
Statistica Sinica 28 (2018), 839-851
doi:https://doi.org/10.5705/ss.202016.0151

CONTROLLING CORRELATIONS IN SLICED

LATIN HYPERCUBE DESIGNS

Jiajie Chen and Peter Qian

Wells Fargo and The University of Wisconsin, Madison

Abstract: A sliced Latin hypercube design is a special Latin hypercube design that

can be partitioned into smaller Latin hypercube designs. We propose an algorithm

to construct sliced Latin hypercube designs with controlled column-wise correlations

for each slice and the entire design. The proposed algorithm can significantly

decrease the column-wise correlations in each slice as the number of slices increases

even if the number of runs in each slice is fixed. The algorithm is flexible in sample

size and can be extended to control the quadratic canonical correlations of the larger

design. The convergence behavior of the algorithm is studied and the effectiveness

of the algorithm is illustrated by several examples.

Key words and phrases: Computer experiments, design of experiments, numerical

integration, space-filling design, uncertainty quantification.

1. Introduction

The Latin hypercube design has been widely used in computer experiments

(McKay, Conover and Beckman (1979)). A Latin hypercube design can be used

to estimate the expected output µ = E[f(x)] of a computer model f(x) ∈ R
of a set of inputs x = (x1, . . . , xp) with a specified distribution. Without loss

of generality, assume x is uniformly distributed on the unit cube (0, 1]p. For a

sample of n runs x1, . . . ,xn from the uniform distribution on (0, 1]p, an estimate

of µ is obtained as

µ̂ = n−1
n∑

i=1

f(xi). (1.1)

A Latin hypercube design is obtained by generating xi = (xi1, . . . , xip) as

xik =
πk(i)− ηik

n
, i = 1, . . . , n, k = 1, . . . , p, (1.2)

where the πk is an independent uniform permutation of {1, . . . , n} with all n!

possible permutations being equally probable, the ηik are independent U [0, 1)

variables, and the ηik and the π` are mutually independent for i = 1, . . . , n,

https://doi.org/10.5705/ss.202016.0151

840 JIAJIE CHEN AND PETER QIAN

k, ` = 1, . . . , p. By stratifying each dimension in a Latin hypercube design, the

variance of µ̂ in (1.1) under this sampling scheme is smaller than its counterpart

under Monte Carlo sampling (Stein (1987); Loh (1996)).

Qian (2012) introduced a new type of design called sliced Latin hypercube

design. For positive integers n, p, t, and N with N = nt, an N × p sliced Latin

hypercube design is a special Latin hypercube design that can be partitioned into

t slices of n×p Latin hypercube designs. Qian (2012) established some results to

demonstrate advantages of sliced Latin hypercube designs over independent Latin

hypercube designs for running multiple similar computer models or a computer

model in batches.

Since the designs generated by Qian (2012) use independent random permu-

tations for different columns, they are not guaranteed to achieve good two- or

higher-dimensional space-filling structure. Yang et al. (2013) and Ba, Myers and

Breneman (2015) use different methods to construct sliced orthogonal Latin hy-

percube designs of first-order or second-order that have orthogonal columns for

each slice and the entire design. Other related work includes Huang, Yang and

Liu (2014), Yang, Chen and Liu (2014) and Yin, Lin and Liu (2014). Because

these methods depend on the existence of orthogonal arrays (Hedayat, Sloane and

Stufken (1999)) or orthogonal Latin hypercubes (Ye (1998); Steinberg and Lin

(2006); Sun, Liu and Lin (2009)), they have restrictive sample sizes. Ba, Myers

and Breneman (2015) and Chen, Steinberg and Qian (2014) constructed max-

imin based optimal sliced Latin hypercube designs that are useful for prediction

purposes (Johnson, Moore and Ylvisaker (1990)).

We propose a new algorithm to control the column-wise correlations in a

sliced Latin hypercube design. The algorithm simultaneously controls the cor-

relations in each slice and the entire design. The method extends the ranked

Gram-Schmidt (RGS) algorithm of Owen (1994) in a new direction. The pro-

posed method is flexible in sample size. Different from Owen (1994), the challenge

here is the two-layer structure of a sliced Latin hypercube design. The remainder

of the paper is organized as follows. Section 2 details the proposed algorithm.

Section 3 studies its performance. Section 4 extends the algorithm to further con-

trol quadratic canonical correlations. Section 5 illustrates the proposed algorithm

in numerical integration. Section 6 concludes the article with some discussion.

2. Algorithms

Let X denote an N × p sliced Latin hypercube design with t slices of n× p

CONTROLLING CORRELATIONS IN SLICED LATIN HYPERCUBE DESIGNS 841

Latin hypercube designs X(1), . . . ,X(t). We consider the problem of controlling

correlations in X with p < n. Obviously, if one can control the correlations in

each slice, then the correlations in the entire design are controlled as well. Ba,

Myers and Breneman (2015) showed that each X(r) is based on an n × p Latin

hypercube A(r) of which each column is a permutation of {1, . . . , n}. Let ak
(r)

denote the kth column of A(r) for k = 1, . . . , p. Let takeout(z,y) denote the

residual vector of a linear regression with an intercept, z denote the values of

the predictor, and y denote the values of the response. Let rank(y) denote the

vector of ranks of y. Algorithm 1 controls the correlations in each slice by first

generating t independent correlation-controlled Latin hypercubes A(1), . . . ,A(t)

by the RGS algorithm (Owen (1994)).

Algorithm 1

Step 1. Randomly obtain t independent Latin hypercubes A(1), . . . ,A(t).

Step 2. For r = 1, . . . , t, generate a correlation-controlled Latin hypercube A(r) using
the RGS algorithm by alternating forward and backward steps:

Forward:

for k = 2, ..., p
for ` = 1, ..., k − 1

a`
(r) ← takeout(ak

(r),a
`
(r))

for k = 1, ..., p
ak
(r) ← rank(ak

(r)),

Backward:

for k = p− 1, ..., 1
for ` = p, ..., k + 1

a`
(r) ← takeout(ak

(r),a
`
(r))

for k = 1, ..., p
ak
(r) ← rank(ak

(r)),

where ← denotes assignment. Stack the A(r) row by row to form an N × p matrix

A. Let ak denote the kth column of A. Let aik denote the ith entry in ak.

Step 3. Let Θ = (θik) denote an N × p matrix with columns θ1, . . . ,θp. For each level
j, there exists a unique set of indexes 1 ≤ i(j,1) < · · · < i(j,t) ≤ N such that

ai(j,1)k = · · · = ai(j,t)k = j. Let θk(j) = (θi(j,1)k, . . . , θi(j,t)k)T . Obtain θk(j) as an
independent uniform permutation of {1. . . . , t} for k = 1, . . . , p and j = 1, . . . , n.

Step 4. Obtain the sliced Latin hypercube design X as

X = N−1[t(A− 1) + Θ− Γ], (2.1)

where Γ is an N×p matrix whose entries are independent U [0, 1) random variables
that are also mutually independent with entries in A and Θ.

Qian’s original construction of sliced Latin hypercube designs is equivalent

to Algorithm 1 without Step 2 (Ba, Myers and Breneman (2015); Chen et al.

842 JIAJIE CHEN AND PETER QIAN

(2014)). For simplicity, we fix the Γ in (2.1) at 0.5. Let Θ(r) denote the rth slice

in Θ satisfying X(r) = N−1[t(A(r)− 1) + Θ(r)− 0.5]. While Step 2 in Algorithm

1 controls the column-wise correlations in the A(r), entries in each Θ(r) are

independently generated from a discrete uniform distribution on {1, . . . , t} in

Step 3. If we can select and organize the Θ(r) in a better way, we might be able

to improve Algorithm 1 to achieve lower correlations in each slice. To this end,

two issues need to be addressed: how to select the Θ(r) given the A(r), and how

to do so for all slices while keeping each θk(j) as a permutation of {1, . . . , t}.
Our algorithm tackles these two issues simultaneously by allowing exchanges

of elements in the Θ(r) across different slices. The algorithm requires construction

of an N × (t+1) auxiliary matrix B with sliced B(1), . . . ,B(t). Let bk denote the

kth column of B and let bk
(r) denote the kth column of B(r). Let xk(j) denote

a sub-vector of xk with corresponding values in ak equal j (similar as θk(j) in

Step 3 of Algorithm 1). Details are summarized in Algorithm 2.

Algorithm 2

Step 1. Randomly generate a sliced Latin hypercube design X.

Step 2. Alternate the following procedures:

Forward:

for k = 2, . . . , p
for r = 1, . . . , t

for s = 1, . . . , t

br
(s) ←

{
xk
(r), if s = r

x̄k
(r), otherwise.

for ` = 1, . . . , k − 1
for r = 1, . . . , t

bt+1
(r) ← x̄`

(r) − 0.5

x` ← takeout(b1, . . . ,bt+1,x`)
for k = 1, . . . , p

for r = 1, . . . , t
ak
(r) ← rank(xk

(r)),

for j = 1, . . . , n
θk(j)← rank(xk(j)),

xk ← [tak + θk − (t+ 0.5)]/N,

Backward:

for k = p− 1, . . . , 1
for r = 1, . . . , t

for s = 1, . . . , t

br
(s) ←

{
xk
(r), if s = r

x̄k
(r), otherwise.

for ` = p, . . . , k + 1
for r = 1, . . . , t

bt+1
(r) ← x̄`

(r) − 0.5

x` ← takeout(b1, . . . ,bt+1,x`)
for k = 1, . . . , p

for r = 1, . . . , t
ak
(r) ← rank(xk

(r)),

for j = 1, . . . , n
θk(j)← rank(xk(j)),

xk ← [tak + θk − (t+ 0.5)]/N,

where takeout(b1, . . . ,bt+1,x`) is the residual vector same as previously defined
in Section 2.1 except with b1, . . . ,bt+1 as predictors.

CONTROLLING CORRELATIONS IN SLICED LATIN HYPERCUBE DESIGNS 843

Proposition 1. For any 1 ≤ k < ` ≤ p, x` ← takeout(b1, . . . ,bt+1,x`) in

Algorithms 2 is equivalent to: x`
(r) ← takeout(xk

(r),x
`
(r)) for r = 1, . . . , t.

Proposition 1 indicates that the output of the takeout step in Algorithm 2

can be duplicated by taking a takeout step for every slice. The takeout step in

Algorithm 2 is applied to optimize the X(r). Instead of ranking xk directly, its

ranking procedure proceeds in two steps. First, the ranks of xk
(r) are assigned

to ak
(r) independently for r = 1, . . . , t to guarantee that each slice is based on a

Latin hypercube, and second, the ranks of xk(j) are given to θk(j) to make sure

that θk(j) is a permutation of {1, . . . , t} for j = 1 . . . , n. When n = 1, Algorithm

1 gives a randomized Latin hypercube design X based on (1.2) while Algorithm

2 is reduced to the RGS algorithm that can control the correlations in X. An

example of using Algorithm 2 to generate a correlation-controlled sliced Latin

hypercube design is provided in the supplementary document.

3. Performance

3.1. Convergence of algorithms

An algorithm converges if the design stops updating after several iterations.

Owen (1994) observed that the RGS algorithm for a Latin hypercube design

mostly converged within a few iterations when p is small or much smaller than n.

In cases where non-convergence occurred with relatively small p, the algorithm

alternated two designs as the algorithm alternated between forward and back-

ward steps. The same convergence behavior should hold for Algorithm 1 since it

consists of t independent RGS algorithms on the A(r).

For Algorithm 2 applied on a sliced Latin hypercube design, we talk of strong

convergence, the entire design X stops updating, and weak convergence, A stops

updating. Strong convergence of Algorithm 2 is expected to occur less frequently

than the convergence of the RGS algorithm because the elements can still ex-

change between slices even after the algorithm converges in each slice. Such ex-

changes become inevitable especially when t or p are large. We generated twenty

sliced Latin hypercube designs for each combination of n ∈ {10, 50}, t ∈ {5, 15},
and p ∈ {4, 9}. We tracked the sequence of designs generated in forty iterations

for each case. We observed strong convergence in twenty cases where t = 5 and

p = 4, four cases where t = 15 and p = 4, and zero cases where p = 9. The

algorithm did not converge or alternate the X in twenty-nine cases including all

twenty cases with n = 10, t = 15, and p = 9. Among the other one hundred and

seven cases where the algorithm alternated X, we observed eighty-eight cases

844 JIAJIE CHEN AND PETER QIAN
ρ ρ

Figure 1. The ρrms(X) (dashed) and the ρrms(X(r)) (solid) of the sequence of designs
generated by Algorithm 2 for (a) n = 10, t = 5 and p = 9 (b) n = 10, t = 15 and p = 9.

with weak convergence.

The algorithm does reduce the column-wise correlation within a few iter-

ations even without weak convergence. Consider root mean square correlation

(Owen, 1994) as the performance measure:

ρrms(D) =

√∑
1≤k<`≤p[ρ(dk,d`)]2

p(p− 1)/2
, (3.1)

where D is a design matrix with p columns and ρ(dk,d`) is the sample correlation

between the kth and `th columns. The left and right plots in Figure 1 show typical

sequences of ρrms after each iteration for X and the X(r) when the algorithm

alternates both X and A after some iterations, and when it does not converge

or alternate in forty iterations. In following, we set the maximum number of

alternations between the forward and backward procedures at ten for all the

algorithms based on the RGS algorithm.

3.2. Controlling column-wise correlations

Let SL denote the sampling scheme in Qian (2012). Let CSL1 and CSL2

denote schemes that use Algorithms 1 and 2, respectively. To compare the per-

formances in controlling column-wise correlations, we applied Algorithms 1 and

2 with n ∈ {10, 20, 50, 100}, t ∈ {5, 10, 20, 50}, and p = 4. For each combination

of n and t, we replicated twenty times. Let ρcsl1rms and ρcsl2rms denote the root mean

CONTROLLING CORRELATIONS IN SLICED LATIN HYPERCUBE DESIGNS 845

ρ

−

ρ

−

Figure 2. Root mean square correlation ρrms of X(1) and X versus sample size n in each

slice for t = 20 and p = 4. Dots denote ρslrms, crosses denote ρcsl1rms, and circles denote ρcsl2rms.
The solid, dotted, dashed reference lines are the least squares regressions of log(ρslrms),
log(ρcsl1rms) and log(ρcsl2rms) on log(n), respectively.

square correlation under Algorithms 1 and 2, respectively. We used the result for

X(1) to represent results for any single slice as the slices are exchangeable under

both schemes. We randomly generated sliced Latin hypercube designs under SL

to obtain ρslrms(X(1)) and ρslrms(X) as the baseline. Figure 2 presents a plot of

ρcsl1rms, ρ
csl2
rms, and ρslrms versus n on a log-log scale for t = 20. Here the root mean

square correlations for both X(1) and X converge faster under CSL1 and CSL2

at almost the same rate as n grows, but CSL2 has the smaller magnitude.

Figure 3 presents a similar plot but with changing t and fixed n = 20.

We observe that CSL2 offers the smallest ρrms not only in magnitude but in

convergence rate as well.

We fit the ordinary least square regression of log(ρrms) versus log(n) and

log(t) and found

log(ρslrms(X(1))) u 0.01− 0.53 log(n),

log(ρcsl1rms(X(1))) u −0.35− 1.05 log(n),

log(ρcsl2rms(X(1))) u −0.29− 0.99 log(n)− 0.98 log(t),

log(ρslrms(X)) u 0.04− 0.52 log(n)− 0.52 log(t),

log(ρcsl1rms(X)) u −0.27− 1.09 log(n)− 0.48 log(t),

log(ρcsl2rms(X)) u −0.15− 1.06 log(n)− 1.42 log(t),

846 JIAJIE CHEN AND PETER QIAN

ρ

−

ρ

−

Figure 3. Root mean square correlation ρrms of X(1) and X versus number of slices t

in each slice for n = 20 and p = 4. Dots denote ρslrms, crosses denote ρcsl1rms, and circles
denote ρcsl2rms. The solid, dotted, dashed reference lines are the least squares regressions
of log(ρslrms), log(ρcsl1rms) and log(ρcsl2rms) on log(n), respectively.

where log(t) is insignificant and dropped for log(ρslrms(X(1))) and log(ρcsl1rms(X(1))).

Empirical analysis then indicates that ρrms(X(1)) has a rate close to n−1

under CSL1 and N−1 under CSL2. Following Owen (1994), we consider why

n−1 and N−1 might be the best that could be achieved under CSL1 and CSL2,

respectively, when p is fixed. By Proposition 1, each update in a single takeout

step of X(r) in Algorithm 2 is equivalent to

x`
(r) ← x`

(r) − 0.5− (xk
(r) − 0.5)ρ(xk

(r),x
`
(r))

σ(x`
(r))

σ(xk
(r))

,

where σ(xk
(r)) and σ(x`

(r)) are the standard deviations of the two columns. Hence,

the amount of change for each component in x`
(r) after a single takeout step is

Op[ρ(xk
(r),x

`
(r))]. Changing x`

(r) means a change in rank(x`
(r)), which requires

modifying some components in x`
(r) by O(N−1). Suppose p vectors are to be

taken out of x`
(r) before it is re-ranked. As p is fixed, Algorithm 2 stops updating

the X(r) if ρ(xk
(r),x

`
(r)) is small compared to N−1, which explains ρcsl2rms(X(1)) =

Op(N
−1). In Algorithm 1, the RGS procedure stops updating if ρ(ak

(r),a
`
(r))

is small compared to n−1. Assuming ρ(ak
(r),a

`
(r)) = Op(n

−1), we then have

ρ(xk
(r),x

`
(r)) = Op[ρ(ak

(r),a
`
(r))] = Op(n

−1) according to (2.1) under CSL1.

CONTROLLING CORRELATIONS IN SLICED LATIN HYPERCUBE DESIGNS 847

4. Controlling Canonical Correlations

Tang (1998) proposed an algorithm that extends the RGS algorithm to con-

trol the polynomial canonical correlations in a Latin hypercube design. For vec-

tors y = (y1, . . . , yn)T and z = (z1, . . . , zn)T , let {y,y2, . . . ,yw} and {z, z2, . . . ,
zw} denote two sets of vectors with yj = (yj1, . . . , y

j
n)T and zj = (zj1, . . . , z

j
n)T .

The maximal correlation between linear combinations of these two sets of vec-

tors is the polynomial canonical correlation of order w between y and z, de-

noted ρw(y, z). Tang (1998) demonstrated that one can control the ρ2(x
k,x`)

(quadratic canonical correlation) in a Latin hypercube design by changing the

takeout step in the RGS algorithm from x` ← takeout(xk,x`) to x` ←
takeout[xk, (xk)2,x`], where (xk)2 represents an extra predictor vector.

Using this idea, we can easily modify Algorithm 2 for reducing the quadratic

canonical correlations of the entire design X. After the modification, the takeout

step in Algorithm 2 is

x` ← takeout[b1, . . . ,bt+1, (xk)2,x`].

Let QCSL denote a scheme that uses Algorithm 2 with this modification.

To examine the performance of QCSL, we used the root mean square quadratic

canonical correlation of a design X given by

ρrmq(X) =

√∑
1≤k<`≤p[ρ2(x

k,x`)]2

p(p− 1)/2
. (4.1)

We also examined the root mean square correlation ρrms in (3.1) to see if the

column-wise correlations were still well controlled.

Figure 4 presents boxplots of ρrms(X(1)), ρrms(X), and ρrmq(X) under dif-

ferent sampling schemes. We observe that the ρrms values are significantly lower

under CSL1, CSL2, and QCSL than those under SL, that CSL2 and QCSL can

further reduce the ρrms, and that QCSL can control ρrmq(X) effectively.

Our experiments with QSCL show that adding quadratic terms to Algorithm

2 can make controlling column-wise correlations less effective when n is not much

larger than p. We suggest using QCSL when p < n/2, but one can always

examine the correlation criteria in Figure 4 first to determine whether CSL2 or

QCSL should be used.

5. Numerical Illustration

In this section, we provide numerical examples to demonstrate variance re-

duction under SL, CSL1, CSL2, and QCSL for the estimator of the expected

848 JIAJIE CHEN AND PETER QIAN

ρ ρ ρ

Figure 4. Boxplots of ρrms(X(1)), ρrms(X) and ρrmq(X) under SL, CSL1, CSL2 and
QCSL with n = 20, p = 8 and t = 4. Each scheme has 100 replicates.

output µ = E[f(x)] in Section 1. Owen (1994) and Tang (1998) provided theo-

retical justifications of variance reduction by controlling ρrms in (3.1) and ρrmq

in (4.1).

Consider the Borehole function from (Morris, Mitchell and Ylvisaker (1993)),

f(X) =
2πTu(Hu −Hl)

log(r/ru) [1 + 2LTu/{log(r/rω)r2ωKω}+ Tu/Tl]
, (5.1)

where the eight input variables, after appropriate scaling, lie in (0, 1]8. Following

(1.1), let µ̂(r) denote the estimator based on X(r) and let µ̂ = t−1
∑t

r=1 µ̂(r)
denote the estimator based on X. We used µ̂(1) represent each slice as slices are

exchangeable. For all sampling schemes, we computed µ̂(1) and µ̂ 1,000 times

with n = 20, p = 8, and t = 4. We approximated the true expected output

of (5.1) at 77.652 based on a sample of 1,000,000 runs from a Latin hypercube

design in (1.2).

We found that CSL1, CSL2, and QCSL provided more variance reduction

than SL by controlling the column-wise correlations, while CSL2 outperformed

CSL1 due to designs under CSL2, in general, have smaller root mean square

correlations. Among all schemes, QCSL provided the most variance reduction

in µ̂ with controlled quadratic canonical correlations. Schemes based on the

RGS algorithm all produced estimators with little bias. Root mean square errors

(RMSE) of µ̂(1) and µ̂ are given in Table 1.

6. Discussion

We have proposed an algorithm to control the correlations in a sliced Latin

CONTROLLING CORRELATIONS IN SLICED LATIN HYPERCUBE DESIGNS 849

Table 1. Root mean square errors (RMSE) of µ̂(1) and µ̂ for the Borehole function with
n = 20, p = 8, and t = 4 over the 1,000 replicates.

SL CSL1 CSL2 QCSL
µ̂(1) 2.159 0.644 0.431 0.441
µ̂ 1.013 0.213 0.185 0.121

Table 2. Root mean square errors (RMSE) of µ̂(1) and µ̂ for the Borehole function with
n = 16, p = 8, and t = 4 over the 1,000 replicates.

SL CSL2 QCSL OSLH
µ̂(1) 2.320 0.492 0.563 0.719
µ̂ 1.205 0.207 0.146 0.033

hypercube design such that the column-wise correlations in each slice and in the

entire design are reduced simultaneously. The algorithm can be seen as first

applying the ranked Gram-Schmidt algorithm in each slice and then exchanging

elements across different slices to further improve the correlations.

When the number of runs in each slice is considerably larger than twice the

number of columns, one can modify our Algorithm 2 with the method of Tang

(1998) to control the quadratic canonical correlations in each slice. In cases

where the number of runs in each slice is limited, it can be extended to control

the quadratic canonical correlations for the entire design without sacrificing the

performance in controlling the column-wise correlations in each slice. Such ideas

can be generalized to control higher order polynomial canonical correlations.

We compared the designs generated under our sampling schemes with the

second-order orthogonal sliced Latin hypercube design (OSLHD) of Ba, Myers

and Breneman (2015) to estimate the expected output of the Borehole function.

If OSLH denotes a sampling scheme that generates an OSLHD with randomized

columns and slices, it requires n = 2c+1, p ≤ 2c for any c ≥ 1 such that t can

be any positive integer. Table 2 reports RMSEs under SL, CSL2, QCSL, and

OSLH with n = 16, p = 8, and t = 4. The OSLH gives the smallest RMSE of

µ̂ because ρ(xk,x`) = ρ((xk)2,x`) = 0 for 1 ≤ k < ` ≤ p, but it performs worse

than CSL2 and QCSL within a single slice. We find that OSLHDs on average

have the highest root mean square quadratic canonical correlations among all

schemes. Our designs also have more flexible sample sizes than second-order

orthogonal sliced Latin hypercube designs.

Sliced Latin hypercube designs are useful in reducing the error in problems

involving multiple integration problems (Qian (2012); Zhang and Qian (2013);

850 JIAJIE CHEN AND PETER QIAN

Chen et al. (2014)). The algorithms proposed here can further reduce the error in

those applications. For fitting second-order regression models, orthogonal sliced

Latin hypercube designs (Yang et al. (2013); Ba, Myers and Breneman (2015))

are more desirable.

Supplementary Materials

The proof of Proposition 1 and an example of using Algorithm 2 are included

in the online supplemental materials.

Acknowledgment

The authors would like to thank the Editor, an associate editor, and referees

for their helpful comments which led to the improvement of this paper. This

material is based upon work supported by, or in part by, the U. S. Army Research

Laboratory and the U. S. Army Research Office under contract/grant number

W911NF1510156 and NSF Grants DMS 1055214 and DMS 1564376.

References

Ba, S., Myers, W. R. and Breneman, W. A. (2015). Optimal sliced Latin hypercube designs.

Technometrics 57, 479-487.

Chen, J., Lim, C. H., Linderoth, J. T., Qian, P. Z. G. and Wright, S. J. (2014). Validating sample

average approximation solutions with negatively dependent batches. arXiv:1404.7208.

Chen, Y., Steinberg, D. M. and Qian, P. Z. G. (2014). Maximin sliced Latin hypercube designs,

with application to cross validating prediction errors. Springer Handbook on Uncertainty

Quantification, in Press.

Hedayat, A. S., Sloane, N. J. A. and Stufken, J. (1999). Orthogonal Arrays: Theory and Appli-

cations. New York: Springer.

Huang, H. Z., Yang, J. F. and Liu, M. Q. (2014). Construction of sliced (nearly) orthogonal

Latin hypercube designs. Journal of Complexity 30, 355-365.

Johnson, M. E., Moore, L. M. and Ylvisaker, D. (1990). Minimax and maximin distance designs.

Journal of Statistical Planning and Inference 26, 131-148.

Loh, W. L. (1996). On Latin hypercube sampling. Annals of Statistics 24, 2058-2080.

McKay, M. D., Conover, W. J. and Beckman, R. J. (1979). A comparison of three methods

for selecting values of input variables in the analysis of output from a computer code.

Technometrics 21, 239-245.

Morris, M. D., Mitchell, T. J. and Ylvisaker, D. (1993). Bayesian design and analysis of computer

experiments: Use of derivatives in surface prediction. Technometrics 35, 243-255.

Owen, A. B. (1994). Controlling correlations in Latin hypercube samples. Journal of the Amer-

ican Statistical Association 89, 1517-1522.

Qian, P. Z. G. (2012). Sliced Latin hypercube designs. Journal of the American Statistical

CONTROLLING CORRELATIONS IN SLICED LATIN HYPERCUBE DESIGNS 851

Association 107, 393-399.

Stein, M. (1987). Large-sample properties of simulations using Latin hypercube sampling. Tech-

nometrics 29, 143-151.

Steinberg, D. M. and Lin, D. K. J. (2006). A construction method for orthogonal Latin hyper-

cube designs. Biometrika 93, 279-288.

Sun, F. S., Liu, M. Q. and Lin, D. K. J. (2009). Construction of orthogonal Latin hypercube

designs. Biometrika 96, 971-974.

Tang, B. (1998). Selecting Latin hypercubes using correlation criteria. Statistica Sinica 8, 965-

977.

Yang, X., Chen, H. and Liu, M. Q. (2014). Resolvable orthogonal array-based uniform sliced

Latin hypercube designs. Statistics & Probability Letters 93 109-115.

Yang, J. F., Lin, C. D., Qian, P. Z. G. and Lin, D. K. J. (2013). Construction of sliced orthogonal

Latin hypercube designs. Statistica Sinica 23, 1117-1130.

Ye, K. Q. (1998). Orthogonal column Latin hypercubes and their application in computer

experiments. Journal of the American Statistical Association 93, 1430-1439.

Yin, Y. H., Lin, D. K. J. and Liu, M. Q. (2014). Sliced Latin hypercube designs via orthogonal

arrays. Journal of Statistical Planning and Inference 149, 162-171.

Zhang, Q. and Qian, P. Z. G. (2013). Designs for crossvalidating approximation models.

Biometrika 100, 997-1004.

Wells Fargo, 301 S Tryon St Floor 02 Charlotte, NC 28282, USA.

E-mail: kewellcjj@gmail.com

Department of Statistics, The University of Wisconsin – Madison, Madison, WI 53706, USA.

E-mail: peter.qian@wisc.edu

(Received March 2016; accepted May 2017)

mailto:kewellcjj@gmail.com
mailto:peter.qian@wisc.edu

