}=-\frac{\hat{\Lambda}_{j, T}}{\left(U_{j, m}^{*}\right)^{2}}\left(\bar{\Lambda}_{m, T}-1\right), \tag{S2.14}
\end{equation*}
$$

where $U_{j, m}^{*} \in\left[\min \left(\bar{\Lambda}_{m, T}, 1\right), \max \left(\bar{\Lambda}_{m, T}, 1\right)\right]$. By substituting S 2.13 and (S2.14) into (S2.12), we have

$$
\begin{equation*}
\mathrm{S} 2.12=(\mathrm{I})+(\mathrm{II})+(\mathrm{III}), \tag{S2.15}
\end{equation*}
$$

where

$$
\begin{aligned}
(\mathrm{I}) & =-\left(\overline{\mathbf{S}}_{m, T}^{*}-e^{r T} \mathbf{S}_{0}\right) \frac{1}{\sqrt{m}} \sum_{j=1}^{m} \hat{\Lambda}_{j, T} \lim _{M \rightarrow \infty}\left\{\nabla \varphi_{M}\left(\mathbf{W}_{j, 1}^{(M)}\right) \circ\left(\mathbf{W}_{j, 2}^{(M)}\right)^{\top}\right\}, \\
(\mathrm{II}) & =-\frac{1}{\sqrt{m}} \sum_{j=1}^{m} f\left(\hat{\mathbf{S}}_{j, T}\right)\left(\frac{\hat{\Lambda}_{j, T}}{\left(U_{j, m}^{*}\right)^{2}}\left(\bar{\Lambda}_{m, T}-1\right)\right) \\
(\mathrm{III}) & =\frac{1}{\sqrt{m}} \sum_{j=1}^{m} \lim _{M \rightarrow \infty}\left[\varphi_{M}\left(\mathbf{S}_{j, T}^{*}\right)-\varphi_{M}\left(\hat{\mathbf{S}}_{j, T}\right)\right]\left(\Lambda_{j, T}^{*}-\hat{\Lambda}_{j, T}\right) .
\end{aligned}
$$

Let $\Phi=e^{-r T} E\left[\Lambda_{T} \nabla f\left(\mathbf{S}_{T}\right) \circ\left(\mathbf{S}_{T} \circ \mathbf{S}_{0}^{-1}\right)^{\top}\right]$. Lemmas $1 / 3$, respectively, given below yield that

$$
\begin{align*}
(\mathrm{I}) & =-\sqrt{m}\left(\overline{\mathbf{S}}_{m, T}-e^{r T} \bar{\Lambda}_{m, T} \mathbf{S}_{0}\right) \Phi+o_{p}(1)  \tag{S2.16}\\
(\mathrm{II}) & =-\sqrt{m}\left(\bar{\Lambda}_{m, T}-1\right) E\left[f\left(\mathbf{S}_{T}\right) \Lambda_{T}\right]+o_{p}(1)  \tag{S2.17}\\
(\mathrm{III}) & =o_{p}(1) \tag{S2.18}
\end{align*}
$$

where $\overline{\mathbf{S}}_{m, T}=\left(\bar{S}_{1, m, T}, \ldots, \bar{S}_{n, m, T}\right)$. Consequently, by S2.15-S2.18), and let $\Psi=E\left(f\left(\mathbf{S}_{T}\right) \Lambda_{T}\right)-e^{r T} \mathbf{S}_{0} \Phi$, we have $C_{\mathrm{MC}}^{(m)}-C_{\mathrm{EPMS}}^{(m)}=e^{-r T}\left\{\left(\overline{\mathbf{S}}_{m, T}-\right.\right.$ $\left.\left.e^{r T} \mathbf{S}_{0}\right) \Phi+\left(\bar{\Lambda}_{m, T}-1\right) \Psi\right\}+o_{p}\left(m^{-1 / 2}\right)$. Hence, Theorem 2 (i) holds.

Next, we derive the result of Theorem 2 (ii). By Theorem 2 (i), we have

$$
\begin{aligned}
& \sqrt{m}\left(C_{\mathrm{EPMS}}^{(m)}-C\right) \\
&= \sqrt{m}\left(C_{\mathrm{MC}}^{(m)}-C\right)-\sqrt{m} e^{-r T}\left\{\left(\overline{\mathbf{S}}_{m, T}-e^{r T} \mathbf{S}_{0}\right) \Phi+\left(\bar{\Lambda}_{m, T}-1\right) \Psi\right\}+o_{p}(1) \\
&= \frac{e^{-r T}}{\sqrt{m}} \sum_{j=1}^{m}\left\{\left[f\left(\hat{\mathbf{S}}_{j, T}\right) \hat{\Lambda}_{j, T}-E\left(f\left(\mathbf{S}_{T}\right) \Lambda_{T}\right)\right]-\left[\hat{\Lambda}_{j, T} \hat{\mathbf{S}}_{j, T}-E\left(\Lambda_{T} \mathbf{S}_{T}\right)\right] \Phi\right. \\
&\left.\quad \quad-\left[\Lambda_{j, T}-E\left(\Lambda_{T}\right)\right] \Psi\right\}+o_{p}(1)
\end{aligned}
$$

By the central limit theorem (CLT), we have

$$
\sqrt{m}\left(C_{\mathrm{EPMS}}^{(m)}-C\right) \xrightarrow{\mathcal{L}} N(0, V), \text { as } m \rightarrow \infty,
$$

where

$$
\begin{aligned}
V=e^{-2 r T} & \left\{\operatorname{Var}\left(f\left(\mathbf{S}_{T}\right) \Lambda_{T}\right)+\Phi^{\top} \operatorname{Var}\left(\Lambda_{T} \mathbf{S}_{T}\right) \Phi+\Psi^{2} \operatorname{Var}\left(\Lambda_{T}\right)\right. \\
& -2\left[\Phi^{\top} \operatorname{Cov}\left(f\left(\mathbf{S}_{T}\right) \Lambda_{T}, \Lambda_{T} \mathbf{S}_{T}\right)+\Psi \operatorname{Cov}\left(f\left(\mathbf{S}_{T}\right) \Lambda_{T}, \Lambda_{T}\right)\right. \\
& \left.\left.-\Psi \Phi^{\top} \operatorname{Cov}\left(\Lambda_{T}, \Lambda_{T} \mathbf{S}_{T}\right)\right]\right\}
\end{aligned}
$$

Lemma 1. By using the same assumptions as in Theorem 2 (i), S2.16) holds.

Proof. First, we rewrite (I) as

$$
\begin{equation*}
(\mathrm{I})=-\sqrt{m}\left(\overline{\mathbf{S}}_{m, T}^{*}-e^{r T} \mathbf{S}_{0}\right)\left(\Phi-\mathbf{Y}_{m, T}\right) \tag{S2.19}
\end{equation*}
$$

where

$$
\begin{align*}
\mathbf{Y}_{m, T}= & E\left[e^{-r T} \Lambda_{T} \nabla f\left(\mathbf{S}_{\mathbf{T}}\right) \circ\left(\mathbf{S}_{T} \circ \mathbf{S}_{0}^{-1}\right)^{\top}\right] \\
& -\frac{1}{m} \sum_{j=1}^{m} \hat{\Lambda}_{j, T} \lim _{M \rightarrow \infty}\left\{\nabla \varphi_{M}\left(\mathbf{W}_{j, 1}^{(M)}\right) \circ\left(\mathbf{W}_{j, 2}^{(M)}\right)^{\top}\right\} \\
= & \frac{1}{m} \sum_{j=1}^{m} e^{-r T} \hat{\Lambda}_{j, T} \nabla f\left(\hat{\mathbf{S}}_{j, T}\right) \circ\left(\hat{\mathbf{S}}_{j, T} \circ \mathbf{S}_{0}^{-1}\right)^{\top} \\
& -\frac{1}{m} \sum_{j=1}^{m} \hat{\Lambda}_{j, T} \lim _{M \rightarrow \infty}\left\{\nabla \varphi_{M}\left(\mathbf{W}_{j, 1}^{(M)}\right) \circ\left(\mathbf{W}_{j, 2}^{(M)}\right)^{\top}\right\}+\mathbf{o}_{\mathbf{p}}(\mathbf{1}) \\
= & \mathbf{Y}_{m, T}^{(1)}+\mathbf{Y}_{m, T}^{(2)}+\mathbf{o}_{\mathbf{p}}(\mathbf{1}), \tag{S2.20}
\end{align*}
$$

in which the 2 nd equality holds by the LLN and $\mathbf{o}_{\mathbf{p}}(\mathbf{1})$ stands for a random vector whose components are $o_{p}(1)$,

$$
\mathbf{Y}_{m, T}^{(1)}=\frac{1}{m} \sum_{j=1}^{m} e^{-r T} \hat{\Lambda}_{j, T}\left(\hat{\mathbf{S}}_{j, T} \circ \mathbf{S}_{0}^{-1}\right)^{\top} \circ\left[\nabla f\left(\hat{\mathbf{S}}_{j, T}\right)-\lim _{M \rightarrow \infty} \nabla \varphi_{M}\left(\mathbf{W}_{j, 1}^{(M)}\right)\right]
$$

and

$$
\begin{aligned}
\mathbf{Y}_{m, T}^{(2)}=\frac{1}{m} \sum_{j=1}^{m} & \left(e^{r T} \hat{\Lambda}_{j, T} \mathbf{S}_{0} \circ \hat{\mathbf{S}}_{j, T}\right)^{\top} \\
& \circ\left\{\lim _{M \rightarrow \infty} \nabla \varphi_{M}\left(\mathbf{W}_{j, 1}^{(M)}\right) \circ\left(e^{-2 r T} \mathbf{S}_{0}^{-2}-\left(\mathbf{V}_{j, m}^{(M)}\right)^{-2}\right)^{\top}\right\}
\end{aligned}
$$

Recall that

$$
\overline{\mathbf{S}}_{m, T}=\frac{1}{m} \sum_{j=1}^{m} \hat{\Lambda}_{j, T} \hat{\mathbf{S}}_{j, T} \text { and } \overline{\mathbf{S}}_{m, T}^{*}=\frac{1}{m} \sum_{j=1}^{m} \Lambda_{j, T}^{*} \hat{\mathbf{S}}_{j, T}=\bar{\Lambda}_{m, T}^{-1} \overline{\mathbf{S}}_{m, T}
$$

for $i=1, \ldots, n$ since $\Lambda_{j, T}^{*}=\hat{\Lambda}_{j, T} / \bar{\Lambda}_{m, T}$. We then have

$$
\begin{align*}
& \sqrt{m}\left(\overline{\mathbf{S}}_{m, T}^{*}-e^{r T} \mathbf{S}_{0}\right) \\
= & \sqrt{m} \bar{\Lambda}_{m, T}^{-1}\left\{\left(\overline{\mathbf{S}}_{m, T}-e^{r T} \mathbf{S}_{0}\right)-e^{r T} \mathbf{S}_{0}\left(\bar{\Lambda}_{m, T}-1\right)\right\} \tag{S2.21}
\end{align*}
$$

By the CLT, $\sqrt{m}\left(\bar{S}_{i, m, T}-S_{i, 0} e^{r T}\right)$ and $\sqrt{m} S_{i, 0} e^{r T}\left(\bar{\Lambda}_{m, T}-1\right)$ converge weakly to proper normal random variables for $i=1, \ldots, n$. In addition, since $\bar{\Lambda}_{m, T} \rightarrow 1$, a.s., thus, S2.21 can be rewritten as

$$
\begin{equation*}
\sqrt{m}\left(\overline{\mathbf{S}}_{m, T}^{*}-e^{r T} \mathbf{S}_{0}\right)=\sqrt{m}\left(\overline{\mathbf{S}}_{m, T}-\bar{\Lambda}_{m, T} e^{r T} \mathbf{S}_{0}\right)+\mathbf{o}_{\mathbf{p}}(\mathbf{1}) \tag{S2.22}
\end{equation*}
$$

By (S2.19) and (S2.22), we have

$$
(\mathrm{I})=-\sqrt{m}\left(\overline{\mathbf{S}}_{m, T}-\bar{\Lambda}_{m, T} e^{r T} \mathbf{S}_{0}\right)\left(\Phi-\mathbf{Y}_{m, T}\right)+\mathbf{o}_{\mathbf{p}}(\mathbf{1}) .
$$

To obtain S2.16, it remains to show that the $\mathbf{Y}_{m, T}^{(1)}$ and $\mathbf{Y}_{m, T}^{(2)}$ defined in S2.20) satisfy

$$
\begin{equation*}
\left\|\mathbf{Y}_{m, T}^{(1)}\right\|_{1}+\left\|\mathbf{Y}_{m, T}^{(2)}\right\|_{1}=o_{p}(1) . \tag{S2.23}
\end{equation*}
$$

Let $\boldsymbol{\ell}_{j, m}:=\lim _{M \rightarrow \infty} \mathbf{W}_{j, 1}^{(M)}$ and we have

$$
\begin{align*}
&\left\|\mathbf{Y}_{m, T}^{(1)}\right\|_{1} \\
& \leq \frac{1}{m} \sum_{j=1}^{m} e^{-r T} \hat{\Lambda}_{j, T}\left\|\hat{\mathbf{S}}_{j, T} \circ \mathbf{S}_{0}^{-1}\right\|_{1} \times\left\|\nabla f\left(\hat{\mathbf{S}}_{j, T}\right)-\lim _{M \rightarrow \infty} \nabla \varphi_{M}\left(\mathbf{W}_{j, 1}^{(M)}\right)\right\|_{1} \\
& \leq \frac{1}{m} \sum_{j=1}^{m} e^{-r T} \hat{\Lambda}_{j, T}\left\|\hat{\mathbf{S}}_{j, T} \circ \mathbf{S}_{0}^{-1}\right\|_{1} \times\left\|\nabla f\left(\hat{\mathbf{S}}_{j, T}\right)-\nabla f\left(\ell_{j, m}\right)\right\|_{1} I_{\left\{\ell_{j, m} \notin G\right\}} \\
&+\frac{1}{m} \sum_{j=1}^{m} e^{-r T} \hat{\Lambda}_{j, T}\left\|\hat{\mathbf{S}}_{j, T} \circ \mathbf{S}_{0}^{-1}\right\|_{1} \times \\
& \quad\left(\left\|\nabla f\left(\hat{\mathbf{S}}_{j, T}\right)\right\|_{1}+2 \sum_{\ell \in H}\left\|\nabla f_{\ell}\left(\ell_{j, m}\right)\right\|_{1}\right) I_{\left\{\ell_{j, m} \in G\right\}} \\
&:= B_{1}+B_{2}, \tag{S2.24}
\end{align*}
$$

where the second inequality hold by S 2.8 and S 2.9 . Since $\lim _{m \rightarrow \infty} \mathbf{V}_{j, m}^{(M)}=$ $e^{r T} \mathbf{S}_{0}$, a.s., for all $j$ and $M$, we have

$$
\begin{equation*}
B_{1}=o_{p}(1), \text { as } m \rightarrow \infty \tag{S2.25}
\end{equation*}
$$

and thus $\lim _{m \rightarrow \infty} \boldsymbol{\ell}_{j, m}=\hat{\mathbf{S}}_{j, T}$, a.s.. In addition, (A3') yields that

$$
\begin{aligned}
\lim _{m \rightarrow \infty} E\left|B_{2}\right| & \leq c E\left(\Lambda_{T}\left(1+\left\|\mathbf{S}_{T}\right\|^{q}\right) \times\left\|\mathbf{S}_{T} \circ \mathbf{S}_{0}^{-1}\right\|_{1} I_{\left\{\mathbf{S}_{T} \in G\right\}}\right) \\
& \leq c\left\|\mathbf{S}_{0}^{-1}\right\| \times E\left(\Lambda_{T}\left(1+\left\|\mathbf{S}_{T}\right\|^{q}\right) \times\left\|\mathbf{S}_{T}\right\| I_{\left\{\mathbf{S}_{T} \in G\right\}}\right)=0
\end{aligned}
$$

where the second inequality is due to the Cauchy-Schwarz inequality, and
the equality holds by (A5') and the fact that the volume of the boundary set $G$ defined in (3.2) is zero. Consequently,

$$
\begin{equation*}
B_{2}=o_{p}(1), \text { as } m \rightarrow \infty . \tag{S2.26}
\end{equation*}
$$

Moreover, S2.9) and (A3') yield that

$$
\begin{align*}
\left\|\mathbf{Y}_{m, T}^{(2)}\right\|_{1} & \leq c e^{r T}\left\|\mathbf{q}_{m, T}\right\|_{1} \times\left\|\mathbf{S}_{0}\right\|_{1} \times\left\|\frac{1}{m} \sum_{j=1}^{m}\left(1+\left\|\mathbf{W}_{j, 1}^{(M)}\right\|^{q}\right) \hat{\Lambda}_{j, T} \hat{\mathbf{S}}_{j, T}\right\|_{1} \\
& =o_{p}(1), \tag{S2.27}
\end{align*}
$$

as $m \rightarrow \infty$, where

$$
\mathbf{q}_{m, T}=\sup _{\mathbf{x}=(1-d) e^{r T} \mathbf{S}_{0}+d \overline{\mathbf{S}}_{m, T}^{*}, 0 \leq d \leq 1}\left|e^{-2 r T} \mathbf{S}_{0}^{-2}-\mathbf{x}^{-2}\right|
$$

In addition, the last equality in S2.27) holds by the LLN, (A5') and $\lim _{m \rightarrow \infty}\left\|\mathbf{q}_{m, T}\right\|_{1}=0$, a.s., provided by $\lim _{m \rightarrow \infty} \overline{\mathbf{S}}_{m, T}^{*}=e^{r T} \mathbf{S}_{0}$. Therefore, by (S2.24)-S2.27), S2.23) holds.

Lemma 2. By using the same assumptions as in Theorem 2 (i), S2.17) holds.

Proof. By (S2.15),

$$
\begin{align*}
(\mathrm{II})= & -\sqrt{m}\left(\bar{\Lambda}_{m, T}-1\right)\left(\frac{1}{m} \sum_{j=1}^{m} f\left(\hat{\mathbf{S}}_{j, T}\right) \frac{\hat{\Lambda}_{j, T}}{\left(U_{j, m}^{*}\right)^{2}}\right) \\
= & -\sqrt{m}\left(\bar{\Lambda}_{m, T}-1\right) E\left[f\left(\mathbf{S}_{T}\right) \Lambda_{T}\right] \\
& +\sqrt{m}\left(\bar{\Lambda}_{m, T}-1\right) \\
& \left(E\left[f\left(\mathbf{S}_{T}\right) \Lambda_{T}\right]-\frac{1}{m} \sum_{j=1}^{m} f\left(\hat{\mathbf{S}}_{j, T}\right) \frac{\hat{\Lambda}_{j, T}}{\left(U_{j, m}^{*}\right)^{2}}\right), \tag{S2.28}
\end{align*}
$$

where $U_{j, m}^{*}$ is defined in S2.14). By the CLT, $\sqrt{m}\left(\bar{\Lambda}_{m, T}-1\right)$ converges weakly to a normal random variable. By (S2.28) and using similar arguments in S2.23)-S2.27,

$$
E\left[f\left(\mathbf{S}_{T}\right) \Lambda_{T}\right]-\frac{1}{m} \sum_{j=1}^{m} f\left(\hat{\mathbf{S}}_{j, T}\right) \frac{\hat{\Lambda}_{j, T}}{\left(U_{j, m}^{*}\right)^{2}}=o_{p}(1)
$$

and thereby (S2.17) holds.

Lemma 3. By using the same assumptions as in Theorem 2 (i), S2.18) holds.

Proof. Note that

$$
\begin{align*}
(\mathrm{III}):= & \frac{1}{\sqrt{m}} \sum_{j=1}^{m} \lim _{M \rightarrow \infty}\left\{\varphi_{M}\left(\mathbf{S}_{j, T}^{*}\right)-\varphi_{M}\left(\hat{\mathbf{S}}_{j, T}\right)\right\} \times\left(\Lambda_{j, T}^{*}-\hat{\Lambda}_{j, T}\right) \\
\leq & \max _{j=1, \ldots, m}\left|\frac{\Lambda_{j, T}^{*}}{\hat{\Lambda}_{j, T}}-1\right| \\
& \frac{1}{\sqrt{m}} \sum_{j=1}^{m} \lim _{M \rightarrow \infty}\left\{\varphi_{M}\left(\mathbf{S}_{j, T}^{*}\right)-\varphi_{M}\left(\hat{\mathbf{S}}_{j, T}\right)\right\} \hat{\Lambda}_{j, T} . \tag{S2.29}
\end{align*}
$$

By (S2.12), (S2.13), (S2.15) and (S2.16),

$$
\begin{align*}
& \frac{1}{\sqrt{m}} \sum_{j=1}^{m} \lim _{M \rightarrow \infty}\left\{\varphi_{M}\left(\mathbf{S}_{j, T}^{*}\right)-\varphi_{M}\left(\hat{\mathbf{S}}_{j, T}\right)\right\} \hat{\Lambda}_{j, T} \\
= & -\sqrt{m}\left(\overline{\mathbf{S}}_{m, T}-e^{r T} \bar{\Lambda}_{m, T} \mathbf{S}_{0}\right) \Phi+o_{p}(1) . \tag{S2.30}
\end{align*}
$$

Furthermore, by the CLT, $\sqrt{m}\left(\bar{S}_{i, m, T}-S_{i, 0} e^{r T} \bar{\Lambda}_{m, T}\right)$ converges weakly to a proper normal random variable for $i=1, \ldots, n$. Hence, by (S2.1), (S2.29) and (S2.30), S2.18) holds.

## S2.4 Multi-asset Esscher transform for multivariate GARCH-N

models
Let $R_{i, t}=\log \left(S_{i, t} / S_{i, t-1}\right)$ and $\mu_{i, t}=r-0.5 \sigma_{i, t}^{2}+\lambda_{i} \sigma_{i, t}$. From model (S1.2), we have $\mathbf{R}_{t} \mid \mathcal{F}_{t-1} \sim N\left(\boldsymbol{\mu}_{t}, \Sigma_{t}\right)$, where $\mathbf{R}_{t}=\left(R_{1, t}, \ldots, R_{n, t}\right)^{\top}, \boldsymbol{\mu}_{t}=$ $\left(\mu_{1, t}, \ldots, \mu_{n, t}\right)^{\top}, \Sigma_{t}=\left(\sigma_{i j t}\right), \sigma_{i j t}=\rho_{i, j} \sigma_{i, t} \sigma_{j, t}$ and $\mathcal{F}_{t-1}$ denotes the set of information from time 0 up to time $t-1$. Let $f_{t-1}\left(\mathbf{R}_{t}\right)$ denote the conditional density function of $\mathbf{R}_{t}$ given $\mathcal{F}_{t-1}$ under the $P$ measure and the corresponding conditional moment generating function (m.g.f.) is

$$
\begin{equation*}
M_{t-1}(\boldsymbol{\delta})=\exp \left\{\boldsymbol{\delta}^{\top} \boldsymbol{\mu}_{t}+\frac{1}{2} \boldsymbol{\delta}^{\top} \Sigma_{t} \boldsymbol{\delta}\right\} \tag{S2.31}
\end{equation*}
$$

where $\boldsymbol{\delta}=\left(\delta_{1}, \ldots, \delta_{n}\right)^{\top}$. By the Esscher transform, let

$$
\begin{equation*}
f_{t-1}^{Q}\left(\mathbf{R}_{t}\right)=\frac{e^{\mathbf{s}^{\top} \mathbf{R}_{t}}}{M_{t-1}(\mathbf{s})} f_{t-1}\left(\mathbf{R}_{t}\right) \tag{S2.32}
\end{equation*}
$$

denote the conditional density function of $\mathbf{R}_{t}$ given $\mathcal{F}_{t-1}$ under a $Q$ measure by introducing an $n \times 1$ vector $\mathbf{s}$. To choose a vector $\mathbf{s}$ in (S2.32) such that $Q$ is a risk-neutral measure, the following martingale identity for each underlying asset has to be satisfied under the $Q$ measure, that is, $E_{t-1}^{Q}\left(e^{R_{i, t}}\right)=e^{r}$ for $i=1, \ldots, n$.

By S2.32, the conditional m.g.f. of $\mathbf{R}_{t}$ given $\mathcal{F}_{t-1}$ under the $Q$ measure can be represented as

$$
\begin{equation*}
M_{t-1}^{Q}(\boldsymbol{\delta})=\frac{M_{t-1}(\boldsymbol{\delta}+\mathbf{s})}{M_{t-1}(\mathbf{s})} \tag{S2.33}
\end{equation*}
$$

To solve $\mathbf{s}$, first let $\mathbf{e}_{i}=(0, \ldots, 1, \ldots, 0)^{\top}$, whose elements are all zero except for the $i$ th element being 1. Hence, we have $E_{t-1}^{Q}\left(e^{R_{i, t}}\right)=M_{t-1}^{Q}\left(\mathbf{e}_{i}\right)$ and thereby $(\mathrm{S} 2.31)$ and S 2.33 yield

$$
\begin{equation*}
M_{t-1}^{Q}\left(\mathbf{e}_{i}\right)=\exp \left\{\mathbf{e}_{i}^{\top} \boldsymbol{\mu}_{t}+\frac{1}{2} \mathbf{e}_{i}^{\top} \Sigma_{t} \mathbf{e}_{i}+\mathbf{e}_{i}^{\top} \Sigma_{t} \mathbf{s}\right\} . \tag{S2.34}
\end{equation*}
$$

By S2.34, the identities of $M_{t-1}^{Q}\left(\mathbf{e}_{i}\right)=E_{t-1}^{Q}\left(e^{R_{i, t}}\right)=e^{r}$ is equivalent to $\mu_{i, t}+\frac{1}{2} \sigma_{i, t}^{2}+\left(\sigma_{i 1 t}, \ldots, \sigma_{\text {int }}\right) \mathbf{s}=r$. Furthermore, since $\mu_{i, t}=r-0.5 \sigma_{i, t}^{2}+\lambda_{i} \sigma_{i, t}$, the last identity can be represented as $\left(\sigma_{i 1 t}, \ldots, \sigma_{i n t}\right) \mathbf{s}=-\lambda_{i} \sigma_{i, t}$, which is a linear equation of $\mathbf{s}$, for $i=1, \ldots, n$. By rewriting the $n$ linear equations in matrix, we have

$$
\begin{equation*}
\mathbf{s}=-\Sigma_{t}^{-1} \mathrm{D}_{\lambda} \sigma_{t} \tag{S2.35}
\end{equation*}
$$

where $\mathrm{D}_{\boldsymbol{\lambda}}$ is a diagonal matrix with the $i$ th diagonal component being $\lambda_{i}$ and $\boldsymbol{\sigma}_{t}=\left(\sigma_{1, t}, \ldots, \sigma_{n, t}\right)^{\top}$. By substituting S2.35) into equation S2.33), the conditional m.g.f. of $\mathbf{R}_{t}$ given $\mathcal{F}_{t-1}$ under the $Q$ measure is

$$
M_{t-1}^{Q}(\boldsymbol{\delta})=\exp \left\{\boldsymbol{\delta}^{\top}\left(\boldsymbol{\mu}_{t}-\mathrm{D}_{\boldsymbol{\lambda}} \boldsymbol{\sigma}_{t}\right)+\frac{1}{2} \boldsymbol{\delta}^{\top} \Sigma_{t} \boldsymbol{\delta}\right\}
$$

which is the m.g.f. of $N\left(\boldsymbol{\mu}_{t}-\mathrm{D}_{\boldsymbol{\lambda}} \boldsymbol{\sigma}_{t}, \Sigma_{t}\right)$. Therefore, we have $R_{i, t} \mid \mathcal{F}_{t-1} \sim$ $N\left(r-0.5 \sigma_{i, t}^{2}, \sigma_{i, t}^{2}\right)$. As a result, the risk-neutral counterpart of model S1.2 derived by the multi-asset Esscher transform is

$$
\left\{\begin{array}{l}
R_{i, t}=r-\frac{1}{2} \sigma_{i, t}^{2}+\sigma_{i, t} \epsilon_{i, t}^{*} \\
\sigma_{i, t}^{2}=\beta_{0}+\beta_{1} \sigma_{i, t-1}^{2}+\beta_{2} \sigma_{i, t-1}^{2}\left(\epsilon_{i, t-1}^{*}-\lambda_{i}\right)^{2}
\end{array}\right.
$$

where $\epsilon_{i, t}^{*}=\epsilon_{i, t}+\lambda_{i}$ is $N(0,1)$ distributed under the $Q$ measure.
In addition, the Radon-Nykodým derivative of the measure $Q$ with respect to the measure $P$ is

$$
\Lambda_{T}=\frac{f_{T-1}^{Q}\left(\mathbf{R}_{T}\right)}{f_{T-1}\left(\mathbf{R}_{T}\right)} \times \frac{f_{T-2}^{Q}\left(\mathbf{R}_{T-1}\right)}{f_{T-2}\left(\mathbf{R}_{T-1}\right)} \times \ldots \times \frac{f_{0}^{Q}\left(\mathbf{R}_{1}\right)}{f_{0}\left(\mathbf{R}_{1}\right)}=\prod_{t=1}^{T} \Lambda_{t}
$$

where

$$
\Lambda_{t}=\frac{f_{t-1}^{Q}\left(\mathbf{R}_{t}\right)}{f_{t-1}\left(\mathbf{R}_{t}\right)}=\exp \left\{-\boldsymbol{\sigma}_{t}^{\top} \mathrm{D}_{\boldsymbol{\lambda}} \Sigma_{t}^{-1}\left(\mathbf{R}_{t}-\boldsymbol{\mu}_{t}+\frac{1}{2} \mathrm{D}_{\boldsymbol{\lambda}} \boldsymbol{\sigma}_{t}\right)\right\},
$$

and (S1.3 holds.

## References

Black, F. and Scholes, M. (1973). Efficient minimum distance estimation with multiple rates of convergence. J. Political Economy 81, 637-654.

Cox, J. C., Ingersoll, J. E. and Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica 53, 385-407.

Duan, J. C. (1995). The GARCH option pricing model. Mathematical Finance 43, 13-32.

Duan, J. C. and Simonato, J. G. (1998). Empirical martingale simulation for asset prices. Management Science 44, 1218-1233.

Duistermaat, J. J. and Kolk, J. A. C. (2004). Multidimensional Real Analysis II, Integration.

Gerber, H. U. and Shiu, S. W. (1994). Option pricing by Esscher transform. Transactions of Society of Actuaries 46, 99-191.

Glasserman, P., Heidelberger, P. and Shahabuddin, P. (1999). Asymptotically optimal importance samling and stratification for pricing path-dependent options. Mathematical Finance 9, 117-152.

Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bonds and currency options. The Review of Financial Studies 6, 327-343.

Huang, S. F. (2014). A modified empirical martingale simulation for financial derivative pricing. Communications in Statistics - Theory and Methods 43, 328-342.

Huang, S. F. and Guo, M. H. (2009). Financial derivative valuation - A dynamic semiparametric approach. Statistica Sinica 19, 1037-1054.

Huang, S. F. and Tu, Y. T. (2014). Asymptotic distribution of the EPMS estimator for financial derivatives pricing. Computational Statistics and Data Analysis 73, 129-145.

Huang, S. F. and Yu, J. F. (2012). Hedging rainbow options in discrete time. J. Chinese Statistical Association 50, 1-20.

Hull, J. and White, A. (1987). The pricing of options on assets with stochastic volatilities. J. Finance 42, 281-300.

Kijima, M. (2006). A multivariate extension of equilibrium pricing transforms: The multivariate Esscher and Wang transforms for pricing financial and insurance risks. ASTIN Bulletin 36, 269-283.

Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. J. Financial Economics 3, 125-144.

Shreve, S. E. (2004). Stochastic Calculus for Finance II, Continuous-Time Models. Springer, New York.

Timan, A. F. (1963). International Series of Monographs in Pure and Applied Mathematics. Macmillan Company, New York.

Zhu, H., Ye, F. and Zhou, E. (2015). Fast estimation of true bounds on Bernudan option prices under jump-diffusion processes. Quantitative Finance 15, 1885-1900.

