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Supplementary Materials

Proof of Theorem 2

The proof given below is a slight modification of the proof of Theorem 3.1

in Davanloo et al. (2015) to obtain tighter bounds. For the sake of complete-

ness, we provide the proof. Through the change of variables ∆ := P − P ∗,

we can write (2.1) in terms of ∆ as

∆̂ = argmin{F (∆) := 〈S,∆ + P ∗〉 − log det(∆ + P ∗) + α
〈
G⊗ (1p1

>
p ), |∆ + P ∗|

〉
: ∆ ∈ F},

where F := {∆ ∈ Rnp×np : ∆ = ∆>, a∗I � ∆ + P ∗ � b∗I}. Note that

∆̂ = P̂ − P ∗. Define g(∆) := − log det(∆ + P ∗) on F . g(.) is strongly

convex over F with modulus 1/b∗2; hence, for any ∆ ∈ F , it follows that

g(∆) − g(0) ≥ −
〈
P ∗−1,∆

〉
+ 1

2b∗2
‖∆‖2

F . Let H(∆) := F (∆) − F (0) and

S∆ := {∆ ∈ F : ‖∆‖F > 2b∗2p(n + ‖G‖F )α}. Under probability event

Ω = {‖vec(Sij − Σij)‖∞ ≤ α, ∀(i, j) ∈ I × I}, for any ∆ ∈ S∆ ⊂ F ,

H(∆) ≥ 〈S,∆〉 −
〈
P ∗
−1
,∆
〉

+
1

2b∗2
‖∆‖2F + α

〈
G⊗ (1p1

>
p ), |∆ + P ∗|

〉
− α 〈G, |P ∗|〉

≥ 1

2b∗2
‖∆‖2F + 〈∆, S − C∗〉 − α

〈
G⊗ (1p1

>
p ), |∆|

〉
≥ 1

2b∗2
‖∆‖2F − αp(n+ ‖G‖F )‖∆‖F > 0,

where the second inequality follows from the triangle inequality, the third

one holds under the probability event Ω and follows from the Cauchy-

Schwarz inequality, and the final strict one follows from the definition of

S∆. Since F (0) is a constant, ∆̂ = argmin{H(∆) : ∆ ∈ F}. Hence,

H(∆̂) ≤ H(0) = 0. Therefore, ∆̂ 6∈ S∆ under the probability event Ω. It

is important to note that ∆̂ satisfies the first two conditions given in the
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definition of S∆. This implies ‖∆̂‖F ≤ 2b∗2p(n + ‖G‖F )α whenever the

probability event Ω is true. Hence,

Pr
(
‖P̂ − P ∗‖F ≤ 2b∗

2
p(n+ ‖G‖F )α

)
≥ Pr

(
‖vec(Sij − Σij)‖∞ ≤ α, ∀(i, j) ∈ I × I

)
= 1− Pr

(
max
i,j∈I

‖vec(Sij − Σij)‖∞ > α

)
≥ 1−

∑
i,j∈I

Pr
(
‖vec(Sij − Σij)‖∞ > α

)
.

Recall that S = 1
N

∑N
r=1 y(r)y(r)> and y(r) = [y

(r)
i ]i∈I for r = 1, . . . , N .

Note Σii = Γ∗ for i ∈ I; hence, y
(r)
i ∼ N (0,Γ∗), i.e., multivariate Gaussian

with mean 0 and covariance matrix Γ∗, for all i and r. Therefore, Lemma 1

in Ravikumar et al. (2011) implies Pr (‖vec(Sij − Σij)‖∞ > α) ≤ Bα for

α ∈ (0, 40 maxi Γ
∗
ii), where Bα := 4p2 exp

(
−N

2

(
α

40 maxi Γ∗ii

)2
)

. Hence, given

any M > 0, by requiring N ≥
(

40 maxi Γ∗ii
α

)2

N0, we get Bα ≤ 1
n2 (np)−M .

Thus, for any N ≥ N0, we have
∑

i,j∈I Pr (‖vec(Sij − Σij)‖∞ > α) ≤

(np)−M for all 40 maxi Γ
∗
ii

√
N0

N
≤ α ≤ 40 maxi Γ

∗
ii.

Proof of Theorem 4

For the sake of simplicity of the notation let Φ = (Γ, C) ∈ Sn × Snp,
and define ‖(Γ, C)‖a := max{‖Γ‖2, ‖C‖2} over the product vector space

Sn × Snp; also let Ψ = (θ,Γ, C) ∈ Rq × Sn × Snp, and define ‖(θ,Γ, C)‖b :=

‖θ‖+ ‖(Γ, C)‖a over the product vector space Rq × Sn × Snp. Throughout

the proof Φ̂ := (Γ̂, Ĉ), Φ∗ := (Γ∗, C∗), and Ψ̂ := (θ̂, Φ̂), Ψ∗ := (θ∗,Φ∗).

As θ∗ ∈ int(Θ), there exists δ1 > 0 such that B‖.‖2(θ∗, δ1) ⊂ Θ. More-
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over, since ρ(x,x′;θ) is twice continuously differentiable in θ over Θ for all

x,x′ ∈ X , R : Θ → Sn is also twice continuously differentiable. Hence,

from (3.12), it follows that ∇2f(θ; Γ, C) is continuous in Ψ = (θ,Γ, C);

and since eigenvalues of a matrix are continuous functions of matrix en-

tries, λmin (∇2f(θ; Γ, C)) is continuous in Ψ on B‖.‖b(Ψ∗, δ1) as well. There-

fore, it follows from Lemma 1 that there exists 0 < δ2 ≤ δ1 such that

∇2
θf(θ; Γ, C) � γ∗

2
I for all Ψ = (θ,Γ, C) ∈ B‖.‖b(Ψ∗, δ2).

Let Q := B̄‖.‖a(Φ∗, 1
2
δ2) and Θ′ := Θ ∩ B̄‖.‖2(θ∗, 1

2
δ2), i.e.,

Q = {(Γ, C) : max{‖Γ− Γ∗‖2, ‖C − C∗‖2} ≤ 1
2
δ2}, (5.1)

Θ′ = {θ ∈ Θ : ‖θ − θ∗‖ ≤ 1
2
δ2}. (5.2)

Clearly f is strongly convex in θ over Θ′ with convexity modulus γ∗

2
for all

(Γ, C) ∈ Q. Define the unique minimizer over Θ′:

θ(Γ, C) := argmin
θ∈Θ′

f(θ; Γ, C). (5.3)

Since Θ′ is a convex compact set and f(θ; Γ, C) is jointly continuous in

Ψ = (θ,Γ, C) on Θ′×Q, from Berge’s Maximum Theorem – see Ok (2007),

θ(Γ, C) is continuous at (Γ∗, C∗) and θ(Γ∗, C∗) = θ∗. Therefore, for any

0 < ε ≤ 1
2
δ2, there exists δ(ε) > 0 such that δ(ε) ≤ 1

2
δ2 and ‖θ(Γ, C)−θ∗‖ <

ε for all Φ = (Γ, C) satisfying ‖Φ− Φ∗‖a < δ(ε).

Fix some arbitrary ε ∈ (0, 1
2
δ2]. Let P̂ (ε) be computed as in (3.6) with
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α(ε) = 40 max
i=1,...,p

(Γ∗ii)
√

N0

N(ε)
where sample size N(ε) denotes the number

of process realizations (chosen depending on ε > 0). Hence, Theorem 3

implies that by choosing N(ε) sufficiently large, we can guarantee that

Ĉ(ε) = P̂ (ε)−1, and Γ̂(ε) defined as in (3.8) satisfy

max{‖Ĉ(ε)− C∗‖2, ‖Γ̂(ε)− Γ∗‖2} < δ(ε) ≤ 1
2
δ2, (5.4)

i.e., ‖Φ̂ − Φ∗‖a < δ(ε), with high probability. In the rest of the proof, for

the sake of notational simplicity, we do not explicitly show the dependence

on the fixed tolerance ε; instead we simply write P̂ , Ĉ, and Γ̂.

Note that due to the parametric continuity discussed above, (5.4) im-

plies that ‖θ(Γ̂, Ĉ)−θ∗‖ < ε ≤ 1
2
δ2. Hence, the norm-ball constraint in the

definition of Θ′ will not be tight when f(θ; Γ̂, Ĉ) is minimized over θ ∈ Θ′,

i.e., θ(Γ̂, Ĉ) = argminθ∈Θ′ f(θ; Γ̂, Ĉ) = argminθ∈Θ f(θ; Γ̂, Ĉ) =: θ̂ – see

(3.9) for the definition of θ̂. Therefore, ‖Ψ̂−Ψ∗‖b < δ2 ≤ δ1, i.e.,

‖θ̂ − θ∗‖+ ‖(Γ̂, Ĉ)− (Γ∗, C∗)‖a < δ2 ≤ δ1. (5.5)

This implies that θ̂ ∈ int Θ; thus, ∇θf(θ̂; Γ̂, Ĉ) = 0.

Although one can establish a direct relation between δ(ε) and ε by

showing that θ(Γ, C) is Lipschitz continuous around θ∗, we will show a

more specific result by upper bounding the error ‖θ̂−θ∗‖ using ‖Φ̂−Φ∗‖a.

Indeed, since (Γ̂, Ĉ) ∈ Q, f(θ; Γ̂, Ĉ) is strongly convex in θ ∈ Θ′ with
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modulus 1
2
γ∗; hence, θ∗ ∈ Θ′ and θ̂ ∈ Θ′ imply that

γ∗

2
‖θ̂ − θ∗‖2 ≤

〈
∇θf(θ∗; Γ̂, Ĉ)−∇θf(θ̂; Γ̂, Ĉ), θ∗ − θ̂

〉
=
〈
∇θf(θ∗; Γ̂, Ĉ)−∇θf(θ∗; Γ∗, C∗), θ∗ − θ̂

〉
, (5.6)

where the equality follows from the fact that∇θf(θ∗; Γ∗, C∗) = ∇θf(θ̂; Γ̂, Ĉ) =

0. Next, from (3.11) it follows that

∆k :=

∣∣∣∣ ∂∂θk f(θ∗; Γ̂, Ĉ)− ∂

∂θk
f(θ∗; Γ∗, C∗)

∣∣∣∣
≤
∣∣∣(‖Γ̂‖2

F − ‖Γ∗‖2
F ) 〈R′k(θ∗), R(θ∗)〉+ 〈C∗, R′k(θ∗)⊗ Γ∗〉 − 〈Ĉ, R′k(θ∗)⊗ Γ̂〉

∣∣∣
≤
(
‖Γ̂ + Γ∗‖∗‖R(θ∗)‖∗ + ‖Ĉ‖∗

)
‖R′k(θ∗)‖2‖Γ̂− Γ∗‖2 + n‖Γ∗‖∗‖R′k(θ∗)‖2‖Ĉ − C∗‖2,

where the second inequality uses the following basic inequalities and iden-

tities: Given X, Y, V,W ∈ Rm×n i) 〈X, Y 〉 ≤ ‖X‖2‖Y ‖∗, ii) ‖X‖2
F −

‖Y ‖2
F = 〈X + Y,X − Y 〉, iii) 〈X, Y 〉−〈V,W 〉 = 〈X, Y −W 〉+〈W,X − V 〉;

given X ∈ Sp, Y ∈ Sn iv) ‖X ⊗ Y ‖2 = ‖X‖2‖Y ‖2, v) ‖X ⊗ Y ‖∗ ≤

min{p‖X‖2‖Y ‖∗, n‖X‖∗‖Y ‖2}. Note that since R(θ∗) ∈ Sn++, ‖R(θ∗)‖∗ =

Tr(R(θ∗)) = n. Moreover, (5.4) implies that ‖Γ̂‖∗ ≤ ‖Γ∗‖∗ + p
2
δ2, and

‖Ĉ‖∗ ≤ ‖C∗‖∗ + np
2
δ2. Hence,

∆k ≤
(

3n‖Γ∗‖∗ + ‖C∗‖∗ +
(np+ 1)

2
δ2

)
‖R′k(θ∗)‖2‖(Γ̂, Ĉ)− (Γ∗, C∗)‖a.

Therefore, for κ :=
(

3n‖Γ∗‖∗ + ‖C∗‖∗ + (np+1)
2

δ2

)
(
∑q

k=1 ‖R′k(θ
∗)‖2

2)
1
2

‖∇θf(θ∗; Γ̂, Ĉ)−∇θf(θ∗; Γ∗, C∗)‖2 ≤ κ ‖(Γ̂, Ĉ)− (Γ∗, C∗)‖a
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Applying Cauchy Schwarz inequality to (5.6), we have

‖θ̂ − θ∗‖ ≤ 2
κ

γ∗
‖(Γ̂, Ĉ)− (Γ∗, C∗)‖a. (5.7)

Thus, choosing N(ε) ≥ N0 :=
⌈
2
[
(M + 2) ln(np) + ln 4

]⌉
such that√

N(ε)

N0

≥ 160 max
i=1,...,p

(Γ∗ii)
κ

γ∗

(
b∗

a∗

)2

p(n+ ‖G‖F )
1

ε
,

i.e., N(ε) = O( 1
ε2

), implies that ‖θ̂ − θ∗‖ ≤ ε, and ‖Γ̂ − Γ∗‖2 ≤ γ∗

2κ
ε with

probability at least 1− (np)−M .




