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S1 Generation of wind field data

The wind velocity in the s1-direction is

u1(s, t) = Real

(
4∑
l=1

4∑
m=1

(ûr(l,m, t) + iûi(l,m, t))e
ik(l,m)·s

)
, (S1.1)

in which k(l,m) = ( 2π
40 km

l, 2π
40 km

m) is the wavenumber. The Fourier coeffi-

cients are computed by solving the following stochastic differential equation;

δûr,i(l,m, t) = − ûr,i(l,m, t)
TL

δt+ S(l,m)δW, (S1.2)

in which TL is a relaxation timescale, S is a scale parameter, and W denotes

the Wiener process. Note that the solution of the stochastic differential

equation is given by the Ornstein-Uhlenbeck process. In this study, TL = 6
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hours and S = 2
√

2
TL(l2+m2)

are used. The velocity in the s2-direction is

computed from the mass conservation constraint;

∂u1(s, t)

∂s1

+
∂u2(s, t)

∂s2

= 0. (S1.3)

In other words,

u2(s, t) = −Real

(
p∑
l=1

p∑
m=1

L2

L1

l

m
(ûr(l,m, t) + iûi(l,m, t))e

ik(l,m)·s

)
.

(S1.4)

The diffusivity matrix K(s, t;u) is computed by an isotropic Smagorinsky

model, which is typically used in the atmospheric dynamics models (Byun

and Schere, 2006);

Kij(s, t) = Kh(s, t)δij,

Kh(s, t) = (Cs∆)2

√(
∂u1(s, t)

∂s1

− ∂u2(s, t)

∂s2

)
+

(
∂u1(s, t)

∂s2

+
∂u2(s, t)

∂s1

)
.

Here, δij is the Kronecker delta, Cs(= 0.1) is the Smagorinsky coefficient,

and the length scale ∆ = 40km/2π × 4.
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S2 Derivation of ADMM Algorithm

We define new variables, βmse,βgl,βnuc,βnn and rewrite the main objective

function:

minimize fmse(βmse) + fgl(βgl) + fnuc(βnuc) + fnn(βnn) (S2.5)

subject to βmse = βgl = βnuc = βnn (S2.6)

We start from a feasible solution, βmse = βgl = βnuc = βnn = 0. At each

stage of the algorithm, we separately minimize the components of (S2.5)

using proximal methods. Let β
(m)
mse denote the solution for minimizing fmse

at mth iteration; we similarly define β
(m)
g for g = {gl, nuc, pos}. Once mth

iteration is complete, the average of each update can be defined to be

β̄m =
(
β(m)

mse + β
(m)
gl + β(m)

nuc + β(m)
nn

)
/4.

The dual variables, u
(m)
g for g = {mse, gl, nuc, nn} give the deviation of

β
(m)
g from the average. The algorithm merges β

(m)
g toward β̄(m) by making

u
(m)
g close to zero.

At the mth step the algorithm first minimizes the separate functions.

For g = {mse, gl, nuc}, we set

β
(m+1)
g ← arg minβ

(
fg(β) + (u

(m)
g )>

(
β − β̄(m)

)
+ 1

2ρ
‖β − β̄(m)‖2

F

)
,

(S2.7)
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where ρ is a step size for the algorithm. The minimization over fnn is done

via projection:

β
(m+1)
nn ← max{0, β̄(m) − u(m)

nn }, (S2.8)

where max refers to the component-wise maximum.

Finally, we compute the average consensus variable and update the dual

variables:

β̄(m+1) ←
(
β

(m+1)
mse + β

(m+1)
gl + β

(m+1)
nuc + β

(m+1)
nn

)
/4,

u
(m+1)
g ← u

(m)
g +

(
β

(m+1)
g − β̄(m+1)

)
for g = {mse, gl, nuc, nn}.

(S2.9)

Now, we analyze the solutions of equation (S2.7) for each component

in detail.

The first function, fmse, is for updating β with respect to the sum of

prediction errors. For k = 1, . . . , 24, and i = 1, . . . , n, we define the matrices

X(i, k) ∈ R(T/24)×p as the emissions to location i at hour k, that is

Xt,j(i, k) = {Xt,ij : (t mod 24) = k − 1}.

We then combine these matrices row-wise and define X(k) for k = 1, . . . , 24

as

X(k)> = [X(1, k)>, . . . ,X(n, k)>].

Similarly, we define y(i, k) ∈ RT/24×1 as the pollution levels at sen-

sor i for hour k. We then set, y(k)> = [y(1, k)>, . . . ,y(n, k)>], i.e. all
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observations from all sensors for hour k. Then, according to (S2.7),

β(m+1)
mse = arg min

β

(
24∑
k=1

‖y(k)−X(k)β:,k‖2
2 + (ummse)

>(β − β̄(m)) +
1

2ρ
‖β − β̄(m)‖2

F

)
,

where β:,k is the kth column of β. Note that the problem is separable over k,

and differentiating with respect to β:,k reduces to solving normal equations

given by(
X(k)>X(k) +

1

2ρ
Ip×p

)
β:,k = X(k)>y(k) +

1

2ρ

(
β̄

(m)
:,k − ρu

(m)
mse(k)

)
,

where with an abuse of notation u
(m)
mse(k) refers to kth column of u

(m)
mse.

The proximal step for βgl is given by a soft-thresholding shrinkage op-

erator for the group lasso. That is, β
(m+1)
gl is obtained by

β
(m+1)
gl ← arg min

β

(
λgl‖β‖2 + u

(m)
gl (β − β̄(m)) +

1

2ρ
‖β − β̄(m)‖2

F

)
.

Note that, the Karush-Kuhn-Tucker (KKT) conditions for optimality are

given by,

0 ⊆ λgl

‖β‖2

+ u
(m)
gl +

1

ρ
(β − β̄(m)),

which gives

β
(m+1)
gl =


Sign(β̄(m) − ρu(m)

gl )

(
1− λglρ∥∥∥β̄(m)−ρu(m)

gl

∥∥∥
2

)(
β̄(m) − ρu(m)

gl

)
if ‖β̄(m) − u(m)

gl ‖2 ≥ λglρ,

0 otherwise.

In other words, this step applies a hard-thresholding operator on the groups,

which are given by pollution sites.
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For the nuclear norm regularization, fnuc, consider the SVD of β(m) −

u
(m)
nuc = U (m)Σ(m)V (m)>. Then, β

(m+1)
nuc is given by (Theorem 2.1, Cai et al.,

2010)

β(m+1)
nuc = U (m)Σ̃

(m)
V (m)>,

where Σ̃
(m)

= (Σ(m) − λnucρIp×p)+, and (·)+ is applied element-wise with

(z)+ = max(0, z).

S3 Configurations for Nuclear Norm “Toy Example”

Simulation

For the toy example simulation in Section 3, we generate observations from

the multivariate linear regression equation,

y = Xβ + ε,

where y ∈ RT×24,X ∈ RT×p and β ∈ Rp×24 are the response, predictor and

coefficient matrices, respectively.

The true coefficient matrix, β, contains three linearly independent rows,

which are given by βType1, βType2, βType3 ∈ R1×24. Rest of the rows of β are

given by copies of these vectors. We repeat each vector four times; hence

β contains 12 rows and has matrix rank 3.
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The contents of βType1 and other types for j = 1, . . . , 24 are given by:

βType1,j =1,

βType2,j =
1.5

144
(24(j − 1)− (j − 1)2),

βType3,j =


2 if j ∈ {7, 8, 9, 16, 17, 18},

0 otherwise.

We fill the entries of X by drawing independent copies from a Uni-

form[0,1] distribution. The error matrix, ε is similarly filled by independent

copies of a standard normal distribution.
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