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Abstract: Many computer experiments involve a large number of input factors, but

many of them are inert and only a subset are important. This paper develops a

new sequential design framework that can accommodate multiple responses and

quickly screen out inert factors so that the final design is space-filling with respect

to the active factors. By folding over Latin hypercube designs with sliced structure,

this sequential design can have flexible sample size in each stage and also ensure

that each stage, as well as the whole combined design, are all approximately Latin

hypercube designs. The sequential framework does not require prescribing the

total sample size and, under the presence of inert factors, can lead to substantial

savings in simulation resources. Even if all factors are important, the proposed

sequential design can still achieve a similar overall space-filling property compared

to a maximin Latin hypercube design optimized in a single stage.

Key words and phrases: Effect sparsity, foldover design, sample size determination,

sliced Latin hypercube design, space-filling criterion.

1. Introduction

Computer simulations, based on finite element analysis (FEA) and compu-

tational fluid dynamics (CFD), are commonly used to reduce both the need for

physical experimentation and the building of a large number of prototypes. Be-

cause each simulation run can take hours or days to complete, a common strategy

is to develop a surrogate model to approximate the time-consuming computer

model with sufficient accuracy (Sacks et al. (1989)). Space-filling designs, which

spread out design points evenly throughout the input space, are widely used in

designing computer experiments, since computer models are often complex and

highly nonlinear (Santner, Williams and Notz (2003)). In this paper, we propose

a new sequential space-filling design framework to address challenges that are

commonly encountered in practice.

Many computer simulation studies involve a large number of input factors,

where many of them are inert/inactive and only a few of them are impor-
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tant. This phenomenon is referred to as effect sparsity in the literature (Wu

and Hamada (2009)). Because most simulation studies are also deterministic,

a good space-filling design in computer experiments needs to be non-collapsing,

so that the projection of design points onto the sub-dimension of important

factors are non-overlapping. The most popular non-collapsing design for com-

puter experiments is the Latin hypercube design (LHD) (McKay, Beckman and

Conover (1979)), whose projections onto any single dimension are guaranteed to

have distinct levels. Within the class of LHDs, Morris and Mitchell (1995) fur-

ther proposed to construct the maximin-distance Latin hypercube design (Mm

LHD), which ensures good space-filling properties in the full dimensional design

space and uniform projections in each single dimension. For other possible sub-

dimensions 2, 3, . . ., p−1 (where p is the total number of factors), the projections

of a Mm LHD are only non-collapsing, but may not have good space-filling prop-

erties. For example, Figure 1a shows the projection of an 10-dimension 20-run

Mm LHD onto two dimensions, which obviously is not space-filling. If we di-

rectly generate a 20-run LHD in two dimensions, its space-filling design points

are shown in Figure 1b for comparison. In practice, the number of important

factors in computer experiments is usually greater than one and less than the

full dimension p, which makes the traditional Mm LHD less attractive. Recently,

Joseph, Gul and Ba (2015) proposed the Maximum Projection (MaxPro) design

that maximizes space-filling properties on projections to all possible subsets of

factors. Although it largely improves the projection property, a single-stage Max-

Pro design is still not the most efficient in the sense that it also emphasizes good

projection properties in the non-active factor space, as opposed to just the ac-

tive factors. For some computationally expensive simulation studies, the design

ideally should only focus on space-filling properties with respect to the active

factors. This directly motivates our sequential design framework that can be

considered an extension of the MaxPro idea.

Another challenge in designing computer experiments is to determine the

number of runs that enables the surrogate model to achieve a sufficient level of

accuracy. As a practical guide, Loeppky, Sacks and Welch (2009) introduced the

popular 10d rule (10 times the input dimension) as a good rule of thumb for

the number of runs in the computer experiment. Nevertheless, when there are

many inert factors, it can be a waste of resources to perform all 10d simulation

runs and we feel that it might be more appropriate to use 10 times the number

of active factors d0 (d0 ≤ d). Unfortunately, the value of d0 cannot be known

before we run the experiment. In addition, the number of necessary simulation
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Figure 1. (a) 20-run Mm LHD in 10 factors (projected onto two factors); (b) 20-run Mm
LHD in two factors.

runs should also depend on the complexity of the simulation response surface: for

some simple surfaces 10d0 runs are more than adequate, but for emulating very

complex response surface, we may need much more than 10d0 runs to achieve a

sufficient level of accuracy.

This discussion motivates the need for a good sequential design for computer

experiments, especially when the simulations are time intensive and the total

number of input factors is large. Most existing sequential design strategies in the

computer experiments literature focus on finding some specific features (such as

global optimum) of the expensive black-box function and, as a result, their design

points are centered around peaks or specific regions of design space instead of

being spread out in the smooth regions. In this paper, we present a sequential

design framework that can accommodate multiple responses and quickly screen

out inert factors so that the final design is space-filling with respect to active

factors. This results in a more efficient use of resources and allows the potential

opportunity for fewer overall simulation runs. The remainder of this paper is

organized as follows. Section 2 summaries a list of desired goals for the new

sequential design to distinguish it from existing methods. Section 3 discusses

the choice of sequential design criterion for different stages, and in Section 4 we

develop the structure for the sequential design framework. Section 5 is devoted

to simulation studies to demonstrate the performance of the proposed strategy.

Some concluding remarks are given in Section 6.
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2. Desired Properties for the New Sequential Design Framework

For the new sequential design framework, our goal is to achieve the prop-

erties: (1) it can quickly screen out inert factors in the computer experiments

and construct a space-filing design with respect to only the important factors;

(2) it is model independent which supports fitting various types of sophisticated

surrogate models; (3) it runs the experiments sequentially in flexible batch size,

which is more convenient and practical than the one-run-at-a-time approach; (4)

the user does not need to prescribe the total number of stages or the total sample

size beforehand, and the algorithm can stop at any stage when the current design

is deemed adequate; (5) it can accommodate multiple responses generated by the

same simulation; (6) it is not sensitive to the ratio of active/inert factors, and

even if all factors turn out to be active, the overall design can still have a similar

space-filling property as a single-stage design.

These desirable features intertwine with many existing works in the literature

such as Lam and Notz (2008), Gramacy and Lee (2009), Loeppky, Moore and

Williams (2010), Moon, Dean and Santner (2012), Duan et al. (2016), to name

a few. Each of these existing methods has their own strength but, to the best of

the authors’ knowledge, there is not an existing approach that can easily fulfill

all the above requirements. Technical details of our newly proposed approach

are given in the subsequent sections.

3. Sequential MaxPro Criterion

Suppose D = {x1,x2, · · ·,xn} denotes an experimental design in n runs for

p factors, where each xi ∈ X = [0, 1]p. Let d(u,v) = (
∑p

i=1 |ui − vi|s)1/s be

the distance between points u and v, and s = 1 and s = 2 correspond to the

rectangular and Euclidean distances, respectively. The maximin distance crite-

rion (Johnson, Moore and Ylvisaker (1990)) improves the property of a design

by maximizing the minimum inter-point distance

min
xi,xj∈DMm

d(xi,xj) = max
D

min
xi,xj∈D

d(xi,xj).

Since a randomly generated LHD may not be space-filling, Morris and Mitchell

(1995) proposed an average reciprocal distance criterion to select the Mm LHD

which maximizes the minimum inter-point distance among all possible LHDs of

the same size:

min
D

{
n−1∑
i=1

n∑
j=i+1

1

dk(xi,xj)

}1/k

. (3.1)
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As we have discussed in Section 1, the Mm LHD guarantees good space-filling

property of design points in the full dimension p, and in all single dimensions.

But if the number of active factors in the computer experiment is between 1 and

p, the projections of its design points could be undesirable (Figure 1a), which

would inevitably have a negative impact on the accuracy of the surrogate model.

Here, we present a sequential design criterion that only focuses on improving the

space-filling property of the subspace for those important factors. To achieve

this, we consider the weighted distance measure

d(u,v,w) =

(
p∑

i=1

wi|ui − vi|s
)1/s

,

where w = (w1, · · ·, wp),
∑p

i=1wi = 1, w1, · · ·, wp ≥ 0 and the wi can be inter-

preted as the importance of factor i. Using this definition, distance between de-

sign points in a sub-dimensional projection can be calculated by setting wi > 0 for

the relevant factors and wi = 0 for the factors not involved in this sub-dimension.

In our sequential design framework, we propose to set the wi values proportional

to the total sensitivity indices of input factors which can be estimated based on

the available data from previous stages. Note that the weight wi can take any

value between 0 and 1, which is more general than just considering a factor to

be active or inactive (binary wi) since it can further distinguish active factors

based on their relative importance. After this adjustment, the average reciprocal

inter-point distance criterion in (3.1) can be extended to

min
D

φk(D;w) =

n−1∑
i=1

n∑
j=i+1

1

dk(xi,xj ,w)
, (3.2)

which emphasizes on the space-filling property of the sub-dimension spanned

by all the active factors and which also assigns higher weights to the factors

with higher importance. In our framework, we refer to (3.2) as the sequential

maximum projection (Sequential MaxPro) criterion. Its relation with some other

existing criteria will be discussed at the end of this section.

If we knew the true relative importance w for all input factors, the sequen-

tial MaxPro criterion in (3.2) would be a more accurate space-filling measure

since the final surrogate model is only fitted based on the active factors. Many

approaches can be used to estimate the total sensitivity indices (relative impor-

tance w) of input factors using computer experiment outputs from the previous

stages. Good reviews of the sensitivity analysis methods based on ANOVA-type
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decompositions can be found in Saltelli, Chan and Scott (2000) and Santner,

Williams and Notz (2003). Although the choice is not unique, a good option

is to use the analytical formulas provided in Chen, Jin and Sudjianto (2005)

to obtain the sensitivity indices based on a Gaussian process model framework.

Although estimates of the total sensitivity indices may not be very precise in

earlier stages when fewer data points are available, their accuracy improves after

completing each subsequent stage of experiments. If the computer experiment

has more than one response variable, we can independently assess the input sen-

sitivities under each response, then use the averages of those sensitivity indices

to form the values of w for each factor in (3.2).

During the initial stage when we have no prior information about the input

sensitivities, we can assign a uniform prior distribution p(w) to the values of w

and (3.2) becomes

min
D

∫ n−1∑
i=1

n∑
j=i+1

1

dk(xi,xj ,w)
p(w)dw. (3.3)

Joseph, Gul and Ba (2015) showed that if we choose k = sp, then this criterion

can be simplified to

min
D

n−1∑
i=1

n∑
j=i+1

1∏p
l=1 |xil − xjl|s

, (3.4)

which is the single-stage MaxPro criterion. Based on (3.3), the single-stage Max-

Pro criterion simultaneously maximizes the space-filling properties in all possible

sub-dimensional spaces, and thus it is an ideal criterion for optimizing the first

stage of experiments. Starting from the second stage, the factor importance in-

dices w can be estimated and sequentially updated after each stage, and thus the

sequential MaxPro criterion in (3.2) is used to optimize the new design points.

It is worth noting that some well-known existing criteria such as the maxi-

mum entropy criterion (Shewry and Wynn (1987)) or the integrated mean squared

error criterion (Sacks et al. (1989)) can also be used in a sequential design frame-

work for screening out inert factors. We prefer the sequential MaxPro criterion

because it works with multiple simulation outputs and, once given the sensi-

tivity index estimates, it is a model-independent criterion that enables the de-

sign to support fitting different types of surrogate models. Loeppky, Moore and

Williams (2010) discussed using a version of the maximin weighted distance cri-

terion whose weights were chosen as the estimated Gaussian process correlation

parameters. Except for the first stage, it is similar to the sequential MaxPro
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criterion. However, a correlation parameter mainly determines the smoothness

but may not accurately reflect the sensitivity or importance of that factor in

influencing the response. The sensitivity index, on the other hand, depends not

only on the estimated correlation, but also on how the observed responses vary

in the corresponding dimension, which is a more accurate measure. In fact, when

a Gaussian correlation function is used, it is possible that a factor with smaller

correlation parameter is more important than a factor with larger correlation

parameter. For example, for certain factors having linear effects on the response

variable, their estimated Gaussian process correlation parameters would be as

small as zero, which obviously cannot accurately reflect their importance in the

sequential MaxPro criterion.

4. Sequential LHD Structure

Finding an optimal design by directly maximizing/minimizing the corre-

sponding space-filling criterion in continuous design space is challenging, and the

optimization algorithm can easily get stuck in a low-quality local optimum for a

number of reasons. (i) The number of variables in the optimization (np) is ex-

tremely high even for moderate size problems; (ii) the design criterion has many

local optimums and (iii) the designs are isomorphism under the reordering of

rows and columns. A practical solution to generating good space-filling designs

is to search for the optimal design only among all possible LHDs, whose struc-

ture reduces the complexity of optimization. By discretizing the design space

and using exchange algorithms to restrict the class of candidate designs to only

LHDs, a simulated annealing algorithm proposed by Morris and Mitchell (1995)

can efficiently move away from local optimal results and search for the global

optimum. Other similar exchange algorithms have been discussed by Jin, Chen

and Sudjianto (2005) and Joseph and Hung (2008). After obtaining the optimal

LHD, it can also be used as the starting design in a continuous optimization

algorithm to find the (unrestricted) optimal design in its neighborhood (Joseph,

Gul and Ba (2015)). Our proposed sequential design framework takes advantage

of such LHD structure in the design construction.

4.1. Sequential fold-over LHDs

As discussed at the end of previous section, the first stage of our sequential

design is a MaxPro LHD which maximizes the projection properties in all possible

sub-dimensions. In each of the subsequent stages, we fix the existing design

points and optimize new design points based on the sequential MaxPro criterion
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in (3.2) where the w values for factor importance can be estimated based on

the sensitivity analysis results from previous stages. Because directly optimizing

criterion (3.2) by a continuous optimization algorithm is not easy, we propose

to search for the new design points using a sequential fold-over LHD structure

which is described below.

Suppose the design space has been standardized into the unit region [0, 1]p.

For a given (n1×p) LHD with n1 = m+1 equally spaced levels {0, 1/m, 2/m, · · ·,
(m− 1)/m, 1}, it can always be combined with any (n2 × p) LHD with n2 = m

equally spaced levels {1/2m, 3/2m, · · ·, (2m − 1)/2m} to form a ((n1 + n2) × p)
LHD with 2m+1 equally spaced levels {0, 1/2m, 2/2m, · · ·, (2m−1)/2m, 1}. Here

we call the second design the fold-over LHD to the original LHD, analogous to the

fold-over fractional factorial designs in the physical design of experiments litera-

tures (Wu and Hamada (2009)). Consider the example in Figure 2 for illustration.

Figure 2a contains a (7× 2) LHD with levels {0, 1/6, 2/6, · · ·, 5/6, 1} that can be

paired with the (6×2) LHD in Figure 2b with levels {1/12, 3/12, · · ·, 9/12, 11/12}.
Their combined design is a (13× 2) LHD with levels {0, 1/12, 2/12, · · ·, 11/12, 1}
shown in Figure 2c. By combining the original LHD with one of its fold-over

LHDs, the number of equally-spaced levels for each factor and also the total

sample size get almost doubled, which enables the combined design to capture

more complex nonlinear effects in the computer experiment. It can also be seen

from Figure 2 that the new levels in the fold-over LHD are the midpoints between

two existing factor levels in the original LHD, which is similar in spirit to the

sequential design strategy proposed in Ba et al. (2013), and can be interpreted

as “filling in” the vacant spaces in the original LHD to improve its space-filling

property.

Given an original LHD, there are many possible choices of fold-over LHDs

of the same size and levels. Similar to the concept of optimal folder-over designs

(Li and Lin (2003)) in the physical experiment literature, in practice we also

need to select the best fold-over LHD so that the combined design is optimal

with respect to the sequential MaxPro criterion (3.2). Fortunately, because the

fold-over LHD itself is also a LHD, this structure enables us to apply exchange

algorithms as discussed in the beginning of this section to efficiently optimize the

criterion in (3.2) for new design points without being trapped in a low-quality

local optimum. The optmial folding-over process of LHD can be repeated indef-

initely which constitutes the basic structure of our proposed sequential design

framework: the designs at each stage, as well as the whole combined design, are

all LHDs. When the combined design at a certain stage turns out to be adequate,
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Figure 2. (a) A (7× 2) original LHD with levels {0, 1/6, 2/6, · · ·, 5/6, 1}; (b) its (6 × 2)
folder-over LHD with levels {1/12, 3/12, · · ·, 9/12, 11/12}; (c) their combined design, a
(13× 2) LHD with levels {0, 1/12, 2/12, · · ·, 11/12, 1}.

we can stop the procedure to obtain a LHD that is space-filling only with respect

to the important factors. We will discuss the choice for number of stages and the

sample size in each stage in later subsections.

It is interesting to note that the proposed sequential design structure forms a

special case of the nested LHD structure, commonly used for designing computer

experiments with different levels of accuracy (Qian (2009); Xiong, Qian and Wu

(2013)). Different from the many existing sequential design methods, we will

show later (in Section 5.1) that even if all factors in the computer experiments are

equally important, the final combined design from multiple stages of sequential

MaxPro LHDs can still achieve a similar space-filling property as a Mm LHD that

is optimized in a single stage. Traditional sequential design methods without the

sequential LHD structure, however, tend to have a much inferior space-filling

property in this case.

In addition to improving the efficiency in optimization, there is actually an-

other important reason for us to maintain the LHD structure in sequential design.

As Ba et al. (2013) has pointed out, because the simulation model can be highly

nonlinear, we may fail to detect or underestimate the importance of some fac-

tors based on the limited samples from the previous stages. Instead of dropping

the inert factors or assigning them limited number of levels in the subsequent

stages of experiments, we prefer to still keep them with a large number of levels

to protect from possibly missing active factors. The identified “less important

factors” are down weighted or even ignored in computing the sequential MaxPro

criterion (3.2) for optimizing the new stage of design points, but they retain n

distinct levels to enable us to re-assess their importance in latter stages.
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4.2. Sliced structure in fold-over LHDs to achieve flexible sample size

If the sample size of the initial first-stage LHD is m+ 1, the sample sizes for

the subsequent fold-over LHDs are m, 2m, 4m, . . ., which gets doubled after each

stage. In this subsection, we present strategies to enable the sequential design to

have flexible sample size using a sliced structure in the fold-over LHDs.

A n-run Sliced Latin Hypercube Design (SLHD) (Qian (2012)), by definition,

is a special type of LHD that can be partitioned into t slices (blocks), each of

which is also a LHD of h runs (n = ht). By requiring each fold-over LHD to have

such sliced structure, we can divide up a large fold-over LHD into t slices. Then

instead of running the whole fold-over LHD as a single stage, we can run one

slice (or possibly a few slices) of the fold-over LHD in each stage, whose sample

size can be made arbitrarily small.

Similar to a LHD, because a randomly generated SLHD may not be space-

filling, Ba, Myers and Brenneman (2015) proposed the slice-wise construction

method and presented an efficient algorithm to generate the optimal SLHD for

any given space-filling criterion. Here we modify this algorithm in order to gen-

erate the best fold-over LHDs with sliced structure. Different from in Ba, Myers

and Brenneman (2015), instead of generating and optimizing all the slices simul-

taneously, we propose to only generate and optimize one slice (or a few slices) at

each stage. In each step, the optimization takes into account the design points

in the new stage as well as all the existing fixed design points from previous

stages. After completing the experiments in each stage, sensitivity indices of

input factors are re-estimated and the sequential MaxPro criterion in (3.2) is

re-adjusted.

It can be easily seen that given an (m + 1)-run initial LHD, imposing the

fold-over LHDs to have sliced structure enables us to use arbitrary small sample

size h for each stage (as long as m is divisible by the h). In practice, an attractive

scheme is to set all subsequent stages to have exactly h = m design points: run

the 1st fold-over LHD (m runs) in a single stage, run the 2nd fold-over LHD (2m

runs) in two stages (slices), and run the 3rd fold-over LHD (4m runs) in four

stages (slices), etc. An illustration of such a scheme is provided in Figure 3a. We

can also use even smaller slices such as h = m/2 (if m is even), or have different

h values in different fold-over LHDs. For example, as shown in Figure 3b, given

an (m+ 1)-run initial LHD, we can generate and run the first fold-over LHD in

two stages (slices) each containing m/2 runs, and generate the second fold-over

LHD in eight stages (slices) each containing m/4 runs, etc. Moreover, it is also
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Figure 3. Illustration of (a) the standard h = m scheme; (b) using different h values for
different fold-over LHDs. In both cases, each stage of experiment corresponds to exactly
one slice, and we generate and optimize the design matrix for one stage at a time.

possible for each stage to use more than one slice. Without loss of generality, in

the rest of this paper we study only the most standard scheme (h = m) as shown

in Figure 3a, which is approximately a batch sequential design with batch size

always equal m.

Recently, Duan et al. (2016) proposed to use orthogonal arrays to construct

sliced full factorial-based LHD whose slices can be used as sequential batched

designs in a similar fashion. Their method was based on using non-overlapping

sliceable orthogonal arrays which are less flexible than using our fold-over LHD

structure. In addition, their proposed designs were not optimized by a space-

filing criterion.

4.3. Sample size allocation and stopping criterion for sequential exp-

eriments

An important question to answer before we can apply the proposed sequential

design method is regarding the sample size allocation. First of all, the choice of

sample size for the initial MaxPro LHD usually depends on prior knowledge of

the effect sparsity among factors. Suppose d factors are being studied and it

is assumed that the number of active factors d0 makes up a large percentage

(d0 > d/2), then we could start with a larger number of runs in the first stage

(e.g., 5d). On the other hand, if it is expected that only a smaller percentage, p,
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Table 1. When all factors are equally important, comparing the minimum interpoint
distance (larger the better) and the average reciprocal distance (smaller the better) for
different designs in 10d+ 1 runs.

Dimension
(d)

5-stage Sequential
MaxPro LHD

Single-stage
Mm LHD

Naive 5-Stage
Sequential Design

n1 = 2d+ 1,n2 = n3
= n4 = n5 = 2d

Ntotal = 10d+ 1
n1 = 2d+ 1, n2 = n3

= n4 = n5 = 2d
Min

Distance
Avg

Distance
Min

Distance
Avg

Distance
Min

Distance
Avg

Distance
10 0.8575036 0.9140244 0.884353 0.9181736 0.1838149 3.244135
20 1.407846 0.5907605 1.395671 0.5969556 0.2561815 2.042908

of factors are active (d0 � d/2), or if there is no prior knowledge available for p,

or if there is a tight constraint on the total number of simulation runs, one could

start with a smaller run size in the first stage (e.g., 2d). Choosing a smaller

sample size in the first stage would enable more design points in subsequent

stages to better focus on the sub-dimensions spanned by active factors, and thus

possibly leading to smaller overall sample size. Moreover, some other practical

considerations could also impact the sample size allocation. For example, if

multiple simulations can be processed through parallel computing, the number

of cores or computers (or a multiple of this number) is usually a good choice

for the batch size. Depending on the specific settings of computer simulations,

sometimes it may be more convenient to have smaller sample size in each stage

but use more stages, while in some other situations it might be more practical

to use larger sample size for each stage with potentially fewer total number of

stages.

Another important question that practitioners need to address is when to

stop the sequential experimentation, which determines the total sample size in

the computer experiments. In practice, sometimes we can specify a threshold for

satisfactory level of prediction accuracy (e.g., threshold for maximum prediction

error) based on engineering domain knowledge. If this is the case, we could check

the leave-one-out-cross-validation (LOOCV) error based on the fitted surrogate

model and stop the sequential process if the LOOCV error is smaller than the

required threshold. Alternatively, after collecting the simulation outputs in a

new stage, we can use them as an independent testing dataset to evaluate the

root mean square prediction error (RMSPE) of the fitted surrogate model based

on training data from all previous stages. For situations where the accuracy

threshold cannot be specified, a useful strategy is to monitor the percent change
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of LOOCV error or RMSPE of the fitted surrogate model after each stage. By

quantifying the percent improvement in the model prediction accuracy after each

stage, one can decide to stop the sequential experiments if the improvement has

become minimal (e.g., less than 10%) after a certain stage. It can be easily seen

that the total sample size determined by a sequential design framework is more

sensible than using the traditional 10d rule because the former also considers the

complexity of the true simulation model.

5. Examples

5.1. Simulation study for different percentages of important factors

To evaluate the properties of the proposed sequential design approach, we

first studied the scenario where all input factors in the simulation are equally

important. In this setting, the sequential design approach still has the advantage

in adaptively determining the run size, but since there is no inert factor, the

sequential MaxPro criterion (3.2) is no different from the traditional single-stage

Mm distance criterion. Since the sequential design optimizes and fixes the design

points stage by stage in a greedy way, it is interesting to study its loss in overall

space-filing property compared with a single-stage global optimal LHD when all

input factors are equally important. In Table 1, we compare the minimum inter-

point distance and the average reciprocal distance for different designs in 10d+ 1

runs (d = 10 and 20), where we can see that the five-stage sequential MaxPro

LHDs in both cases have achieved almost the same space-filling properties as the

single-stage Mm LHDs. On the contrary, Table 1 also shows the results of a naive

sequential space-filling design approach, which adds and optimizes 2d points at

a time without using the sequential LHD structure. It can clearly be seen that

without the sequential LHD structure, the sequential design leads to much poorer

space-filing properties in the end, due to its greedy optimization nature and the

challenge in optimizing design points continuously in the high dimensional space.

With the sequential LHD framework, we turn the high-dimensional continuous

optimization into a more tractable combinatorial optimization problem and the

resulting sequential MaxPro LHD is able to achieve space-filling properties close

to a single-stage Mm LHD.

In Figure 4, we further compare the space-filling property (with respect to

the active factors) of the five-stage sequential MaxPro LHD with that of the

single-stage Mm LHD when the true percentage of active factors is 20%, 50%,

80% and 100%, respectively. The sequential MaxPro LHD achieves substantially
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Figure 4. Improvement of the five-stage sequential MaxPro LHD over the single-stage
Mm LHD, in terms of (a) minimum interpoint distance; (b) average reciprocal distance.

better space-filling properties than the single-stage design when the percentage

of inactive factors is high, and still performs as well as the single-stage Mm LHD

when all factors are active.

5.2. OTL circuit function

Ben-Ari and Steinberg (2007) described an output transformerless (OTL)

push-pull circuit (Chen et al. (1983), Wu, Mao and Ma (1990)), whose midpoint

voltage (Vm) is given by:

Vm(x) =
(Vb1 + 0.74)β(Rc2 + 9)

β(Rc2 + 9) +Rf
+

11.35Rf

β(Rc2 + 9) +Rf
+

0.74Rfβ(Rc2 + 9)

(β(Rc2 + 9) +Rf )Rc1
,

where

Vb1 =
12Rb2

Rb1 +Rb2
.

The input variables and their usual ranges are resistance b1: Rb1 ∈ [50, 150] (K-

Ohms), resistance b2: Rb2 ∈ [25, 70] (K-Ohms), resistance f: Rf ∈ [0.5, 3.0] (K-

Ohms), resistance c1: Rc1 ∈ [1.2, 2.5] (K-Ohms), resistance c2: Rc2 ∈ [0.25, 1.2]

(K-Ohms) and current gain: β ∈ [50, 300] (Amperes).

For this example, we generated sequential MaxPro LHDs in five stages, with

each stage consisting of about 2d runs (n1 = 12 + 1, n2 = n3 = n4 = n5 = 12).

For comparison, a single-stage Mm LHD containing 61 runs was also generated

by JMP R©. As shown in Figure 5, after the completion of the second stage, the

25-run sequential MaxPro LHD has been able to achieve a RMSPE smaller than
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RMSPE vs. Sample Size
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Figure 5. The root mean square prediction error of the five-stage sequential MaxPro
LHD compared to that of the single-stage 61-run Mm LHD. The testing RMSPE is
evaluated based on 600 independently generated data points in the design space.

that of the traditional single-stage Mm LHD in 61 runs.

The higher efficiency of the sequential MaxPro LHD over the traditional

single-stage Mm LHD can be easily explained by the fact that the six-dimension

OTL circuit function is actually dominated by the two most important factors,

resistance b1 and resistance b2. Because the sequential MaxPro LHD incorpo-

rated the factor importance information from the previous stages and adjusted

the subsequent stage of design points to focus more on b1 and b2, it required

much smaller sample size to cover this important two-dimensional subspace. Fig-

ure 6 shows the projections of the 61-run sequential MaxPro LHD and the 61-run

single-stage Mm LHD onto the subspace spanned by b1 and b2 which are impor-

tant in emulating the OTL circuit function. We can clearly see that the sequential

MaxPro LHD is much more space-filling.

5.3. Wing weight function

In this example, we consider a 10-dimension function which models a light

aircraft wings weight as (Forrester, Sobester and Keane (2008))

f(X) = 0.036S0.758
w W 0.0035

fw

(
A

cos2(Λ)

)0.6

q0.006λ0.04

(
100tc

cos(Λ)

)−0.3
(NzWdg)0.49

+ SwWp,
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Figure 6. Design projections onto the two-dimensional subspace spanned by resistance
b1 and resistance b2: (a) 5-Stage Sequential MaxPro LHD; (b) Single-Stage Mm LHD.

where the 10 inputs are: wing area Sw ∈ [150, 200] (ft2), weight of fuel in

the wing Wfw ∈ [220, 300] (lb), aspect ratio A ∈ [6, 10], quarter-chord sweep

Λ ∈ [−10, 10] (degrees), dynamic pressure at cruise q ∈ [16, 45] (lb/ft2), taper

ratio λ ∈ [0.5, 1.0], aerofoil thickness to chord ratio tc ∈ [0.08, 0.18], ultimate

load factor Nz ∈ [2.5, 6.0], flight design gross weight Wdg ∈ [1,700, 2,500] (lb)

and paint weight Wp ∈ [0.025, 0.08] (lb/ft2).

Sensitivity analyses of this true function shows that five of its input factors

are quite important while the other five inputs are not very active/influential in

determining the wing weight. Suppose we did not know any prior information

about this function and tried to generate space-filling designs to approximate

the wing weight function by a surrogate model. Sequential MaxPro LHDs in five

stages were generated with each stage consisting about 2d runs (n1 = 20 + 1,

n2 = n3 = n4 = n5 = 20) to compare with a single-stage 101-run Mm LHD

generated by JMP R©. For each design, a composite Gaussian process (CGP)

model (Ba and Joseph (2012)) was fitted and its RMSPE was calculated based on

1000 independent testing points (in this example, CGP model was used because it

consistently yields smaller RMSPE than the stationary Gaussian process model).

Figure 7 shows that a 61-run sequential MaxPro LHD (after completing the third

stage) has yielded a RMSPE smaller than that of the traditional single-stage Mm

LHD in 101 runs.
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Figure 7. The RMSPE of the five-stage sequential MaxPro LHD compared to that of
the single-stage 101-run Mm LHD for the Weight Wing Function.

6. Conclusions

In this paper, we develop a flexible sequential design framework that can

accommodate multiple responses and quickly screen out inert factors so that the

final design is space-filling with respect to the active factors. This results in

a more efficient use of resources and allows the potential opportunity for fewer

overall simulations. Different from many existing sequential design approaches

which focus on capturing specific features in the design space such as maxima

or minima, this new design framework enables one to build high-fidelity sur-

rogate model for the entire design space. The new sequential design is model

independent which can be considered as an extension of the single-stage MaxPro

design, and the proposed sequential LHD structure also allows the experiments

to have flexible batch size, eliminating the need to prescribe/fix the total sample

size. The paper demonstrates that this sequential design approach achieves sub-

stantially better space-filling properties than a single-stage design when inactive

factors are present, while performing as well as the single-stage design when all

factors are active. Using this sequential design framework can achieve prediction

quality that is comparable or even superior to the traditional single-stage design

in fewer simulation runs.
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