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We conducted several simulation scenarios under multivariate Brownian motion, multivariate

GARCH models with normal and double exponential innovations, multivariate versions of Mer-

ton (1976)’s jump-diffusion models and multivariate versions of Hull and White (1987)’s and

Heston (1993)’s stochastic volatility models to investigate the efficiency of the multi-asset EMS

and EPMS price estimators. The performance of the asymptotic distribution of the multi-asset

EPMS price estimator was also examined under various simulation cases. Detailed proofs were

also given in this supplement.

S1 Simulation study

S1.1 Multivariate geometric Brownian motion model

Let the underlying assets (S1,t, . . . , Sn,t) satisfy the following multivari-

ate geometric Brownian motion model:

dSi,t/Si,t = µidt+ σidWi,t, (S1.1)



2 SHIH-FENG HUANG AND GUAN-CHIH CIOU

where µi is the expected return, σi is the volatility and Wi,t is the Brownian

motion of the ith underlying asset, i = 1, . . . , n. Moreover, we assume

that Wi,t, i = 1, . . . , n, are correlated with a time-homogeneous correlation

matrix ρ = (ρi,j), where ρi,j denotes the correlation of Wi,t and Wj,t for

i, j = 1, . . . , n.

The parameters for computing the prices of the two multi-asset options

with (S1.1) are set to be K = 100, Si,0/K = 0.97,1.00 and 1.03 for the cases

of T =30, 270 days (1 year = 365 days), r = 0.1 (annualized), µi = 0.15

(annualized), σi = 0.2 (annualized) for i = 1, . . . , n, ρj,k = 0.5 for j, k =

1, . . . , n and j 6= k, and m = 104 sample paths, where n = 3 for maximum

call options and n = 10 for geometric average put options. Moreover,

we also report the results of a deeper in-the-money (ITM) case for each

option when T = 270 days, that is, Si,0/K = 1.10 for the maximum call

options and Si,0/K = 0.90 for the geometric average put options. For model

(S1.1), the change of measure ΛT is derived by the multiple dimensional

Girsanov Theorem (Shreve, 2004, Theorem 5.4.1) and has the following

representation:

ΛT = exp{−LΣ−1M},

where L = (µ1 − r, . . . , µn − r), M = (0.5(µ1 − r)T + σ1W1,T , . . . , 0.5(µn −

r)T + σnWn,T )> and Σ = (σij) with σij = ρijσiσj, for i, j = 1, . . . , n.
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Under model (S1.1) the theoretical values of the maximum call and

geometric average put options can be obtained from their closed-form rep-

resentations in equation (16) of Huang and Yu (2012) and in Example 3.2

of Huang and Guo (2009), respectively. Table 1 presents the MSE ratios

MRQ and MRP, which indicate that the EMS and EPMS perform better

than the MCQ and MCP under the Q and P measures, respectively, espe-

cially for ITM options. For financial risk management and the construction

of portfolios, we also care about how to price a vector of options whose

payoffs are correlated because they depend on common underlying assets.

In Table 1, for each pair of (K,T ) and fixed model parameters, the geo-

metric average put option and the maximal call option can be viewed as

a 2-dimensional vector of options. The price estimates of these two op-

tions are obtained simultaneously by using the same generated underlying

asset prices. According to the numerical results given in Table 1, the pro-

posed price estimators can also help to improve the efficiency when pricing

a vector of options.

To evaluate the performance of Theorem 2, we compute the coverage

rates under various scenarios on the basis of 1,000 replications, where the

coverage rate is defined by the percentage of times in which the theoretical

value falls into the confidence interval given in (4.1). Simulation results
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Table 1: The MSE ratios MRQ and MRP, and the coverage rates of the multi-asset EPMS

price estimator by using the asymptotic distribution given in Theorem 2 for pricing

the maximum call options and geometric average put options under the multivariate

geometric Brownian motion model defined in (S1.1).

Maximum Call Option (n = 3) T = 30 days T = 270 days

S0/K 0.97 1.00 1.03 0.97 1.00 1.03 1.10

MRQ 3.17 5.28 6.36 5.49 6.06 6.32 6.77

MRP 2.69 4.21 4.82 2.85 3.06 2.99 2.83

25% cov. rate 0.251 0.266 0.239 0.241 0.247 0.259 0.259

50% cov. rate 0.476 0.512 0.519 0.497 0.510 0.494 0.486

75% cov. rate 0.746 0.762 0.774 0.757 0.752 0.738 0.759

95% cov. rate 0.945 0.947 0.951 0.956 0.950 0.953 0.954

Geometric Put Option (n = 10) T = 30 days T = 270 days

S0/K 0.97 1.00 1.03 0.90 0.97 1.00 1.03

MRQ 6.65 5.16 5.26 4.87 5.28 5.42 4.86

MRP 2.93 3.85 3.62 2.40 2.21 2.05 1.78

25% cov. rate 0.234 0.245 0.275 0.252 0.234 0.254 0.254

50% cov. rate 0.487 0.502 0.533 0.504 0.490 0.483 0.483

75% cov. rate 0.761 0.749 0.740 0.760 0.752 0.731 0.731

95% cov. rate 0.957 0.943 0.947 0.957 0.950 0.951 0.951

presented in Table 1 indicate that the coverage rates of the multi-asset

EPMS price estimator are close to their nominal values. As a result, the

asymptotic distribution given in Theorem 2 is a satisfactory approximation

to the finite-sample distribution of the EPMS price estimator.

As mentioned in Duan and Simonato (1998) and Huang and Tu (2014)

the EMS and EPMS can be combined with two popular variance reduc-
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Table 2: The price, MRQ, MRQ∗, P (MCQ), P (EMS) and P (GHS) for Asian options in

the Black-Scholes model.

T = 1 year T = 3 years

σ K=40 45 50 55 40 45 50 55

0.1 Price 10.80 6.06 1.92 0.20 12.08 7.83 4.06 1.55

MRQ 375.7 291.7 6.5 1.3 74.6 32.9 14.3 4.2

MRQ∗ 37.6 11.1 5.9 20.3 19.3 8.6 6.6 9.4

P (MCQ) 0.95 0.94 0.62 0.12 0.86 0.83 0.65 0.35

P (EMS) 0.95 0.94 0.63 0.12 0.86 0.83 0.65 0.35

P (GHS) 0.95 0.95 0.85 0.69 0.86 0.85 0.80 0.71

0.3 Price 11.09 7.15 4.17 2.21 13.08 9.94 7.37 5.37

MRQ 67.0 6.9 5.2 3.2 18.8 14.4 6.8 6.3

MRQ∗ 12.0 4.3 8.0 10.3 7.8 8.8 9.0 10.0

P (MCQ) 0.86 0.70 0.49 0.30 0.68 0.57 0.46 0.35

P (EMS) 0.86 0.70 0.49 0.30 0.68 0.57 0.46 0.35

P (GHS) 0.93 0.88 0.82 0.76 0.82 0.79 0.75 0.72

tion techniques, antithetic and control variate simulations. For multi-asset

derivatives, one can also combine the proposed method with antithetic

and control variate techniques to improve the efficiency of the MC es-

timator. Another popular and frequently used variance reduction tech-

nique is importance sampling. Glasserman, Heidelberger and Shahabud-

din (1999) proposed an importance sampling method based on a change

of drift for pricing path-dependent options. In the following, we consider

the pricing of an arithmetic Asian option on a single underlying asset un-

der standard Black-Scholes assumptions Black and Scholes (1973), which
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is a special case of model (S1.1) with n = 1. The risk-neutral model is

described by model (2.2). The payoff of an arithmetic Asian option with

strike K is given by f(S1,1, . . . , S1,T ) = max(M−1
∑M

i=1 S1,ti −K, 0), where

0 = t0 < t1 < · · · < tM and ti− ti−1, for i = 1, . . . ,M , are equidistance. We

compare the estimation performance of Glasserman, Heidelberger and Sha-

habuddin (1999)’s importance sampling price estimator, denoted by GHS,

with the EMS. Table 2 presents MRQ and MRQ∗, which denotes the MSE

ratio of the MCQ to the GHS, with S0 = 50, K = 40, 45, 50, 55, r = 0.05,

σ = 0.1, 0.3, T = 1, 3, M = 16 and 104 runs. Table 2 also reports the prob-

abilities of ITMT = {S1,ti , i = 1, . . . ,M : M−1
∑M

i=1 S1,ti > K}, where S1,ti

are separately generated from the MCQ, EMS and GHS methods, and the

corresponding probabilities are denoted by P (MCQ), P (EMS) and P (GHS),

respectively. As shown in Table 2, P (MCQ) and P (EMS) are very close and

decrease as K increases for Asian call options. By using the technique of

changing drift, P (GHS) are greater than P (MCQ) and P (EMS) in the con-

sidered scenarios, especially when K is large. This property of the GHS

method helps to generate more samples with positive payoffs than the MC

and EMS methods. From the numerical results, this property also leads

to more remarkable variance reduction than the EMS for out-of-the-money

(OTM) options. On the other hand, when the option is ITM, the absolute
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difference between P (GHS) and P (EMS) decreases as K decreases. From this

perspective, the superiority of generating samples with positive payoffs by

the GHS over the EMS is insignificant for ITM options. Numerical results

in Table 2 indicate that the magnitude of reducing variation by the EMS

scheme is greater than the GHS for ITM Asian call options.

S1.2 Multivariate GARCH model

Let the daily prices of the underlying assets, (S1,t, . . . , Sn,t), satisfy the

following multivariate GARCH(1,1) model:
logSi,t = logSi,t−1 + rd + λiσi,t − 0.5σ2

i,t + σi,tεi,t,

σ2
i,t = βi0 + βi1σ

2
i,t−1 + βi2σ

2
i,t−1ε

2
i,t−1,

(S1.2)

for i = 1, . . . , n, where rd denotes the daily risk-free interest rate, (ε1,t, . . . ,

εn,t) are assumed to follow a multivariate normal distribution with mean

0 ∈ Rn and a covariance matrix Σ, denoted by N(0,Σ). In particular,

Σ = (ρj,k) is positive definite and ρj,k = 1 if j = k, where j, k = 1, . . . , n.

Moreover, βi0, βi1, βi2 are nonnegative, βi1 +βi2 < 1 , and λi represents the

unit risk premium for i = 1, . . . , n. We denote model (S1.2) with normal

innovations by GARCH-N. In particular, if n = 1, then model (S1.2) reduces

to the GARCH model considered in Duan (1995).

The parameters for computing the prices of the two multi-asset options

with (S1.2) are set to be σ2
i,1 = βi0(1 − βi1 − βi2)−1, βi0 = 10−5, βi1 =
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0.7, βi2 = 0.2, λi = 0.01 for i = 1, . . . , n, ρj,k = 0.5 for j 6= k, where

j, k = 1, . . . , n, and others are the same as in Table 1. Moreover, let Ri,t =

log(Si,t/Si,t−1) and µi,t = rd+λiσi,t−0.5σ2
i,t for i = 1, . . . , n and t = 1, . . . , T .

For model (S1.2), the change of measure Λt is derived by the multivariate

Esscher transform (Kijima, 2006) and has the following representation:

Λt =
t∏

k=1

exp( −LkΣ−1
k Mk

), (S1.3)

where Lk = (λ1σ1,k, . . . , λnσn,k), Mk = (0.5λ1σ1,k+R1,k−µ1,k, . . . , 0.5λnσn,k+

Rn,k − µn,k)
> and Σk = (σijk) with σijk = ρi,jσi,kσj,k, for i, j = 1, . . . , n.

Details of the derivation of (S1.3) are presented in Section S2.4.

Table 3 reports the MSE ratios MRQ and MRP. The coverage rates

obtained from the asymptotic distribution of the multi-asset EPMS price

estimator are also presented. The phenomena shown in Table 3 for the mul-

tivariate GARCH-N model are similar to those in Table 1 for the multivari-

ate geometric Brownian motion model. Under the multivariate GARCH-N

framework, both the EMS and EPMS price estimators are more efficient

than their MC counterparts. In addition, the asymptotic distribution given

in Theorem 2 also provides a good approximation in our scenarios.

Next, we demonstrate a particular example to show that the explicit

representation of a risk-neutral GARCH model is not convenient to obtain

and thus the EMS is not feasible. Suppose that we use the Esscher trans-
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Table 3: The MSE ratios MRQ and MRP, and the coverage rates of the multi-asset

EPMS price estimator by using the asymptotic distribution given in Theorem 2 for

the maximum call options and geometric average put options under the multivariate

GARCH-N model.

Maximum Call Option (n = 3) T = 30 days T = 270 days

S0/K 0.97 1.00 1.03 0.97 1.00 1.03 1.10

MRQ 2.72 3.81 6.06 5.03 5.78 5.88 6.49

MRP 2.43 3.31 5.00 3.06 3.44 3.40 3.45

25% cov. rate 0.266 0.245 0.246 0.237 0.251 0.271 0.237

50% cov. rate 0.525 0.489 0.500 0.502 0.483 0.531 0.496

75% cov. rate 0.761 0.747 0.739 0.767 0.740 0.750 0.754

95% cov. rate 0.953 0.957 0.948 0.952 0.944 0.957 0.955

Geometric Put Option (n = 10) T = 30 days T = 270 days

S0/K 0.97 1.00 1.03 0.90 0.97 1.00 1.03

MRQ 7.93 2.95 1.61 4.69 2.36 1.97 1.72

MRP 10.03 3.38 1.71 8.49 3.44 2.56 2.18

25% cov. rate 0.255 0.257 0.241 0.228 0.270 0.267 0.255

50% cov. rate 0.500 0.507 0.510 0.511 0.512 0.502 0.504

75% cov. rate 0.741 0.756 0.745 0.737 0.750 0.743 0.766

95% cov. rate 0.953 0.959 0.950 0.949 0.955 0.946 0.953

form (Gerber and Shiu, 1994) to define the change of measure process for

the GARCH model in 1-dimensional case. Let gt(·) be the conditional den-

sity function of the log return Rt = log(St/St−1) given Ft−1 and Mt(δt) =

Et−1{exp(δtRt)} be the corresponding conditional moment generating func-

tion (mgf). The Esscher transform aims to find a risk-neutral density from

the family g∗t (x) = exp(δtx)gt(x)/Mt(δt) by choosing a δt such that the dis-
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Table 4: The MSE ratios MRP for pricing the maximum call options and geometric

average put options and the coverage rates of the multi-asset EPMS price estimator by

using the asymptotic distribution given in Theorem 2 under the multivariate GARCH-

DE model.

Maximum Call Option (n = 3) T = 30 days T = 270 days

S0/K 0.97 1.00 1.03 0.97 1.00 1.03 1.10

MRP 1.81 1.94 1.85 1.65 1.75 1.82 1.59

25% cov. rate 0.255 0.252 0.253 0.255 0.273 0.257 0.253

50% cov. rate 0.495 0.505 0.507 0.511 0.508 0.533 0.492

75% cov. rate 0.748 0.760 0.743 0.746 0.764 0.768 0.755

95% cov. rate 0.954 0.944 0.947 0.955 0.956 0.956 0.947

Geometric Put Option (n = 10) T = 30 days T = 270 days

S0/K 0.97 1.00 1.03 0.90 0.97 1.00 1.03

MRP 39.64 2.95 1.09 27.11 2.86 1.77 1.24

25% cov. rate 0.227 0.243 0.220 0.265 0.222 0.228 0.254

50% cov. rate 0.475 0.504 0.488 0.511 0.476 0.482 0.496

75% cov. rate 0.727 0.753 0.738 0.753 0.739 0.744 0.742

95% cov. rate 0.943 0.944 0.943 0.955 0.950 0.947 0.943

counted stock prices being a martingale, that is, E∗t−1{exp(−rd)St} = St−1

or M∗
t (1) = exp(rd), where E∗t−1(·) denotes to compute the conditional ex-

pectation under g∗t and M∗
t (z) = Mt(δt + z)/Mt(δt) is the conditional mgf

of Rt under g∗t . In the GARCH-N model, we have Mt(δt) = exp{(rd+λσt−

0.5σ2
t )δt+0.5σ2

t δ
2
t }. By choosing δt = −λ/σt and after some straightforward

calculation, we have M∗
t (z) = exp{(rd−0.5σ2

t )z+0.5σ2
t z

2}, which is the mgf

of a normal random variable with mean rd − 0.5σ2
t and variance σ2

t . In the
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other words, the risk-neutral density obtained by the Esscher transform is

still normally distributed and thus the corresponding risk-neutral GARCH-

N model can be represented accordingly. However, if we replace the normal

assumption of the innovation εi,t in model (S1.2) by a standardized double

exponential distribution, which has fatter tails than N(0, 1), and denoted

this model by GARCH-DE, the task becomes difficult. In the GARCH-DE

model, we have Mt(δt) = exp(µtδt)/(1 − 0.5σ2
t δ

2
t ) for |δt| < 21/2σ−1

t , where

µt = rd+λσt−0.5σ2
t . By choosing δt = (−σt+{atσ2

t +2(at−1)2}1/2)/{σt(1−

at)}, where at = exp(λσt − 0.5σ2
t ), we have E∗t−1{exp(−rd)St} = St−1 and

M∗
t (z) = exp(zµt)(1− 0.5δ2

t σ
2
t )/{1− 0.5(δt + z)2σ2

t }, which is not an mgf of

a standard double-exponential random variable anymore. In addition, it is

not convenient to derive the distribution from this M∗
t (z). Therefore, the

risk-neutral model for the GARCH-DE case is not convenient to obtain.

For the multivariate GARCH-DE case, we assume that the processes

of the underlying assets are independent. Hence, the change of measure

process derived by the Esscher transform for the GARCH-DE model can

be obtained directly by Proposition 3.3 of Huang (2014):

Λt =
t∏

k=1

n∏
i=1

[1− 0.5(δ∗i,kσi,k)
2] exp{δ∗i,k(Ri,k − rd − λiσi,k + 0.5σ2

i,k)},

where δ∗i,k = (−σi,k + {ai,kσ2
i,k + 2(ai,k − 1)2}1/2)/{σi,k(1− ai,k)} and ai,k =

exp(λiσi,k − 0.5σ2
i,k). Since the EMS procedure is not feasible for the
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GARCH-DE model under the framework of Esscher transform, only the

results of the EPMS and MCP price estimators are presented in Table 4.

Numerical results indicate that the EPMS still has better performance than

the MCP and the asymptotic distribution of the EPMS still provides a re-

liable approximation in the GARCH-DE model.

S1.3 Multivariate jump-diffusion model

In this section, we consider applying the proposed price estimators to

multivariate versions of Merton (1976)’s jump-diffusion models for inves-

tigating the effects of the jump frequency and jump size on the pricing

performance. Let the underlying assets (S1,t, . . . , Sn,t) satisfy the following

multivariate jump-diffusion model under the P measure:

dSi,t/Si,t = (µi − λik)dt+ σidWi,t + (Yi,t − 1)dNi,t, (S1.4)

where µi, σi and Wi,t are defined the same as in model (S1.1), Ni,t, i =

1, . . . , n, are independent Poisson processes with intensity λi, i = 1, . . . , n,

respectively, log Yi,t, i = 1, . . . , n, are i.i.d. N(α, θ2), k ≡ E(Yi,t − 1) =

exp(α + 0.5θ2) − 1, and Wi,t, Ni,t and Yi,t are independent for each i =

1, . . . , n. For computing the price of a geometric average put option un-

der model (S1.4), we first have the following diffusion process for ST =
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Table 5: The MSE ratios MRQ and MRP for pricing maximum call options and geometric

average put options, and the coverage rates of the multi-asset EPMS price estimator by

using the asymptotic distribution given in Theorem 2 under the multivariate jump-

diffusion model (S1.4).

Maximum Call Option (n = 3) T = 30 days T = 270 days

S0/K 0.97 1.00 1.03 0.97 1.00 1.03 1.10

(λ, θ) = (1,0.05) MRQ 2.42 3.55 4.63 4.00 5.17 4.95 5.13

MRP 2.15 3.07 3.49 2.15 2.82 2.43 2.59

25% cov. rate 0.249 0.238 0.276 0.234 0.250 0.248 0.233

50% cov. rate 0.507 0.488 0.529 0.501 0.512 0.478 0.465

75% cov. rate 0.761 0.748 0.779 0.763 0.755 0.749 0.727

95% cov. rate 0.943 0.938 0.952 0.946 0.946 0.949 0.959

(λ, θ) = (1,0.2) MRQ 1.74 2.22 2.64 3.07 3.30 3.52 3.91

MRP 1.72 2.10 2.36 2.44 2.49 2.76 2.86

25% cov. rate 0.247 0.252 0.260 0.238 0.237 0.256 0.255

50% cov. rate 0.493 0.513 0.508 0.507 0.485 0.490 0.493

75% cov. rate 0.746 0.757 0.773 0.767 0.736 0.738 0.742

95% cov. rate 0.951 0.941 0.956 0.950 0.946 0.940 0.949

(λ, θ) = (3,0.05) MRQ 2.54 2.97 3.88 3.56 4.07 4.34 4.54

MRP 2.27 2.63 3.04 2.30 2.31 2.36 2.74

25% cov. rate 0.261 0.242 0.251 0.260 0.242 0.248 0.244

50% cov. rate 0.498 0.488 0.493 0.507 0.486 0.507 0.513

75% cov. rate 0.751 0.759 0.740 0.758 0.732 0.747 0.761

95% cov. rate 0.953 0.956 0.947 0.941 0.941 0.956 0.951

(λ, θ) = (3,0.2) MRQ 1.83 2.13 2.64 3.16 3.30 3.47 3.94

MRP 1.81 2.17 2.45 2.90 3.09 3.14 3.29

25% cov. rate 0.254 0.245 0.257 0.258 0.249 0.248 0.264

50% cov. rate 0.503 0.503 0.535 0.504 0.488 0.478 0.506

75% cov. rate 0.767 0.735 0.765 0.741 0.751 0.773 0.739

95% cov. rate 0.947 0.957 0.953 0.956 0.953 0.963 0.952
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Geometric Put Option (n = 10) T = 30 days T = 270 days

S0/K 0.97 1.00 1.03 0.90 0.97 1.00 1.03

(λ, θ) = (1,0.05) MRQ 8.70 3.65 1.76 7.43 3.55 2.86 2.15

MRP 12.95 4.70 2.06 20.06 7.23 5.06 3.47

25% cov. rate 0.264 0.247 0.223 0.242 0.250 0.252 0.245

50% cov. rate 0.504 0.510 0.478 0.519 0.505 0.498 0.503

75% cov. rate 0.766 0.774 0.743 0.764 0.751 0.739 0.763

95% cov. rate 0.952 0.958 0.948 0.953 0.956 0.953 0.948

(λ, θ) = (1,0.2) MRQ 7.12 2.61 1.68 6.54 3.51 3.03 2.22

MRP 10.00 5.55 2.12 17.53 7.33 5.15 3.84

25% cov. rate 0.258 0.230 0.243 0.257 0.260 0.254 0.243

50% cov. rate 0.480 0.488 0.498 0.500 0.508 0.497 0.502

75% cov. rate 0.749 0.745 0.755 0.724 0.752 0.749 0.747

95% cov. rate 0.940 0.951 0.942 0.952 0.952 0.945 0.954

(λ, θ) = (3,0.05) MRQ 8.48 3.47 1.78 7.24 3.55 2.64 2.30

MRP 11.95 4.59 2.23 21.09 7.10 4.67 3.75

25% cov. rate 0.254 0.274 0.255 0.226 0.243 0.273 0.254

50% cov. rate 0.520 0.510 0.529 0.485 0.470 0.524 0.491

75% cov. rate 0.762 0.764 0.762 0.731 0.739 0.759 0.742

95% cov. rate 0.944 0.956 0.953 0.952 0.950 0.956 0.944

(λ, θ) = (3,0.2) MRQ 5.99 3.02 1.92 5.34 3.42 3.12 2.47

MRP 7.36 3.85 2.10 17.83 7.30 5.90 4.99

25% cov. rate 0.231 0.243 0.245 0.255 0.227 0.240 0.251

50% cov. rate 0.505 0.506 0.507 0.527 0.496 0.503 0.479

75% cov. rate 0.748 0.746 0.758 0.759 0.747 0.738 0.745

95% cov. rate 0.937 0.956 0.939 0.966 0.954 0.945 0.961

(S1,T · · ·Sn,T )1/n under the P measure:

d logSt =
(
µ− 1

2n

n∑
i=1

σ2
i − λk

)
dt+ σ̃dW̃t +

1

n
log YtdÑt, (S1.5)

where µ = n−1
∑n

i=1 µi, λ = n−1
∑n

i=1 λi, σ̃ = n−2
∑n

i=1

∑n
j=1 ρi,jσiσj, W̃t

is a Brownian motion, Ñt is a Poisson process with intensity rate λ̃ =
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λ1 + · · · + λn, log Yt is N(α, θ2), and W̃t, Ñt and Yt are independent. The

risk-neutral counterpart of model (S1.5) is

d logSt =
(
r − 1

2n

n∑
i=1

σ2
i − λk

)
dt+ σ̃dW̃ ∗

t +
1

n
log YtdÑt, (S1.6)

where W̃ ∗
t = W̃t + (µ − r)t is a Brownian motion under the Q measure

derived from the change of measure process Λt = Et(ΛT ), in which ΛT is

defined the same as in model (S1.1). In addition, Λt is still independent

of Ñt and Yt, which have the same distributions under the Q measure as

in the P measure. By using model (S1.6), the price of a geometric average

put option has the following closed-form representation:

V0 = e−(r−r̃)T
∞∑
i=0

e−λ̃
∗T (λ̃∗T )i

i!

BSPut
(
S0, K, r − λ̃k +

i log(1 + k)

T
,

√
σ̃2 +

iθ2

T
, T
)
, (S1.7)

where λ̃∗ = λ̃(1 + k), r̃ = r − 0.5
∑n

i=1 σ
2
i /n + 0.5σ̃2 − λk + λ̃k̃ with k̃ =

exp(α/d + 0.5θ2/d2) − 1, and BSPut(S0, K, r, σ, T ) denotes the value of a

European put option under the Black-Scholes model with initial stock price

S0, risk-free interest rate r and instantaneous volatility σ.

The parameters for computing the prices of the two multi-asset options

with (S1.4) are set to be the same as in Table 1 except for r = 0.04 (an-

nualized), µi = 0.10 (annualized), λi = 1, 3 for i = 1, . . . , n, α = 0.06 and

θ = 0.05, 0.2. The parameters in the jump part are set the same as in Table
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1 of Zhu, Ye and Zhou (2015). Table 5 presents the MSE ratios MRQ and

MRP for geometric average put options, where the true values are obtained

by (S1.7). Since the derivation of the pricing formula of maximum call op-

tions under model (S1.4) is beyond the scope of this study, the expected

maximum call option prices are replaced by using the MC method with 105

simulations for computing MRQ and MRP in Table 5. Numerical results in

Table 5 indicate that the EMS and EPMS price estimators are capable of

improving the efficiency of the MC method. The improvement is significant

when applying the EMS to maximum call options with less jump frequency

and smaller variance of the jump size, and applying the EMS and EPMS

to ITM geometric put options.

S1.4 Multivariate stochastic volatility model

In this section, we consider applying the proposed price estimators

to multivariate versions of Hull and White (1987)’s and Heston (1993)’s

stochastic volatility models for investigating the effects of stochastic volatil-

ities on the pricing performance. Let the underlying assets (S1,t, . . . , Sn,t)

satisfy the following multivariate stochastic volatility model under the P

measure (Hull and White, 1987):
dSi,t/Si,t = µidt+

√
Vi,tdW

(1)
i,t

dVi,t/Vi,t = κi(σ
∗
i −

√
Vi,t)dt+ σidW

(2)
i,t

(S1.8)
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Table 6: The MSE ratios MRQ and MRP for pricing maximum call options and geometric

average put options and the coverage rates of the multi-asset EPMS price estimator by

using the asymptotic distribution given in Theorem 2 under the multivariate versions of

Hull and White (1987)’s stochastic volatility model (S1.8).

Maximum Call Option (n = 3) T = 30 days T = 270 days

S0/K 0.97 1.00 1.03 0.97 1.00 1.03 1.10

(κ, σ) = (10,0.1) MRQ 2.19 2.30 2.56 2.66 2.93 2.23 3.00

MRP 1.92 2.01 2.10 1.91 2.04 2.03 2.08

25% cov. rate 0.249 0.258 0.243 0.249 0.254 0.259 0.261

50% cov. rate 0.528 0.508 0.501 0.531 0.499 0.494 0.497

75% cov. rate 0.761 0.737 0.748 0.775 0.758 0.747 0.753

95% cov. rate 0.944 0.942 0.950 0.956 0.946 0.946 0.946

(κ, σ) = (5,0.1) MRQ 2.17 2.44 2.89 2.74 2.69 3.06 3.16

MRP 1.92 2.10 2.32 2.05 1.93 2.17 2.11

25% cov. rate 0.238 0.286 0.257 0.245 0.261 0.264 0.245

50% cov. rate 0.495 0.526 0.527 0.509 0.485 0.531 0.514

75% cov. rate 0.763 0.770 0.769 0.749 0.752 0.767 0.751

95% cov. rate 0.952 0.958 0.966 0.946 0.945 0.959 0.952

(κ, σ) = (10,1) MRQ 2.17 2.25 2.29 2.10 2.06 2.17 2.44

MRP 1.81 1.86 1.82 1.51 1.42 1.62 1.50

25% cov. rate 0.266 0.229 0.257 0.261 0.254 0.231 0.252

50% cov. rate 0.513 0.492 0.523 0.517 0.483 0.483 0.504

75% cov. rate 0.759 0.746 0.761 0.726 0.731 0.745 0.750

95% cov. rate 0.957 0.943 0.949 0.940 0.949 0.955 0.955

(κ, σ) = (5,1) MRQ 2.02 2.33 2.66 1.97 2.11 2.27 2.25

MRP 1.70 1.94 2.09 1.17 1.36 1.36 1.46

25% cov. rate 0.248 0.231 0.268 0.268 0.262 0.236 0.253

50% cov. rate 0.507 0.494 0.506 0.509 0.510 0.496 0.484

75% cov. rate 0.751 0.731 0.763 0.758 0.772 0.753 0.747

95% cov. rate 0.962 0.949 0.961 0.959 0.964 0.957 0.952
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Geometric Put Option (n = 10) T = 30 days T = 270 days

S0/K 0.97 1.00 1.03 0.90 0.97 1.00 1.03

(κ, σ) = (10,0.1) MRQ 13.92 3.11 1.29 4.56 2.42 1.86 1.54

MRP 25.89 4.09 1.43 10.46 5.09 3.09 2.18

25% cov. rate 0.268 0.273 0.258 0.267 0.244 0.249 0.253

50% cov. rate 0.496 0.531 0.512 0.510 0.478 0.503 0.505

75% cov. rate 0.748 0.769 0.741 0.754 0.738 0.753 0.768

95% cov. rate 0.953 0.956 0.942 0.944 0.953 0.948 0.954

(κ, σ) = (5,0.1) MRQ 12.89 3.07 1.35 4.59 2.46 1.93 1.48

MRP 24.21 4.00 1.52 15.12 4.86 2.98 2.06

25% cov. rate 0.252 0.252 0.248 0.269 0.256 0.247 0.252

50% cov. rate 0.488 0.508 0.494 0.500 0.496 0.498 0.526

75% cov. rate 0.742 0.742 0.747 0.739 0.758 0.747 0.760

95% cov. rate 0.941 0.954 0.948 0.953 0.957 0.947 0.952

(κ, σ) = (10,1) MRQ 14.71 3.17 1.37 5.13 2.29 1.87 1.49

MRP 23.34 4.08 1.48 7.50 3.61 2.69 1.92

25% cov. rate 0.246 0.233 0.244 0.231 0.246 0.262 0.237

50% cov. rate 0.514 0.500 0.480 0.475 0.504 0.510 0.487

75% cov. rate 0.773 0.734 0.744 0.750 0.764 0.749 0.736

95% cov. rate 0.944 0.954 0.952 0.957 0.943 0.950 0.937

(κ, σ) = (5,1) MRQ 14.76 2.92 1.35 4.44 2.26 2.02 1.46

MRP 26.17 3.80 1.45 4.59 2.82 2.25 1.76

25% cov. rate 0.261 0.247 0.236 0.235 0.228 0.254 0.246

50% cov. rate 0.487 0.493 0.499 0.497 0.479 0.496 0.514

75% cov. rate 0.733 0.728 0.756 0.776 0.746 0.743 0.752

95% cov. rate 0.943 0.947 0.943 0.953 0.957 0.941 0.950

where {Si,t, t ≥ 0} and {Vi,t, t ≥ 0} are the price and volatility processes,

respectively, for the ith underlying asset, W
(1)
i,t and W

(2)
i,t are correlated

Brownian motions processes with correlation ρi, {Vi,t, t ≥ 0} is a mean

reverting process with rate of reversion κi for i = 1, . . . , n. Following Hull
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and White (1987)’s derivation, a risk-neutral counterpart of model (S1.8)

is 
dSi,t/Si,t = rdt+

√
Vi,tdW̃

(1)
i,t

dVi,t/Vi,t = κi(σ
∗
i −

√
Vi,t)dt+ σidW̃

(2)
i,t

(S1.9)

where W̃
(1)
i,t = W

(1)
i,t + tηi,t with ηi,t = (µi − r)/

√
Vi,t, W̃

(2)
i,t = W

(2)
i,t , and

dW̃
(1)
i,t dW̃

(2)
i,t = ρidt for each i = 1, . . . , n.

The parameters for computing the prices of the two multi-asset options

with (S1.8) are set to be the same as in Table 1. For simplicity, we consider

to compute the option prices under the case of independent underlying

assets and further set σi = 0.1, 1, σ∗i = 0.30 and κi = 5, 10 for i = 1, . . . , n.

In addition, the correlation, ρi, of W
(1)
i,t and W

(2)
i,t is assumed to be -0.7

and initial value of Vi,t is assumed to be Vi,0 = (σ∗i )
2 for each i = 1, . . . , n.

Therefore, the change of measure process can be represented by

Λt =
n∏
i=1

exp
{
− 1

1− ρ2
i

(1

2

∫ t

0

η2
i,sds+

∫ t

0

ηi,sdW
(1)
i,s − ρi

∫ t

0

ηi,sdW
(2)
i,s

)}
.

By using a daily discretized approximation, model (S1.8) is used to compute

the MCP and EPMS price estimates, and model (S1.9) is used to compute

the MCQ and EMS price estimates. Table 6 presents the MSE ratios MRQ

and MRP for maximum call options with n = 3 and for geometric average

put options with n = 10. Numerical results in Table 6 indicate that the
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EMS and EPMS price estimators are capable of improving the efficiency of

the MC method, especially for ITM options.

Another widely discussed stochastic volatility model in the literature is

Heston (1993)’s model. Let the underlying assets (S1,t, . . . , Sn,t) satisfy the

following multivariate stochastic volatility model under the P measure:
dSi,t = µiSi,tdt+

√
Vi,tSi,tdW

(1)
i,t

dVi,t = κi(θi − Vi,t)dt+ σi
√
Vi,tdW

(2)
i,t

(S1.10)

where {Si,t, t ≥ 0} and {Vi,t, t ≥ 0} are the price and volatility processes,

respectively, for the ith underlying asset, W
(1)
i,t and W

(2)
i,t are defined the

same as in model (S1.8), {Vi,t, t ≥ 0} is a square root mean reverting

process proposed by Cox, Ingersoll and Ross (1985) with long run mean θi,

rate of reversion κi, and the volatility of volatility σi for each i = 1, . . . , n.

Following Heston (1993)’s derivation, a risk-neutral counterpart of model

(S1.10) is 
dSi,t = rSi,tdt+

√
Vi,tSi,tdW̃

(1)
i,t

dVi,t = κ∗i (θ
∗
i − Vi,t)dt+ σi

√
Vi,tdW̃

(2)
i,t

(S1.11)

where W̃
(1)
i,t = W

(1)
i,t + tηi,t with ηi,t = (µi − r)/

√
Vi,t, W̃

(2)
i,t = W

(2)
i,t + tξi,t

with ξi,t = λi
√
Vi,t/σi, which is called the market price of volatility risk and

λi is a constant, dW̃
(1)
i,t dW̃

(2)
i,t = ρidt, κ

∗
i = κ + λ and θ∗i = κiθi/κ

∗
i for each

i = 1, . . . , n.
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Table 7: The MSE ratios MRQ and MRP for pricing maximum call options and geometric

average put options and the coverage rates of the multi-asset EPMS price estimator by

using the asymptotic distribution given in Theorem 2 under the multivariate versions of

Heston (1993)’s stochastic volatility model (S1.10).

Maximum Call Option (n = 3) T = 30 days T = 270 days

S0/K 0.97 1.00 1.03 0.97 1.00 1.03 1.10

(λ, κ∗) = (0.01,2) MRQ 2.29 2.36 2.65 2.87 2.62 2.84 2.53

MRP 1.95 2.04 2.20 2.08 1.95 2.08 2.10

25% cov. rate 0.257 0.227 0.262 0.234 0.246 0.235 0.254

50% cov. rate 0.508 0.485 0.511 0.472 0.496 0.471 0.511

75% cov. rate 0.746 0.752 0.767 0.728 0.761 0.740 0.754

95% cov. rate 0.940 0.955 0.949 0.954 0.962 0.959 0.955

(λ, κ∗) = (0.05,2) MRQ 2.13 2.37 2.85 2.60 2.82 2.72 2.66

MRP 1.88 2.09 2.43 2.68 3.06 3.05 3.22

25% cov. rate 0.240 0.237 0.231 0.263 0.262 0.240 0.239

50% cov. rate 0.483 0.511 0.510 0.506 0.513 0.494 0.501

75% cov. rate 0.764 0.754 0.759 0.741 0.769 0.735 0.738

95% cov. rate 0.952 0.955 0.958 0.934 0.946 0.947 0.955

(λ, κ∗) = (0.01,4) MRQ 2.24 2.42 2.48 2.60 2.54 3.05 2.86

MRP 1.95 2.01 2.05 1.94 1.94 2.14 2.38

25% cov. rate 0.238 0.251 0.237 0.250 0.220 0.235 0.259

50% cov. rate 0.475 0.528 0.488 0.519 0.486 0.490 0.515

75% cov. rate 0.756 0.739 0.739 0.734 0.763 0.744 0.750

95% cov. rate 0.955 0.954 0.947 0.944 0.943 0.952 0.954

(λ, κ∗) = (0.05,4) MRQ 2.15 2.42 2.49 2.49 2.74 3.04 2.82

MRP 1.95 2.21 2.14 2.49 2.91 3.33 3.60

25% cov. rate 0.252 0.256 0.270 0.238 0.240 0.254 0.248

50% cov. rate 0.499 0.502 0.507 0.513 0.472 0.498 0.479

75% cov. rate 0.751 0.745 0.765 0.764 0.731 0.747 0.766

95% cov. rate 0.938 0.953 0.951 0.950 0.951 0.957 0.962
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Geometric Put Option (n = 10) T = 30 days T = 270 days

S0/K 0.97 1.00 1.03 0.90 0.97 1.00 1.03

(λ, κ∗) = (0.01,2) MRQ 15.42 3.26 1.33 4.07 2.48 1.92 1.38

MRP 28.80 4.29 1.49 15.48 4.71 2.99 1.94

25% cov. rate 0.241 0.268 0.240 0.251 0.254 0.271 0.257

50% cov. rate 0.507 0.520 0.509 0.486 0.493 0.500 0.500

75% cov. rate 0.750 0.744 0.766 0.728 0.756 0.749 0.753

95% cov. rate 0.950 0.951 0.944 0.948 0.947 0.955 0.952

(λ, κ∗) = (0.05,2) MRQ 13.99 2.97 1.36 4.58 2.38 1.77 1.40

MRP 24.83 4.16 1.51 19.74 5.70 3.34 2.17

25% cov. rate 0.239 0.251 0.259 0.250 0.246 0.227 0.243

50% cov. rate 0.491 0.488 0.511 0.493 0.473 0.479 0.477

75% cov. rate 0.732 0.732 0.731 0.751 0.737 0.737 0.733

95% cov. rate 0.948 0.949 0.950 0.948 0.950 0.940 0.935

(λ, κ∗) = (0.01,4) MRQ 14.75 3.00 1.39 4.80 2.18 2.03 1.44

MRP 25.54 3.89 1.51 12.42 4.48 3.18 2.10

25% cov. rate 0.269 0.249 0.251 0.248 0.281 0.275 0.247

50% cov. rate 0.526 0.494 0.502 0.479 0.506 0.502 0.504

75% cov. rate 0.753 0.749 0.748 0.721 0.775 0.747 0.751

95% cov. rate 0.944 0.951 0.951 0.948 0.965 0.957 0.957

(λ, κ∗) = (0.05,4) MRQ 14.37 2.91 1.31 4.49 2.39 1.81 1.48

MRP 27.18 3.93 1.49 18.46 5.32 3.13 2.22

25% cov. rate 0.265 0.245 0.259 0.251 0.259 0.244 0.256

50% cov. rate 0.516 0.512 0.522 0.497 0.502 0.482 0.488

75% cov. rate 0.761 0.731 0.778 0.749 0.736 0.728 0.744

95% cov. rate 0.946 0.946 0.961 0.949 0.944 0.932 0.946

The parameters for computing the prices of the two multi-asset options

with (S1.10) are set to be the same as in Table 1. For simplicity, we consider

to compute the option prices under the case of independent underlying

assets and further set σi = 0.1, θi = 0.09, κ∗i = κ∗ = 2, 4 and λi = λ =
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0.01, 0.05 for i = 1, . . . , n. In addition, the correlation, ρi, of W
(1)
i,t and W

(2)
i,t

is assumed to be -0.7 and initial value of Vi,t is assumed to be Vi,0 = θi = 0.09

for each i = 1, . . . , n. The change of measure process can be represented by

Λt =
n∏
i=1

exp
{
− 1

1− ρ2
i

(1

2

∫ t

0

(η2
i,s + ξ2

i,s − 2ρiηi,sξi,s)ds

+

∫ t

0

(ηi,s − ρiξi,s)dW (1)
i,s +

∫ t

0

(ξi,s − ρiηi,s)dW (2)
i,s

)}
.

By using a daily discretized approximation, model (S1.10) is used to com-

pute the MCP and EPMS price estimates, and model (S1.11) is used to

compute the MCQ and EMS price estimates. Table 7 presents the values

of MRQ and MRP for maximum call options with n = 3 and for geomet-

ric average put options with n = 10. Numerical results indicate that the

EMS and EPMS have satisfactory performance, especially when an option

is ITM.

S2 Theoretical proofs

S2.1 Proof of Example 1

Proof. In the following, we show that

f(S1,T , S2,T ) = max(K −
√
S1,TS2,T , 0)
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is Lipschitz continuous on A1 = {(S1,T , S2,T ) : (S1,TS2,T )1/2 ≤ K for S1,T ≥

η and S2,T ≥ η}, where 0 < η < K1/2. If (S1, S2) and (P1, P2) are two

different points in A1, then we have

|f(S1, S2)− f(P1, P2)| ≤
∣∣∣∣√P1(

√
P2 −

√
S2)×

√
P2 +

√
S2√

P2 +
√
S2

∣∣∣∣
+

∣∣∣∣√S2(
√
P1 −

√
S1)

√
P1 +

√
S1√

P1 +
√
S1

∣∣∣∣
≤ K

2η

(
|P2 − S2|+ |P1 − S1|

)
≤ K√

2η

√
(P1 − S1)2 + (P2 − S2)2

=
K√
2η
‖(S1, S2)− (P1, P2)‖,

where the second inequality holds because (P1P2)1/2 ≤ K, (S1S2)1/2 ≤ K

and P1, P2, S1, S2 ≥ η, and the last inequality holds by the Cauchy-Schwarz

inequality. Hence, the desired result holds.

S2.2 Proof of Theorem 1

Proof. In the multi-asset EPMS procedure, we define

Λ∗j,t = Λ̂j,t/Λ̄m,t and S∗i,j,t = Si,0e
rtŜi,j,t/S̄

∗
i,m,t

where Λ̂j,t = Λt(Ŝ1,j,u, . . . , Ŝn,j,u, u = 1, . . . , t), Λ̄m,t = m−1
∑m

j=1 Λ̂j,t and

S̄∗i,m,t = m−1
∑m

j=1 Ŝi,j,tΛ
∗
j,t. Furthermore, let

ai(m, t) = S∗i,j,t/Ŝi,j,t = Si,0e
rt/S̄∗i,m,t,
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which is independent of paths j = 1, . . . ,m for any fixed i ∈ {1, . . . , n} and

t ∈ {1, . . . , T}. Let

b(m, t) = Λ∗j,t/Λ̂j,t = 1/Λ̄m,t,

which depends only on t = 1, . . . , T .

By the Law of Large Numbers (LLN) and since {Λt} and {e−rtSi,tΛt}

are both P -martingale processes, we have

Λ̄m,t =
1

m

m∑
j=1

Λ̂j,t → E0(Λt) = Λ0 = 1

and

e−rtS̄∗i,m,t =
1

m

m∑
j=1

e−rtŜi,j,tΛ̂j,t/Λ̄m,t → E0(e−rtSi,tΛt) = Si,0

, almost surely (abbreviated as a.s.), as m→∞. Consequently,

ai(m, t)→ 1 and b(m, t)→ 1, (S2.1)

a.s. as m→∞, for i = 1, . . . , n and t = 1, . . . , T .

Next, we show that

1

m

m∑
j=1

f(S∗j,1, . . . ,S
∗
j,T )Λ∗j,T → E0{f(S1, . . . ,ST )ΛT},

a.s. as m→∞, where S∗j,t = (S∗1,j,t, . . . , S
∗
n,j,t), t = 1, . . . , T . Since the LLN

guarantees that m−1
∑m

j=1 f(Ŝj,1, . . . , Ŝj,T )Λ̂j,T → E0{f(S1, . . . ,ST )ΛT},

a.s. as m→∞, it suffices to prove that

1

m

m∑
j=1

|f(S∗j,1, . . . ,S
∗
j,T )Λ∗j,T − f(Ŝj,1, . . . , Ŝj,T )Λ̂j,T | → 0, (S2.2)
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a.s. as m→∞.

Before proving (S2.2), we define the following notations:

(a) For the jth sample path (Ŝj,1, . . . , Ŝj,T ), j = 1, . . . ,m, we define xj to

be a point inG such that ||xj−(Ŝj,1, . . . , Ŝj,T )|| ≤ ||y−(Ŝj,1, . . . , Ŝj,T )||,

for any y ∈ G, where G is defined in (3.2). Let B(xj, δ) be an open ball

with center xj and radius δ > 0. Furthermore, let Bj,δ = B(xj, δ)∩Df .

(b) Let

Du = {‖(Ŝ1, . . . , ŜT )‖1 ≤ u},

where ‖(Ŝ1, . . . , ŜT )‖1 =
∑n

i=1

∑T
t=1 |Ŝi,t| is the `1-norm of (Ŝ1, . . . , ŜT ),

and let A∗j,δ,` = A`∩Bc
j,δ for ` = 1, . . . , k, where Bc

j,δ is the complement

of Bj,δ. Moreover, let Dj,δ,u = Bj,δ ∩Du and Aj,δ,u =
⋃k
`=1A

∗
j,δ,` ∩Du.

By using the above notations, the left-hand-side of (S2.2) can be rewritten

as

1

m

m∑
j=1

|f(S∗j,1, . . . ,S
∗
j,T )Λ∗j,T − f(Ŝj,1, . . . , Ŝj,T )Λ̂j,T |

=
1

m

m∑
j=1

|f(S∗j,1, . . . ,S
∗
j,T )Λ∗j,T − f(Ŝj,1, . . . , Ŝj,T )Λ̂j,T | IAj,δ,u

+
1

m

m∑
j=1

|f(S∗j,1, . . . ,S
∗
j,T )Λ∗j,T − f(Ŝj,1, . . . , Ŝj,T )Λ̂j,T | IDj,δ,u

+
1

m

m∑
j=1

|f(S∗j,1, . . . ,S
∗
j,T )Λ∗j,T − f(Ŝj,1, . . . , Ŝj,T )Λ̂j,T | IDc

u
, (S2.3)
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for any u > 0 and δ > 0, where ID is an indicator function with value 1

when the event D occurs. In the following, we show that the three terms

on the right-hand-side (rhs) of (S2.3) converge to 0, a.s. as m→∞.

(i) By using similar arguments used in the proof of Proposition 2 in Duan

and Simonato (1998), if (Ŝj,1, . . . , Ŝj,T ) ∈ A∗j,δ,` ⊆ A` and the event

Aj,δ,u occurs, then there exists an integer M such that for all m ≥M ,

(S∗j,1, . . . ,S
∗
j,T ) ∈ A`. Consequently, the assumption (A2) yields that

|f(S∗j,1, . . . ,S
∗
j,T )− f(Ŝj,1, . . . , Ŝj,T )|

≤ c
n∑
i=1

T∑
t=1

|S∗i,j,t − Ŝi,j,t|, (S2.4)

for any jth path and for some positive constant c <∞. Hence, (S2.4)

yields that

1

m

m∑
j=1

|f(S∗j,1, . . . ,S
∗
j,T )Λ∗j,T − f(Ŝj,1, . . . , Ŝj,T )Λ̂j,T | IAj,δ,u

≤ c (|b(m,T )− 1|+ 1)
n∑
i=1

T∑
t=1

[
|ai(m, t)− 1|

( 1

m

m∑
j=1

Ŝi,j,tΛ̂j,T

)]

+|b(m,T )− 1|

(
1

m

m∑
j=1

|f(Ŝj,1, . . . , Ŝj,T )| Λ̂j,T

)
. (S2.5)

In addition, by the LLN and (A4), we have

1

m

m∑
j=1

Ŝi,j,tΛ̂j,T → E(Si,tΛT ) = ertSi,0, a.s.,
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and

1

m

m∑
j=1

|f(Ŝj,1, . . . , Ŝj,T )|Λ̂j,T → EQ(|f(Ŝ1, . . . , ŜT )|) <∞, a.s.,

which together with (S2.1) yield that the rhs of (S2.5) converges to 0,

a.s. as m→∞.

(ii) Note that

1

m

m∑
j=1

|f(S∗j,1, . . . ,S
∗
j,T )Λ∗j,T − f(Ŝj,1, . . . , Ŝj,T )Λ̂j,T | IDj,δ,u

≤ 1

m

m∑
j=1

{|f(S∗j,1, . . . ,S
∗
j,T )| Λ∗j,T + |f(Ŝj,1, . . . , Ŝj,T )| Λ̂j,T} IDj,δ,u

≤ c

m

m∑
j=1

{[
1 +

(
n∑
i=1

T∑
t=1

S∗i,j,t

)q]
Λ∗j,T

Λ̂j,T

+ (1 + uq)

}
Λ̂j,T IDj,δ,u

≤ c
{

[1 + uq(max
i,t

ai(m, t))
q]b(m,T ) + (1 + uq)

}
( 1

m

m∑
j=1

Λ̂j,T IDj,δ,u

)
,

where the second inequality holds by the assumption (A3), ||x||q ≤

||x||q1 for a vector x and (Ŝj,1, . . . , Ŝj,T ) ∈ Dj,δ,u ⊂ Du for each j =

1, . . . ,m. In addition, the LLN yields that m−1
∑m

j=1 Λ̂j,T IDj,δ,u con-

verges to PQ(D1,δ,u), a.s., as m → ∞, where PQ is the probability

under a Q measure. In addition, PQ(D1,δ,u) ≤ PQ(B1,δ) ≤ KδnT for

some finite positive constant K, where the last inequality holds by the

assumption (A5). By (S2.1) and since u and δ are arbitrary positive
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numbers, let δ = u−2q and thereby the second term on the rhs of (S2.3)

converges to 0, a.s. as u→∞ and m→∞.

(iii) By (A3), we have

1

m

m∑
j=1

|f(S∗j,1, . . . ,S
∗
j,T ) Λ∗j,T − f(Ŝj,1, . . . , Ŝj,T ) Λ̂j,T | IDc

u

≤ c [1 + b(m,T )]
( 1

m

m∑
j=1

Λ̂j,T IDc
u

)
+c {1 + (max

j
Sn(j, T ))qb(m,T )}( 1

m

m∑
j=1

‖(Ŝj,1, . . . , Ŝj,T )‖qΛ̂j,T IDc
u

)
,

where Sn(j, T ) = ‖(S∗j,1, . . . ,S∗j,T )‖/‖(Ŝj,1, . . . , Ŝj,T )‖, which converges

to 1, a.s. as m→∞ by (S2.1). In addition, the LLN ensures that

1

m

m∑
j=1

Λ̂j,T IDc
u
→ PQ(Dc

u)

and

1

m

m∑
j=1

‖(Ŝj,1, . . . , Ŝj,T )‖qΛ̂j,T IDc
u
→ EQ[‖(Ŝ1, . . . , ŜT )‖qIDc

u
],

a.s. as m → ∞. Since (A5) ensures that EQ[‖(Ŝ1, . . . , ŜT )‖qIDc
u
] and

PQ(Dc
u) converge to 0 as u → ∞, thus the third term on the rhs of

(S2.3) converges to 0, a.s. as m→∞ and u→∞.

According to (S2.3) and (i)-(iii), let u = m and thereby the desired result

holds.
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S2.3 Proof of Theorem 2

Proof. Throughout this proof, we use |a| to denote (|a1|, . . . , |an|), use a−1

to denote (a−1
1 , . . . , a−1

n ), and use a ≤ b to denote that ai ≤ bi for each i =

1, . . . , n, where a = (a1, . . . , an) and b = (b1, . . . , bn). Let εM , M = 1, 2, . . .,

be a sequence of decreasing positive numbers and satisfy limM→∞ εM = 0.

By the assumption (A4’), for any εM , there exists a compact subset of Df ,

denoted by KM , such that

∣∣∣C − e−rTE[f(ST )ΛT IKM ]
∣∣∣ < 1

2
εM , (S2.6)

where C = e−rTE[f(ST )ΛT ] denotes the theoretical price of the derivative.

Note that K1 ⊂ K2 ⊂ · · · and limM→∞KM = Df .

Next, since f(ST ) is continuous on KM , by Weierstrass’s Approximation

Theorem, for any given εM > 0 there exists a polynomial function ϕM :

KM → R such that

sup
ST∈KM

|f(ST )− ϕM(ST )| < 1

2
εM . (S2.7)

We refer the reader to Timan (1963, page 1) for details of (S2.7). Fur-

thermore, let GM =
⋃

ST∈GB(ST , δM), where B(ST , δM) is an open ball

centered at ST with radius δM , which satisfies limM→∞ δM = 0, and G is

defined in (3.2). Since KM\GM is a finite union of disjoint compact sets,

by (S2.7) and (Duistermaat and Kolk, 2004, page 667) we also can find a
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large enough integer M ′ such that for all M ≥M ′

sup
ST∈KM\GM

||∇f(ST )−∇ϕM(ST )||1 < εM , (S2.8)

for any given εM > 0. Moreover, for any ST ∈ KM we have

lim
M→∞

||∇ϕM(ST )||1 ≤ 2
∑
`∈H

||∇f`(ST )||1, (S2.9)

where H ⊆ {1, . . . , k} is the collection of the index of A`, whose closure

contains ST . We prove (S2.9) in the following two steps. First, if ST /∈ G,

then there exist only one ` and an integer M ′′ such that for all M ≥ M ′′

ST ∈ A` ∩ (KM\GM). That is, H = {`} and ST ∈ A∗` ∩ Gc
M , where A∗`i

denotes the interior of A`i and Gc
M denotes the complement of GM . By

(S2.8), we have

||∇ϕM(ST )||1 ≤ ||∇f`(ST )||1 + εM , for ST /∈ G. (S2.10)

On the other hand, if ST ∈ G, then there could be more than one A`

containing ST . Let H = {`1, . . . , `p}, where `1 < · · · < `p and p ≤ n.

That is, ST ∈
⋂p
i=1A`i . If ||∇ϕM(ST )||1 = 0, then (S2.9) holds. If

||∇ϕM(ST )||1 > 0, by using the continuity of ∇φM on KM , there exists

an ηM > 0 such that ||∇ϕM(x)||1 > 0 and ||∇ϕM(ST )||1 ≤ 2||∇ϕM(x)||1

for all x ∈ B(ST , ηM). By (S2.10) and choosing an xi from the intersection

of A∗`i and B(ST , ηM), we have

||∇ϕM(xi)||1 ≤ ||∇f`(xi)||1IA∗`i∩B(ST ,ηM )(xi) + εM
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and thereby

||∇ϕM(ST )||1 ≤ 2

p∑
i=1

||∇f`i(xi)||1IA∗`i∩B(ST ,ηM )(xi) + 2pεM .

Moreover, by using the continuity of ∇f`i assumed in (A2’), we have

||∇f`i(xi)||1IA∗`i∩B(ST ,ηM )(xi)− ||∇f`i(ST )||1 → 0, as ηM → 0,

for i = 1, . . . , p, and thereby

||∇ϕM(ST )||1 ≤ 2

p∑
i=1

||∇f`i(ST )||1 + ε̃M , for ST ∈ G, (S2.11)

where ε̃M > 0 and limM→∞ ε̃M = 0. Consequently, (S2.10) and (S2.11)

yield (S2.9).

By (S2.6), (S2.7) and the fact of E(ΛT ) = 1, we have

|C − e−rTE[ϕM(ST )ΛT ]| < εM

and thereby

erT
√
m(C

(m)
EPMS − C

(m)
MC )

=
1√
m

m∑
j=1

lim
M→∞

{ϕM(S∗j,T )Λ∗j,T − ϕM(Sj,T )Λj,T}

=
1√
m

m∑
j=1

lim
M→∞

{ϕM(S∗j,T )− ϕM(Ŝj,T )} Λ̂j,T

+
1√
m

m∑
j=1

f(Ŝj,T )(Λ∗j,T − Λ̂j,T )

+
1√
m

m∑
j=1

lim
M→∞

{ϕM(S∗j,T )− ϕM(Ŝj,T )} × (Λ∗j,T − Λ̂j,T ). (S2.12)
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In the following, we deal with the three terms on the rhs of (S2.12) sepa-

rately.

Note that for any fixed s > 0, the function v → ϕM(s ◦ v−1) is con-

tinuous and differentiable for v ∈ (0,∞)n. Since ST is a positive random

vector, we apply the multi-dimensional mean value theorem to ϕM(s◦v−1).

That is, there exists a constant d ∈ [0, 1] such that

ϕM(S∗j,T )− ϕM(Ŝj,T )

= ϕM(erTS0 ◦ Ŝj,T ◦ (S̄∗m,T )−1)− ϕM(erTS0 ◦ Ŝj,T ◦ (erTS0)−1)

= −(S̄∗m,T − erTS0)
{
∇ϕM(W

(M)
j,1 ) ◦ (W

(M)
j,2 )>

}
, (S2.13)

where S̄∗m,T = (S̄∗1,m,T , . . . , S̄
∗
n,m,T ), in which S̄∗i,m,T = m−1

∑m
j=1 Ŝi,j,TΛ∗j,T ,

S∗j,T = erTS0 ◦ Ŝj,T ◦ (S̄∗m,T )−1, W
(M)
j,k = erTS0 ◦ Ŝj,T ◦ (V

(M)
j,m )−k, for k = 1, 2,

and V
(M)
j,m = (1− d)erTS0 + dS

∗
m,T . In addition, by similar arguments used

in (S2.13) and recalling that Λ∗j,T = Λ̂j,T/Λ̄m,T , we also have

Λ∗j,T − Λ̂j,T = − Λ̂j,T

(U∗j,m)2
(Λ̄m,T − 1), (S2.14)

where U∗j,m ∈ [min(Λ̄m,T , 1),max(Λ̄m,T , 1)]. By substituting (S2.13) and

(S2.14) into (S2.12), we have

(S2.12) = (I) + (II) + (III), (S2.15)
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where

(I) = −(S̄∗m,T − erTS0)
1√
m

m∑
j=1

Λ̂j,T lim
M→∞

{
∇ϕM(W

(M)
j,1 ) ◦ (W

(M)
j,2 )>

}
,

(II) = − 1√
m

m∑
j=1

f(Ŝj,T )

(
Λ̂j,T

(U∗j,m)2
(Λ̄m,T − 1)

)

(III) =
1√
m

m∑
j=1

lim
M→∞

[
ϕM(S∗j,T )− ϕM(Ŝj,T )

]
(Λ∗j,T − Λ̂j,T ).

Let Φ = e−rTE[ΛT∇f(ST ) ◦ (ST ◦ S−1
0 )>]. Lemmas 1-3, respectively, given

below yield that

(I) = −
√
m(S̄m,T − erT Λ̄m,TS0)Φ + op(1), (S2.16)

(II) = −
√
m(Λ̄m,T − 1)E[f(ST )ΛT ] + op(1), (S2.17)

(III) = op(1), (S2.18)

where S̄m,T = (S̄1,m,T , . . . , S̄n,m,T ). Consequently, by (S2.15)-(S2.18), and

let Ψ = E(f(ST )ΛT ) − erTS0Φ, we have C
(m)
MC − C

(m)
EPMS = e−rT{(S̄m,T −

erTS0)Φ + (Λ̄m,T − 1)Ψ}+ op(m
−1/2). Hence, Theorem 2 (i) holds.

Next, we derive the result of Theorem 2 (ii). By Theorem 2 (i), we have

√
m(C

(m)
EPMS − C)

=
√
m(C

(m)
MC − C)−

√
me−rT{(S̄m,T − erTS0)Φ + (Λ̄m,T − 1)Ψ}+ op(1)

=
e−rT√
m

m∑
j=1

{[f(Ŝj,T )Λ̂j,T − E(f(ST )ΛT )]− [Λ̂j,T Ŝj,T − E(ΛTST )]Φ

−[Λj,T − E(ΛT )]Ψ}+ op(1)



S2. THEORETICAL PROOFS35

By the central limit theorem (CLT), we have

√
m(C

(m)
EPMS − C)

L−→ N(0, V ), as m→∞,

where

V = e−2rT
{

Var(f(ST )ΛT ) + Φ>Var(ΛTST )Φ + Ψ2Var(ΛT )

−2
[
Φ>Cov(f(ST )ΛT ,ΛTST ) + ΨCov(f(ST )ΛT ,ΛT )

−ΨΦ>Cov(ΛT ,ΛTST )
]}
.

Lemma 1. By using the same assumptions as in Theorem 2 (i), (S2.16)

holds.

Proof. First, we rewrite (I) as

(I) = −
√
m(S̄∗m,T − erTS0) (Φ−Ym,T ) , (S2.19)

where

Ym,T = E[e−rTΛT∇f(ST) ◦ (ST ◦ S−1
0 )>]

− 1

m

m∑
j=1

Λ̂j,T lim
M→∞

{
∇ϕM(W

(M)
j,1 ) ◦ (W

(M)
j,2 )>

}
=

1

m

m∑
j=1

e−rT Λ̂j,T∇f(Ŝj,T ) ◦ (Ŝj,T ◦ S−1
0 )>

− 1

m

m∑
j=1

Λ̂j,T lim
M→∞

{
∇ϕM(W

(M)
j,1 ) ◦ (W

(M)
j,2 )>

}
+ op(1)

= Y
(1)
m,T + Y

(2)
m,T + op(1), (S2.20)
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in which the 2nd equality holds by the LLN and op(1) stands for a random

vector whose components are op(1),

Y
(1)
m,T =

1

m

m∑
j=1

e−rT Λ̂j,T

(
Ŝj,T ◦ S−1

0

)>
◦
[
∇f(Ŝj,T )− lim

M→∞
∇ϕM(W

(M)
j,1 )

]
and

Y
(2)
m,T =

1

m

m∑
j=1

(
erT Λ̂j,TS0 ◦ Ŝj,T

)>
◦
{

lim
M→∞

∇ϕM(W
(M)
j,1 ) ◦

(
e−2rTS−2

0 − (V
(M)
j,m )−2

)>}
.

Recall that

S̄m,T =
1

m

m∑
j=1

Λ̂j,T Ŝj,T and S̄∗m,T =
1

m

m∑
j=1

Λ∗j,T Ŝj,T = Λ̄−1
m,T S̄m,T

for i = 1, . . . , n since Λ∗j,T = Λ̂j,T/Λ̄m,T . We then have

√
m(S̄∗m,T − erTS0)

=
√
mΛ̄−1

m,T{(S̄m,T − e
rTS0)− erTS0(Λ̄m,T − 1)}. (S2.21)

By the CLT,
√
m(S̄i,m,T−Si,0erT ) and

√
mSi,0e

rT (Λ̄m,T−1) converge weakly

to proper normal random variables for i = 1, . . . , n. In addition, since

Λ̄m,T → 1, a.s., thus, (S2.21) can be rewritten as

√
m(S̄∗m,T − erTS0) =

√
m(S̄m,T − Λ̄m,T e

rTS0) + op(1). (S2.22)

By (S2.19) and (S2.22), we have

(I) = −
√
m(S̄m,T − Λ̄m,T e

rTS0)(Φ−Ym,T ) + op(1).



S2. THEORETICAL PROOFS37

To obtain (S2.16), it remains to show that the Y
(1)
m,T and Y

(2)
m,T defined in

(S2.20) satisfy

||Y(1)
m,T ||1 + ||Y(2)

m,T ||1 = op(1). (S2.23)

Let `j,m := lim
M→∞

W
(M)
j,1 and we have

||Y(1)
m,T ||1

≤ 1

m

m∑
j=1

e−rT Λ̂j,T ||Ŝj,T ◦ S−1
0 ||1 × ||∇f(Ŝj,T )− lim

M→∞
∇ϕM(W

(M)
j,1 )||1

≤ 1

m

m∑
j=1

e−rT Λ̂j,T ||Ŝj,T ◦ S−1
0 ||1 × ||∇f(Ŝj,T )−∇f(`j,m)||1 I{`j,m /∈G}

+
1

m

m∑
j=1

e−rT Λ̂j,T ||Ŝj,T ◦ S−1
0 ||1 ×(

||∇f(Ŝj,T )||1 + 2
∑
`∈H

||∇f`(`j,m)||1
)
I{`j,m∈G}

:= B1 +B2, (S2.24)

where the second inequality hold by (S2.8) and (S2.9). Since lim
m→∞

V
(M)
j,m =

erTS0, a.s., for all j and M , we have

B1 = op(1), as m→∞, (S2.25)

and thus lim
m→∞

`j,m = Ŝj,T , a.s.. In addition, (A3’) yields that

lim
m→∞

E|B2| ≤ c E
(

ΛT (1 + ‖ST‖q)× ||ST ◦ S−1
0 ||1 I{ST∈G}

)
≤ c ||S−1

0 || × E
(

ΛT (1 + ‖ST‖q)× ||ST || I{ST∈G}
)

= 0,

where the second inequality is due to the Cauchy-Schwarz inequality, and
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the equality holds by (A5’) and the fact that the volume of the boundary

set G defined in (3.2) is zero. Consequently,

B2 = op(1), as m→∞. (S2.26)

Moreover, (S2.9) and (A3’) yield that

||Y(2)
m,T ||1 ≤ c erT ||qm,T ||1 × ||S0||1 ×

∣∣∣∣∣∣ 1

m

m∑
j=1

(
1 + ‖W(M)

j,1 ‖q
)

Λ̂j,T Ŝj,T

∣∣∣∣∣∣
1

= op(1), (S2.27)

as m→∞, where

qm,T = sup
x=(1−d)erTS0+dS̄∗m,T , 0≤d≤1

|e−2rTS−2
0 − x−2|.

In addition, the last equality in (S2.27) holds by the LLN, (A5’) and

lim
m→∞

||qm,T ||1 = 0, a.s., provided by lim
m→∞

S̄∗m,T = erTS0. Therefore, by

(S2.24)-(S2.27), (S2.23) holds. �

Lemma 2. By using the same assumptions as in Theorem 2 (i), (S2.17)

holds.

Proof. By (S2.15),

(II) = −
√
m(Λ̄m,T − 1)

( 1

m

m∑
j=1

f(Ŝj,T )
Λ̂j,T

(U∗j,m)2

)
= −

√
m(Λ̄m,T − 1)E[f(ST )ΛT ]

+
√
m(Λ̄m,T − 1)(
E[f(ST )ΛT ]− 1

m

m∑
j=1

f(Ŝj,T )
Λ̂j,T

(U∗j,m)2

)
, (S2.28)
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where U∗j,m is defined in (S2.14). By the CLT,
√
m(Λ̄m,T − 1) converges

weakly to a normal random variable. By (S2.28) and using similar argu-

ments in (S2.23)-(S2.27),

E[f(ST )ΛT ]− 1

m

m∑
j=1

f(Ŝj,T )
Λ̂j,T

(U∗j,m)2
= op(1),

and thereby (S2.17) holds. �

Lemma 3. By using the same assumptions as in Theorem 2 (i), (S2.18)

holds.

Proof. Note that

(III) :=
1√
m

m∑
j=1

lim
M→∞

{ϕM(S∗j,T )− ϕM(Ŝj,T )} × (Λ∗j,T − Λ̂j,T )

≤ max
j=1,...,m

∣∣∣∣∣Λ∗j,TΛ̂j,T

− 1

∣∣∣∣∣
1√
m

m∑
j=1

lim
M→∞

{ϕM(S∗j,T )− ϕM(Ŝj,T )} Λ̂j,T . (S2.29)

By (S2.12), (S2.13), (S2.15) and (S2.16),

1√
m

m∑
j=1

lim
M→∞

{ϕM(S∗j,T )− ϕM(Ŝj,T )} Λ̂j,T

= −
√
m(S̄m,T − erT Λ̄m,TS0)Φ + op(1). (S2.30)

Furthermore, by the CLT,
√
m(S̄i,m,T − Si,0erT Λ̄m,T ) converges weakly to a

proper normal random variable for i = 1, . . . , n. Hence, by (S2.1), (S2.29)

and (S2.30), (S2.18) holds. �
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S2.4 Multi-asset Esscher transform for multivariate GARCH-N

models

Let Ri,t = log(Si,t/Si,t−1) and µi,t = r − 0.5σ2
i,t + λiσi,t. From model

(S1.2), we have Rt|Ft−1 ∼ N(µt,Σt), where Rt = (R1,t, . . . , Rn,t)
>, µt =

(µ1,t, . . . , µn,t)
>, Σt = (σijt), σijt = ρi,jσi,tσj,t and Ft−1 denotes the set

of information from time 0 up to time t − 1. Let ft−1(Rt) denote the

conditional density function of Rt given Ft−1 under the P measure and the

corresponding conditional moment generating function (m.g.f.) is

Mt−1(δ) = exp

{
δ>µt +

1

2
δ>Σtδ

}
, (S2.31)

where δ = (δ1, . . . , δn)>. By the Esscher transform, let

fQt−1(Rt) =
es
>Rt

Mt−1(s)
ft−1(Rt) (S2.32)

denote the conditional density function of Rt given Ft−1 under a Q measure

by introducing an n×1 vector s. To choose a vector s in (S2.32) such that Q

is a risk-neutral measure, the following martingale identity for each under-

lying asset has to be satisfied under the Q measure, that is, EQ
t−1(eRi,t) = er

for i = 1, . . . , n.

By (S2.32), the conditional m.g.f. of Rt given Ft−1 under the Q measure

can be represented as

MQ
t−1(δ) =

Mt−1(δ + s)

Mt−1(s)
. (S2.33)
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To solve s, first let ei = (0, . . . , 1, . . . , 0)>, whose elements are all zero

except for the ith element being 1. Hence, we have EQ
t−1(eRi,t) = MQ

t−1(ei)

and thereby (S2.31) and (S2.33) yield

MQ
t−1(ei) = exp

{
e>i µt +

1

2
e>i Σtei + e>i Σts

}
. (S2.34)

By (S2.34), the identities of MQ
t−1(ei) = EQ

t−1(eRi,t) = er is equivalent to

µi,t+
1
2
σ2
i,t+(σi1t, . . . , σint)s= r. Furthermore, since µi,t = r−0.5σ2

i,t+λiσi,t,

the last identity can be represented as (σi1t, . . . , σint)s = −λiσi,t, which is

a linear equation of s, for i = 1, . . . , n. By rewriting the n linear equations

in matrix, we have

s = −Σ−1
t Dλσt, (S2.35)

where Dλ is a diagonal matrix with the ith diagonal component being λi

and σt = (σ1,t, . . . , σn,t)
>. By substituting (S2.35) into equation (S2.33),

the conditional m.g.f. of Rt given Ft−1 under the Q measure is

MQ
t−1(δ) = exp

{
δ>(µt −Dλσt) +

1

2
δ>Σtδ

}
which is the m.g.f. of N (µt −Dλσt,Σt) . Therefore, we have Ri,t|Ft−1 ∼

N(r−0.5σ2
i,t, σ

2
i,t). As a result, the risk-neutral counterpart of model (S1.2)

derived by the multi-asset Esscher transform is
Ri,t = r − 1

2
σ2
i,t + σi,tε

∗
i,t

σ2
i,t = β0 + β1σ

2
i,t−1 + β2σ

2
i,t−1(ε∗i,t−1 − λi)2

,
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where ε∗i,t = εi,t + λi is N(0, 1) distributed under the Q measure.

In addition, the Radon-Nykodým derivative of the measure Q with

respect to the measure P is

ΛT =
fQT−1(RT )

fT−1(RT )
×
fQT−2(RT−1)

fT−2(RT−1)
× . . .× fQ0 (R1)

f0(R1)
=

T∏
t=1

Λt,

where

Λt =
fQt−1(Rt)

ft−1(Rt)
= exp

{
−σ>t DλΣ−1

t

(
Rt − µt +

1

2
Dλσt

)}
,

and (S1.3) holds. �
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