
Statistica Sinica 28 (2018), 553-576
doi:https://doi.org/10.5705/ss.202015.0367

UNCERTAINTY QUANTIFICATION WITH

α-STABLE-PROCESS MODELS

Rui Tuo

Chinese Academy of Sciences

Abstract: In this article we consider using a class of α-stable processes, which can

be regarded as generalizations of the Gaussian processes, as the surrogate models

for uncertainty quantification. We introduce a class of α-stable processes, whose

finite-dimensional distributions can be represented using independent stable ran-

dom variables. This representation allows for Bayesian inference for the proposed

statistical model. We can obtain the posterior distributions for the untried points

as well as the model parameters through an MCMC algorithm. The computation

for the representation requires some geometrical information given by the design

points. We propose an efficient algorithm to solve this computational geometry

problem. Two examples are given to illustrate the proposed method and its poten-

tial advantages.

Key words and phrases: Computer experiments, kriging, Lévy processes, stable

distributions.

1. Introduction

In a computer experiment or uncertainty quantification problem, a complex

computer model is used to simulate a physical process. The computer model

may contain several control or noise factors as input variables, and the goal is to

understand the function relationship between the computer input and the output.

We refer to Santner, Williams and Notz (2003) for detailed discussion. A common

scenario is that the computer model is so complex that each run of the code is

costly. In this case, one has to reconstruct the function based on the computer

outputs over a selected set of points in the input space. The reconstruction of

the underlying target function is referred to as surrogate modeling, which is one

of the core topics in computer experiments and uncertainty quantification.

Gaussian process models are an important class of surrogate models with

statistical interpretation. Given a set of scattered points and the value of an un-

derlying function of interest over these points, a Gaussian process model can give

a prediction for the function value at an untried point, as well as its confidence in-

terval. We refer to Rasmussen and Williams (2006); Santner, Williams and Notz

https://doi.org/10.5705/ss.202015.0367

554 TUO

(2003); Banerjee, Carlin and Gelfand (2004) for the theory and implementation

of Gaussian process modeling.

Gaussian process models perform well in fitting smooth functions. However,

for functions with sudden jumps or oscillatory spikes, Gaussian process models

can result in unstable prediction (Gramacy and Lee (2008); Chen, Wang and Wu

(2010)). Furthermore, the predictive distributions given by a Gaussian process

model are normal only, which may be too narrow to characterize all types of

prediction uncertainties in reality. In this work, we focus on a broader family of

stochastic processes that allows for conditional inference as Gaussian processes.

The marginal distributions of these stochastic processes follow the stable distri-

butions, which form a broader family than the normal.

We identify a class of stationary α-stable random fields whose finite dimen-

sional distributions can be represented using independent stable random vari-

ables. This specialization of α-stable processes allows a feasible computational

scheme for statistical inference. As a spatial model, the location of the input

points characterizes the distributions of the independent stable random vari-

ables. We show that the derivation of these distributions reduces to solving a

computational geometry problem. We propose an efficient algorithm to solve this

problem. Based on this α-stable process family, we propose statistical models for

scattered spatial data. A Bayesian approach is utilized for the estimation and

inference of the proposed model.

This paper is organized as follows. We define a class of α-stable random

field and study its probabilistic structure and properties in Section 2. In Section

3, we develop a Bayesian approach for estimation and inference in the proposed

models. An efficient algorithm is presented in Section 4 to solve the computa-

tional geometry problem raised in Section 2.3. Numerical illustrations show the

potential advantages in Section 5. Concluding remarks are made in Section 6.

The technical proofs are given in Appendix A.

2. A Special Class of α-Stable Processes

In this section we state a new class of α-stable processes and discuss their

probabilistic structure and properties. A novel spatial statistical model is pro-

posed based on this stochastic process family. First, we give a quick review of

stable random variables and α-stable processes in Section 2.1 and 2.2. For a

detailed introduction to α-stable random variables and vectors, stable integrals,

and α-stable processes, we refer to Samorodnitsky, Taqqu and Linde (1996).

UQ WITH STABLE PROCESS MODELS 555

2.1. Stable random variables

Definition 1 (Stable Distributions). A random variable X is said to have a

stable distribution if for any positive number A and B, there is a positive number

C and a real number D such that

AX1 +BX2
d
=CX3 +D,

where X1, X2, and X3 are independent copies of X, and “
d
=” denotes equality in

distribution.

It can be proven that stable distributions form a four-parameter family

(Samorodnitsky, Taqqu and Linde (1996)), denoted by Sα(c, β, µ), where α ∈
(0, 2] is the index parameter, β ∈ [−1, 1] the skewness parameter, µ ∈ R the shift

parameter, and c ∈ (0,+∞) the scale parameter. In general, the probability

density of a stable distribution does not have an analytic expression.

A stable distribution with α = 2 is a normal distribution with mean µ and

standard deviation c. The parameter β has no effect in this case, although we

usually set β = 0 for convenience. For a non-Gaussian stable distribution, the

parameters α, β, c and µ are unique. Stable distributions with α < 2 are heavy-

tailed distributions and have infinite variance. The smaller α is, the slower its

tail decays. The skewness parameter β is a measure of asymmetry when α < 2.

When β = 0, the distribution is symmetric about µ. The Cauchy distributions

are stable distributions with α = 1 and β = 0.

The support of a stable random variable X is the whole real line unless α < 1

and β = ±1. When α < 1 and β = 1, X ∈ [µ,+∞); when α < 1 and β = −1,

X ∈ (−∞, µ].

Stable random variables can be generated using the numerical method pro-

posed in Chambers, Mallows and Stuck (1976). An algorithm is given by Nolan

(1997) to compute the probability density function of a stable distribution. Using

this algorithm, maximum likelihood estimates for α, β, c, and µ can be obtained

and the estimators are asymptotically normally distributed (Nolan (2001)).

2.2. Convolution of α-stable random measure

Every stationary Gaussian process on Rm can be represented by a convolu-

tion of the Gaussian random measure. Let G(x) be a stationary Gaussian process

with mean 0. Then there exists a function K(x) ∈ L2(Rm) such that

G(x) =

∫
K(t− x)W (dt), (2.1)

where W (·) is a random measure satisfying

556 TUO

(C1): For any mutually disjoint measurable sets D1, . . . , Dn, the random vari-

ables W (D1), . . . ,W (Dn) are independent;

(C2): If m(D) be the Lebesgue measure of set D,

W (D) ∼ N(0,m(D)).

If we change the distribution in condition C2 to a non-Gaussian distribution,

we can use (2.1) to define a stationary non-Gaussian process. For many non-

Gaussian infinitely divisible distributions, such a random measure exists. Here

we consider the α-stable random measures, which form a large family, including

the Gaussian random measures.

Definition 2 (α-Stable Random Measure). A random measure M(·) is called

α-stable with skewness intensity β(x) if condition C1 is satisfied and

M(D) ∼ Sα
(

(m(D))1/α,

∫
D β(x)m(dx)

m(D)
, 0
)
, (2.2)

where 0 < α ≤ 2 and |β(x)| ≤ 1.

For convenience, we assume the skewness intensity β(x) is a constant, de-

noted by β. A more general setting can also be considered by imposing a para-

metric form for the skewness intensity β(x). The statistical analysis can be

conducted in a similar manner. If α < 1 and β = ±1, the support of the stable

distribution is a half real line. Bayesian inference may be inconvenient if the sup-

port of the density functions depends on the parameters. To avoid this problem,

we assume |β| < 1 in this paper.

Let H(x) =
∫
K(t− x)M(dt), where M(·) is defined in (2.2). Then H(·) is

called an α-stable stochastic process. This process is also stationary since M(·) is

invariant under any shift transformation. If we let α = 2 and β = 0, this process

reduces to a stationary Gaussian process. The finite-dimensional distribution of

an α-stable process is called a multivariate α-stable distribution.

Now we turn to the conditional inference problem. Suppose we have n inputs

{x1, . . . ,xn} and observe Y (xi) for i = 1, . . . , n. To establish a new statistical

model using the conditional inference of the α-stable processes, we assume the

observations are from a linear transformation of the stationary α-stable process

H(x),

Y (x) = µ+ cH(x), (2.3)

where c > 0. We can also change the constant µ to a regression function, like

the universal kriging for Gaussian process models (Santner, Williams and Notz

(2003)).

UQ WITH STABLE PROCESS MODELS 557

Unlike that for a Gaussian process, the conditional inference for a stable pro-

cess is intractable for a general kernel function K, since the density and condi-

tional distributions of an α-stable random vector are difficult to obtain. Karcher,

Shmileva and Spodarev (2013) considers the linear predictors for α-stable pro-

cesses given the observational data. There is a lack of a framework for the

likelihood-based or the Bayesian conditional inference for the α-stable processes.

The statistical inference for the max-stable processes, a class of relevant stochastic

processes, is established. See Padoan, Ribatet and Sisson (2010) and the refer-

ences therein. However, the existing work on max-stable processes cannot be

adapted to the inference for the α-stable processes because the parametrization

scheme for the max-stable processes is not applicable for the α-stable processes.

In order to make the statistical inference feasible, we have to sacrifice some flexi-

bility in K. In the next section we introduce a specific family of kernel functions

and represent the finite-dimensional distributions of the corresponding α-stable

random fields using independent stable random variables.

2.3. Hyper-rectangle partition

For the rest of the paper we restrict K to be an axis-parallel hyper-rectangle

with its center at 0,

K(x) = I(|xi| ≤ di, i = 1, . . . ,m), (2.4)

where xi is the ith entry of x, di’s are model parameters with di > 0 for each i.

The stationary α-stable process of interest is still given by

H(x) =

∫
K(t− x)M(dt). (2.5)

Remark 1. For mathematical rigor we should use K(x) = I(−di < xi ≤ di, i =

1, . . . ,m) instead of (2.4) in order to make the stochastic process right-continuous,

but the notation in (2.4) is more convenient. We set the center of the rectangle to

be 0 also for convenience. Actually the location of the center has no effect on the

probability structure of H(·), since M(·) is invariant under a shift transformation.

Remark 2. If we let α = 2 and β = 0, (2.5) reduces to a Gaussian process with

the correlation function

C(x) =

∏m
i=1(di − |xi|)+∏m

i=1 di
,

where xi is the ith component of x, and x+ := xI(x > 0) for any x ∈ R. This

correlation function has a compact support {x : |xi| ≤ di}. This correlation

family has some similarity with more familiar ones. For instance, consider the

558 TUO

Figure 1. Correlation function for corresponding Gaussian process.

power exponential correlation family with C(x) = exp{−
∑m

i=1 θix
p
i } where θi >

0 are correlation parameters. In our model the correlation becomes stronger as di
increases. Thus di plays a similar role as the correlation parameter θi of the power

exponential family. Figure 1 plots its one-dimensional version. From the figure

we can see the non-zero part of this one-dimensional function forms a triangle and

this correlation function is thus known as a triangular autocorrelation function

(Stein (1999)).

We study the finite-dimensional distribution of (2.5). Denote the n inputs

by {x1, . . . ,xn}. Let Ai be the rectangle region defined by the indicator function

1Ai
(x) := K(x−x1) for i = 1, . . . , n. By (2.2), (2.4), and (2.5) we have H(xi) ∼

Sα((m(Ai))
1/α, β, 0).

Since the m(Ai)’s are equal, the H(xi)’s have the same marginal distribution.

This property can also be shown by the stationarity of H. The joint distribution

of (H(x1), . . . ,H(xn)) depends on the location of A1, . . . , An. In order to study

this spatial relationship, we need to consider the partition of Rm generated by

A1, . . . , An.

Let A be the algebra generated by A1, . . . , An. Let {I0, I1, . . . , Is} be the

set of atoms in A . If E ∈ A and E ⊂ Ii then E = Ii for i = 0, . . . , s. Now we

have the partition Rm =
∑s

i=0 Is, where
∑

represents the disjoint union. Only

one atom in A is unbounded, which is Rm−∪ni=1Ai. Without loss of generality,

we suppose this unbounded region is I0. Thus I1, . . . , Is all have finite volumes.

Figure 2 gives a 2D illustrating example of this hyper-rectangle partition.

We call Ii’s the subregions for i ≥ 1. We say a subregion I belongs to a

rectangle A if I ⊆ A.

Since Ai’s are all axis-parallel rectangles, it is easily shown that each Ii can

UQ WITH STABLE PROCESS MODELS 559

Figure 2. Example of hyper-Rectangle partition.

be represented by the disjoint union of some axis-parallel rectangles. In Section

4 we propose an effective algorithm for computing s and m(Ii) for each i, and in

the following discussion we assume that these values are known.

Since Ii’s are disjoint, by condition C1 we have a representation for the joint

distribution of (H(x1), . . . ,H(xn)):

H(xi) =
∑
Ij⊂Ai

vj , i = 1, . . . , n, (2.6)

where {vj}sj=1 are independent random variables and

vj ∼ Sα((m(Ij))
1/α, β, 0) (2.7)

for j = 1, . . . , s.

2.4. Continuity

In this section we study the continuity of the proposed α-stable processes.

To this end, we use an existing result in the theory of Lévy processes.

For any l ∈ {1, . . . , n}, let

Hx1,...,xl−1,xl+1,xn
(x) = H(x1, . . . , xl−1, x, xl+1, xn),

where x1, . . . , xl−1, xl+1, xn are constants. Let L(x) be the α-stable Lévy process

with L(x) ∼ Sα((xm(Ai)/dl)
1/α, β, 0) for x ≥ 0, where dl is defined in (2.4).

We refer to Applebaum (2009) for more discussions. Because a Lévy process has

stationary increments, L(x)−L(x−dl)
d
=L(dl) ∼ Sα((m(Ai))

1/α, β, 0). Moreover,

if δL(x) = L(x)− L(x− dl), then we can verify that

Hx1,...,xl−1,xl+1,xn
(·) d

= δL(·).

560 TUO

−
−

−

Figure 3. Realization of a stationary Cauchy process.

It is known that the sample path of a Lévy process does not have any other

continuous component except a Brownian Motion with drift. Thus the sample

path of Y (x) is discontinuous unless α = 2. Figure 3 shows a realization of

a stationary Cauchy process, which is the proposed α-stable random field with

α = 1 and β = 0. We can see the process fluctuates wildly with sudden jumps.

Based on this, we expect that the proposed α-stable process models have the

capability of fitting functions with discontinuities.

Definition 3 (Stochastic Continuity). Given t, a random field X(t) is said to

be continuous in probability at t if for all ε > 0,

lim
s→t

P (|X(s)−X(t)| ≥ ε) = 0.

If a stochastic process Y (x) is continuous in probability, the conditional

distribution p(Y (x)|Y (x1), . . . , Y (xn)) is continuous with respect to x under the

weak topology. This implies that the predictors of Y (·), such as the predictive

median or mean, are continuous and interpolate the observed data. It is easily

verified that the proposed α-stable processes are continuous in probability.

3. Statistical Inference

In this section we develop a Bayesian approach for estimation and inference.

The aim is to obtain the predictive distribution for an untried point as well as

the posterior distributions for the parameters. Since there is no explicit form of

UQ WITH STABLE PROCESS MODELS 561

these distributions, Monte Carlo methods are used.

In Section 3.1 and 3.2, we suppose that α, β, µ, and c are known. Therefore,

by (2.3) and (2.7), the value of H(xi) and the distribution of vj are known for

i = 1, . . . , n and j = 1, . . . , s. This assumption is used for convenience because

we can update these parameters in each iteration of the Markov chain Monte

Carlo (MCMC) scheme using the Gibbs sampler. Without loss of generality, we

take µ = 0 and c = 1 because if x ∼ Sα(c, β, µ) then (x−µ)/c ∼ Sα(1, β, 0). The

vector d = (d1, . . . , dm) is fixed in the whole MCMC chain. We produce multiple

chains with different d to obtain its posterior mode. The parameter estimation

problems are discussed in Section 3.3.

3.1. Sampling latent variables

From (2.6), although the H(xi)’s are correlated, they can be decomposed

into independent random variables {vi}si=1. If we can sample these s latent

variables, the statistical inference can be largely simplified. We rewrite (2.6) into

the matrix form

H(X) = IV, (3.1)

where X = (x1, . . . ,xn), H(X) = (H(x1), . . . ,H(xn))T, V = (v1, . . . , vs)
T and I

is an n× s (0, 1) matrix.

The proof of the following lemma is given in Appendix A.

Lemma 1. There exists at least one subregion, which belongs to only one rect-

angle.

Let A = {A1, . . . , An}. Lemma 1 suggests that there exists i1 and j1, such

that Ij1 does not belong to any rectangle in A−{Ai1}. Therefore, the (i∗, j1) entry

of I is zero for any i∗ 6= i1. Applying Lemma 1 to A− {Ai1}, we get i2 6= i1 and

j2 6= j1 such that Ij2 does not belong to any rectangle in A−{Ai1 , Ai2}. Therefore,

the (i∗, j2) entry of I is zero for any i∗ 6= i1, i2. By repeating this scheme, we get

{ik}nk=1 and {jk}nk=1. The submatrix of I formed by rows i1, . . . , in and columns

j1, . . . , jn has the form

I
(
i1···in
j1···jn

)
=

1 U
. . .

0 1

 .

Theorem 1. The matrix I has an n× n submatrix I1 with |det(I1)| = 1.

Without loss of generality, we can assume I = (I1, I2). Theorem 1 implies

that I is of full row rank, which means that the algorithm discussed later does

562 TUO

not suffer from a singularity problem.

Originally the vi’s are independent. Thus V has density Q(V) :=
∏s
i=1 qi(vi),

where qi(·) is the density function of Sα((m(Ii))
1/α, β, 0). Since H(X) is known,

the goal is to sample V |H(X). The density of V |H(X) has the form

p
(
V
∣∣H(X)

)
∝ Q(V) subject to: H(X) = IV. (3.2)

By Theorem 1, the support of V |H(X) is a linear subspace of Rs with

dimensionality s − n. It is difficult to implement the Gibbs sampler due to the

constraint. An easy way to draw V from its conditional distribution uses a

Metropolis algorithm

Algorithm 1 Random-walk Metropolis

1. Start with V0 satisfying H(X) = IV0.

2. Draw δV ∼ N(0, σ2I) subject to: IδV = 0.

3. Let Vnew = Vt + δV .

4. Let Vt+1 = Vnew with probability min{1, Q(Vnew)/Q(Vt)}; otherwise let Vt+1 = Vt.

5. Set t← t+ 1 and go to Step 2.

The parameter σ2 in Step 2 is a tuning parameter. The projection of a

standard multivariate normal distribution to a linear subspace is still standard

multivariate normal. Thus to draw from the normal distribution subject to the

linear constraint in Step 2, we only have to compute an orthogonal basis for the

null space of I. One approach is to use the singular value decomposition of the

sparse matrix I and, by Theorem 1, we have to draw s− n independent normal

random variables since v still has degrees of freedom s− n.

3.2. Prediction

Based on the sampling of V |H(X), we can derive a Monte Carlo method

to compute the predictive distributions. Suppose we want to predict for a new

point x0. Denote its associated hyper-rectangle by A0. By the definition of α-

stable random measure and (2.7), we have the decomposition vi = v̄i + v̄′i, where

v̄i ∼ Sα((m(Ii∩A0))
1/α, β, 0) and v̄′i ∼ Sα((m(Ii−A0))

1/α, β, 0), for i = 1, . . . , s.

Since A0 =
∑s

i=0A0 ∩ Ii, invoking (2.6) we have

H(x0) = v̄0 +

s∑
i=1

v̄i, (3.3)

UQ WITH STABLE PROCESS MODELS 563

where v̄0 ∼ Sα((m(I0∩A0))
1/α, β, 0). The objective is to obtain the predictive dis-

tribution p(H(x0)
∣∣H(X)). Note that p(H(x0)|H(X)) = E[p(H(x0)|V)|H(X)].

In Algorithm 1 we have an MCMC scheme to sample V |H(X). Denote the out-

put sequence of the MCMC algorithm by V1, . . . , VN , where N is the Monte Carlo

sample size. Then the predictive distribution can be approximated by

p̂
(
H(x0)

∣∣H(X)
)

=
1

N

N∑
i=1

p
(
H(x0)

∣∣V = Vi

)
.

The remaining problem is to draw H(x0)|V . Invoking (3.3), we need to

sample

v̄0 +

s∑
i=1

v̄i

∣∣∣∣V.
Here the v̄i’s are mutually independent conditional on V . Thus we can sample

v̄′i s independently from the conditional distribution p(v̄i|vi). Let p1(·) be the

density of Sα((m(Ii∩A0))
1/α, β, 0) and p2(·) be that of Sα((m(Ii−A0))

1/α, β, 0).

Since vi = v̄i+ v̄
′
i and v̄′i is independent of v̄i, we have the conditional distribution

vi|v̄i ∼ Sα
(

(m(Ii −A0))
1/α, β, v̄i

)
.

Therefore, by Bayes’ Theorem the target conditional distribution has the form

p(v̄i|vi) ∝ p1(v̄i)p2(vi − v̄i). (3.4)

As an example, we study the conditional distribution when the vi’s follow

Cauchy distributions, p(vi) ∝ 1/(v2i + c2(m(Ii)
2)). By (3.4) we have

p(v̄i|vi) ∝
(
v̄i

2 + c2
(
m(Ii ∩A0)

)2)−1(
(vi − v̄i)2 + c2

(
m(Ii −A0)

)2)−1
. (3.5)

This conditional distribution has finite first and second moments and therefore

is no longer stable. When vi = 0 and m(Ii∩A0) = m(Ii−A0), (3.5) implies that

the conditional distribution of cm(Ii ∩ A0)v̄i is the t-distribution with degrees

of freedom three. Except for this special case, the distribution given by (3.5) is

non-standard. This simple example suggests that the condition distributions for

α-stable processes can be complicated; conditional inference for these processes

is much more difficult than the Gaussian processes.

3.3. Parameter estimation

In this section, we introduce algorithms to estimate the unknown parameters

in our model: α, β, c, µ and d. We propose a hybrid Bayesian approach for the

parameter estimation. The main steps are listed in Algorithm 2. Note that the

proposed approach is not fully Bayesian because we solely calculate the posterior

564 TUO

mode of d. We do not look for the posterior density of d because the MCMC

sampling for d is intractable. Note that the number of subregions relies on

the value of d (see Figure 2). Thus, I may change if a different value of d is

considered. In this situation, Algorithm 1 breaks down. We have to fix d in an

MCMC chain.

Algorithm 2 Parameter Estimation

1. Choose a finite set of possible values for d. Choose a current d from this set.

2. Given d from the Step 1, sample α, β, c and µ using Gibbs sampling. This step is
done along with the MCMC sampling of the latent variables discussed in Section
3.1. Details are given in Section 3.3.1.

3. Using the MCMC samples obtained in Step 2, calculate the likelihood value for the
current d. Details are given in Section 3.3.2.

4. Move to the next d in the set. Repeat Step 2 and Step 3 until the likelihood value
for each d in the set is evaluated. Find the posterior mode of d, i.e., the d value
which yields the greatest likelihood value.

3.3.1. Gibbs sampling

In an MCMC chain, we fix d to obtain a unified framework for data augmen-

tation. In each iteration of this MCMC scheme, we update α, β, µ and c using

the priors

p(α) ∝ α,
p(β) ∝ (1− |β|)+,
p(µ) ∝ 1,

c ∼ IG(η, γ),

(3.6)

where IG is the inverse gamma distribution. We believe that in many problems,

the true distributions cannot be too heavy-tailed or too skewed. Thus we choose

non-uniform priors for α and β in (3.6) to encourage the stable distributions not

to be too far from the normal distributions.

Let Y = (y(x1), . . . , y(xn))T. Using (2.3) and (3.1), we obtain the linear

system

Y − µ1 = IṼ , (3.7)

where Ṽ = cV and 1 is a vector with all elements 1. If ṽi is the ith component

of Ṽ , then ṽi ∼ Sα(c(m(Ii))
1/α, β, 0). The density of Ṽ is Q̃(Ṽ) :=

∏s
i=1 q̃i(ṽi),

where q̃i(·) is the density function of Sα(c(m(Ii))
1/α, β, 0). Therefore, we do not

UQ WITH STABLE PROCESS MODELS 565

have to update Ṽ during the Gibbs samplings of α, β, and c, since (3.7) still holds

after the Gibbs samplings. When updating µ, we propose a transition of Ṽ to

keep the identity (3.7).

Let the initial state be (µ, Ṽ). Suppose we have a proposal move for the

parameter µ with a transition kernel q(·, ·). Now consider one iteration of the

MCMC scheme. Suppose µ moves to µ′ with µ′ 6= µ. Then by (3.7), we should

move Ṽ to some Ṽ ′ satisfying 1 = I(Ṽ − Ṽ ′)/(µ′ − µ). For the choice of Ṽ ′, we

suggest using the z0 that solves the quadratic optimization problem

min
z
‖z‖2 subject to: Iz = 1. (3.8)

Since (3.8) is independent of µ, we only have to solve this problem once for the

whole MCMC chain. We propose the move Ṽ ′ = Ṽ + (µ − µ′)z0, which keeps

(3.7). If the proposal move for µ is symmetric, q(x, x′) = q(x′, x) for any x 6= x′,

then the proposed move for (µ, Ṽ) is also symmetric. Basically z0 can be any z

satisfying Iz = 1, but we use the least distance solution because it results in a

small shift of Ṽ . We expect that, in this case, the variation of Q̃(Ṽ) is also small

so that the Metropolis scheme can achieve a relatively high acceptance rate.

For the Gibbs sampling of α, β, and c, existing methods (Buckle (1995);

Lombardi (2007)) can be extended and implemented in a straightforward manner.

3.3.2. Estimation of likelihood values

To compute the posterior mode for the parameter d, we have to obtain the

likelihood value P (Y |d), where P (Y |d) =
∫
P (Y |α, β, c, µ,d)p(dα)p(dβ)p(dc)

p(dµ). We suggest a method to compute this value using the output from Algo-

rithm 1. The proof of Theorem 2 is given in Appendix A.

Theorem 2. Let X = (x1, . . . , xs)
T be a vector of continuous random variables

with density p1(x1) · · · ps(xs), and the matrix A = (A1, A2), A1 ∈ Rn×n be of

full rank with A2 ∈ Rn×(s−n). Take Y = AX with density P (Y). If X1 =

(x1, . . . , xn), X2 = (xn+1, . . . , xs), P1(X1) =
∏n
i=1 p(xi), P2(X2) =

∏s
i=n+1 p(xi),

then
1

P (Y)
= | det(A1)|E

[1

P1(X1)

∣∣∣AX = Y
]
.

From an MCMC chain we obtain a sequence of samples for the latent vector

V that can be used to estimate the underlying likelihood value. Choosing I1
satisfying the conclusion of Theorem 1, by Theorem 2 the likelihood value can

be estimated by

566 TUO

1

L̂(Y |d)
=

1

N

N∑
i=1

n∑
j=1

1

qi,j(vi,j)
,

where qi,j and vi,j are qj and vj in the ith MCMC iteration, respectively.

4. Computing Rectangle Partition

In this section we consider the solution to the geometric problem of hyper-

rectangle partition raised in Section 2.3. It is very costly to obtain all the details

of the geometric structure given by the rectangles, so we look for an efficient

algorithm that provides only the necessary information. According to in Section

2.3 and Section 3, only two types of geometric information are required for sta-

tistical inference. The first type consists of the total number of the subregions

and the volume of each subregion. The volumes of the subregions are used to

determine the distributions of vi’s defined by (2.6) and (2.7). The second type of

information provides, for each rectangle,the subregions that belong to this rect-

angle. This linking information determines the matrix I in equation (3.1). The

algorithm proposed in this section provides both types of information without

recording the shape of each subregion. To describe this algorithm, we use certain

terminology from data structure. The algorithm is inspired by some ideas from

computational geometry. A good introduction to this field is de Berg, Cheong

and Van Kreveld (2008).

4.1. An illustration

We use a simple example to illustrate how the proposed algorithm works.

Consider two overlapping 2D-rectangles, shown in Figure 4 with solid lines. De-

note the upper rectangle by Rectangle 1 and the lower one by Rectangle 2. At the

beginning, we compute the projection of these rectangles to 1D space, as shown

by the dashed line on the left. Then we obtain a 1D version of the rectangle

partition problem that is trivial to solve. We can easily figure out that the two

line segments (projections of the two rectangles) form three disjoint segments,

denoted by Segment I, II, and III. The length of each segment can be obtained,

too. In addition, we record the following linking information: Segment I belongs

to Rectangle 1 only; Segment II belongs to both rectangles; and Segment III

belongs to Rectangle 2 only. Now we return to the original 2D problem. The

structure on the second dimension can be represented by the four sides of the

two rectangles on the second dimension. We denote these four sides by Side i, ii,

iii, iv from left to right. Now we initialize an empty queue for each of the disjoint

UQ WITH STABLE PROCESS MODELS 567

segments in the 1D problem, denoted by Queue I, II and, III. Then we scan the

second dimension from −∞ to +∞. The first object appears is Side i, which

is the start line of Rectangle 1. From the 1D problem, we already know that

Segment I and II belong to Rectangle 1. Thus we insert 1 to Queue I and II, and

leave Queue III unchanged. Then we see Side ii. We obtain three small rectangle

regions between Side i and ii, divided by the dotted lines in Figure 4. Each small

rectangle is associated with a segment in the 1D problem. Now read the three

queues. Queue I and II contain 1 only, and Queue III is empty (denoted by φ in

Figure 4), which means that the first and second region belong to Rectangle 1

only and the third region does not belong to any rectangle. Thus we see the first

2D subregion, indexed by 1. Currently its area is the sum of the volume of the

first two small rectangles. The areas of these rectangles are the distance between

Side i and ii times the lengths of Segment I and II, respectively. Then we update

the queues again. Since Rectangle 2 starts from Side ii, we insert 2 to Queue

II and III, and leave Queue I unchanged. Next we move to Side iii. We obtain

three new small rectangle regions between Side ii and iii, so Queue I contains

1 only, Queue II contains 1 and 2, and Queue III contains 2 only. Thus the

first rectangle still belongs to subregion indexed by 1, and the other two belongs

to two new subregions, indexed by 12 and 2, respectively. Here the term “12”

denotes the subregion that belongs to Rectangles 1 and 2. Update the area of

the subregion indexed by 1 by adding the area of the first small rectangle. Also

initialize the subregions indexed by 12 and 2 and calculate their areas. Then

update the queues. Since Rectangle 1 ends at Side iii, the term 1 should leave

all queues. Because Queue III does not contain 1, it remains unchanged. We can

see that the queue data structure (i.e., first-in-first-out) works here because all

rectangles are congruent. Finally we turn to Side iv. The status of the queues

are: empty, 2, 2. Thus we update the area of the subregion indexed by 2 by

adding the areas of the last two rectangles between Side iii and iv. Since we have

met all the four sides, the algorithm terminates.

4.2. Algorithm

A fundamental concept in the proposed methodology is subregions. As shown

in Sections 2.3, a subregion is generated by the intersection of a class of rectangles.

The set of rectangle labels is called the index of the subregion in Section 4.1.

If two subregions hold the same index, they should be merged as one. In our

statistical inference procedure, we also need the volume of the subregion. Here we

define Subregion as a data type: for Subregion r, r$index and r$volume denote

568 TUO

φ

φ

Figure 4. Computational geometry algorithm.

its index and volume. Given an index, there is an associated volume. Such a

relationship can be described using an associative table, also called a map. An

associative table defines an association between its Key and its Value. It can be

realized using data structures like binary search trees or hash tables. Here we

call the data structure consisting of Subregions Table. For Table t, we use the

notation t[id] to denote the volume of subregion in t with the index id. Note that

t[id] may not exist if t does not contain a subregion with such an index.

A basic operation is to add a new part of a subregion to a table. This

sub-function is given in Algorithm 3.

Algorithm 3 Sub-function Merge.

Input (Table t, Subregion r)
If t[r$index] exists

t[r$index]← t[r$index] + r$volume
Else

Add (r$index, r$volume) to t.
End If

Output t

The algorithm, given a set of intervals, determine the generated subregions

and their lengths. This step is trivial and can be done by a standard implemen-

tation of the Queue data structure. For a general m-dimensional problem, we

first generate m associative tables given by the projection to each of the coor-

dinate axes. Then the algorithm proceeds in a recursive manner, by adding one

dimension to an existing d-dimensional table. The ascending dimension proce-

dure is described in Algorithm 4, where t1 denotes the d-dimensional table and

t2 denotes the one-dimensional table to be added. Finally, the main algorithm

(shown in Algorithm 5) proceeds by successively adding all dimensions.

UQ WITH STABLE PROCESS MODELS 569

Algorithm 4 Sub-function Ascent

Input (Table t1, Table t2)
Initiate Subregion r3, Table t3
For each r1 in t1, r2 in t2

r3$index← r1$index ∩ r2$index
r3$volume← r1$volume ∗ r2$volume
Call Merge(t3, r3)

End For
Output t3

Algorithm 5 Main Algorithm for Calculation the Subregions and Their Volumes

For each dimension i, generate table S[i]
For i in 2 : m

S[1] = Ascent(S[1], S[i])
End For
Output S[1]

4.3. Prediction at untried points

We move to the prediction problem. Suppose we have n input points denoted

by {x1 . . . , xn} and n∗ untried points of interest denoted by {x∗1, . . . , x∗n∗}. De-

note associated rectangles for the input and untried points by {A1, . . . , An} and

{A∗1, . . . , A∗n∗}, respectively. If we implement Algorithm 4 to these n+n∗ rectan-

gles, we can get m(Ai ∩A∗j) and m(A∗j −∩nk=1Ak) for 1 ≤ i ≤ n and 1 ≤ j ≤ n∗.
These volumes are necessary. The algorithm also gives the “interaction” terms

between the untried points, m(A∗i ∩ A∗j). When n∗ is large, there are a large

number of such terms. However, these terms are not needed in the prediction, if

we are not interested in the joint distribution of the untried points. Therefore we

suggest a modification of the algorithm that updates the volumes separately for

the untried points. The computation for the rectangle given by the input points

follows the same scheme.

We have shown how to compute the properties of the subregions generated

by {A1, . . . , An}. Denote these (bounded) subregions by I1, . . . , Is. Clearly, it

suffices to obtain m(A∗j ∩ Ii) for each i, j, because m(A∗j − ∩nk=1Ak) = m(A∗j) −∑s
i=1m(A∗j ∩ Ij).

The volume m(A∗j ∩ Ij) can be calculated similarly as were those in Section

4.2. The remainder of the algorithm proceeds similarly as Algorithm 3-5 by

replacing t[i] with tj [i] for each j.

570 TUO

Table 1. Numerical results for the discontinuous function given by the proposed method
and the Gaussian process model. SD = standard deviation.

Stable process model Gaussian process model
i

mean SD mean SD
1 −1.000 0.017 −0.989 0.168
2 −1.000 0.017 −0.952 0.227
3 −1.000 0.016 −0.937 0.168
4 −1.000 0.016 −0.983 0.031
5 −1.000 0.016 −1.088 0.114
6 −1.000 0.017 −1.202 0.194
7 −1.000 0.017 −1.237 0.171
8 −1.000 0.016 −1.108 0.058
9 −0.018 1.001 −0.778 0.085
10 −0.015 1.001 −0.281 0.181
11 −0.009 1.001 0.281 0.181
12 −0.005 1.002 0.778 0.085
13 1.000 0.016 1.108 0.058
14 1.000 0.017 1.237 0.171
15 1.000 0.017 1.202 0.194
16 0.999 0.016 1.088 0.114
17 1.000 0.015 0.983 0.031
18 1.000 0.017 0.937 0.168
19 1.000 0.017 0.952 0.227
20 1.000 0.016 0.989 0.168

5. Numerical Illustrations

In this section we use two examples to illustrate the proposed method and

demonstrate its potential advantages.

5.1. Handling discontinuity

The first example considers the interpolation problem for a discontinuous

function.

F (x) =

{
1, if x ≥ 0,

−1, if x < 0.

The design consists of six points: (−0.25, −0.15, −0.05, 0.05, 0.15, 0.25). We

want to predict for 20 untried points, given by i/42 − 0.25 for 1 ≤ i ≤ 20.

Thus the true values for the first 10 points are −1, and those for the rest are

1. We compare the proposed method and the Gaussian process model. For the

proposed method, we chose d = 0.45. We ran MCMC for 15,000 iterations with

5,000 burn-in runs. For the Gaussian process model, we assumed the correlation

UQ WITH STABLE PROCESS MODELS 571

− −

−
−

− −

−
−

Figure 5. Credible limits given by the stable and Gaussian models. The solid lines
denote the true function. The dashed lines denote the predictive median given by the
two methods respectively. The dotted lines denote the 0.05 and 0.95 credible limits given
by the two methods.

function r(x) = exp{−θx2}, where θ is the unknown correlation parameter. We

implemented a frequentist approach for the inference of the Gaussian process

model. We compared the mean and standard deviation for each i given by the

two methods. The results are given in Table 1.

For the Gaussian process model, the predictive means are not accurate for

i = 1, . . . , 8 and i = 13, . . . , 20, since the predictive curve of a Gaussian process

model oscillates near the discontinuity (the Gibbs phenomenon (Gottlieb and Shu

(1997))). The confidence interval given by the Gaussian process model also fails

to capture the true uncertainty of the prediction. It underestimates the standard

deviations for the points for i = 9, 10, 11, 12, while the confidence intervals for

i = 1, . . . , 8 and i = 13, . . . , 20 are too wide.

We plot the 0.05, 0.5, 0.95 credible limits given by the stable and Gaussian

models in Figure 5, in which the stable process model gives much better results

than the Gaussian process model. While the Gaussian process model has inflation

of uncertainty for i = 1, . . . , 8 and i = 13, . . . , 20 and deflation for i = 9, 10, 11, 12,

the stable process model gives reasonable credible intervals. Here the standard

deviations are large for i = 9, 10, 11, 12 and the predictors are nearly exact with

very small credible intervals for i = 1, . . . , 8 and i = 13, . . . , 20. Figure 6 plots the

predictive densities for i = 9, 10, 11, 12. We can see that each of the predictive

densities has two peaks around −1 and 1 respectively. A Gaussian process model

572 TUO

Figure 6. Predictive densities for i = 9, 10, 11, 12.

cannot give similar results because the conditional distribution is Gaussian and

unimodal. A frequentist method using stable processes, as in Karcher, Shmileva

and Spodarev (2013), cannot give this result because its predictor is a single

point.

5.2. Determination of gaussianity

To determine if the true process is Gaussian, for estimation efficiency, we

only need to study the parameter estimation problem for α.

We chose a maximin distance Latin hypercube of 30 points in [0, 1]2 as the

design points. The observations were simulated from a stationary Gaussian pro-

cess with mean zero and correlation function r(x) = exp{−10‖x‖2}. We used

the proposed model with d = (0.4, 0.4) to fit the data. We generated four in-

dependent realizations of this Gaussian process on the design points. For each

realization we ran MCMC for 1,000 iterations under the proposed model. The

initial values of α in the four chains were 1.3. In Figure 7, we plot the MCMC

track of α for each realization of the Gaussian process.

From Figure 7, in each realization α appears stationary after 200 iterations

with its mean values eventually above 1.8. Based on these results, we suggest an

empirical rule: declare the true process Gaussian if the proposed method gives

UQ WITH STABLE PROCESS MODELS 573

Figure 7. MCMC tracks of α for four independent realizations of the Gaussian process.

α > 1.8. This Gaussian process does not belong to the proposed stable process

family since its correlation function does not have the form (2.6) and yet the

proposed method can still lead to relatively large α̂ values.

6. Discussion

Most of the computational work described in Section 3.2 can be done using

standard tools except for the sampling of (3.4). There should be an efficient

algorithm for generating independent samples in (3.4). The development of such

an algorithm is of value because it can improve the accuracy in prediction. Al-

gorithm 1 has room for improvement because it is not efficient for large s. We

suggest employing the hybrid Monte Carlo algorithm using Hamiltonian dynam-

ics (Neal (2010)). An efficient version of this algorithm for the proposed models

needs further development.

Further research on the complexity of the computational geometry algorithm

is also warranted. Similar to the orthogonal range searching problem (de Berg,

Cheong and Van Kreveld (2008)), the complexity of the proposed algorithm relies

on the total number of the subregions, s in (2.7). Numerical experience indicates

that s decreases as di decreases. Thus further investigation on an accurate upper

bound of s is of interest.

574 TUO

Acknowledgment

The author would like to thank his thesis advisor Professor C. F. Jeff Wu

for discussions that inspired the current research and for his comments and sug-

gestions. Tuo’s work is supported by NSFC 11501551, 11271355, 11671386, and

the National Center for Mathematics and Interdisciplinary Sciences, CAS. This

research is part of the doctoral thesis completed while visiting Georgia Institute

of Technology under partial support of NSF grant DMS 1007574. The author is

grateful to an associate editor and referees for helpful comments.

Appendix A: Proofs

Proof of Lemma 1. Sort {xi : i ∈ F} using the lexicographical order. Let the

smallest element be Ai0 . Then Ai0 has vertex xi0 − d. This vertex cannot be

covered by any rectangle in
{
Ai : i ∈ F − {i0}

}
. Suppose this vertex belongs

to subregion Ij0 . Since Ij0 is an atom, Ij0 does not belong to any rectangle in{
Ai : i ∈ F − {i0}

}
. This completes the proof.

Proof of Theorem 2. Let c1, c2 ∈ Rn. We use the notation a1 < a2 for any

a1, a2 ∈ Rn if each component of a1 is less than the same component of a2. By

the π − λ Theorem (Durrett (2010)), it suffices to prove that∫
c1<Y <c2

1

P (Y)
dP = |det(A1)|

∫
c1<AX<c2

E
[1

P1(X1)

∣∣∣AX]dP.
Define rectangle C = {x : c1 < x < c2}. Here the left side= V ol(C), where

V ol(C) is the Volume of C. For the integral on the right, we have∫
c1<AX<c2

E
[1

P1(X1)

∣∣∣AX]dP
= E

[1

P1(X1)
I(c1 < AX < c2)

]
=

∫
c1<AX<c2

1

P1(X1)
P1(X1)P2(X2)dX1dX2

=

∫
c1<A1X1+A2X2<c2

P2(X2)dX1dX2

=

∫
X2

(∫
c1−A2X2<A1X1<c2−A2X2

P2(X2)dX1

)
dX2

= V ol(A−11 C)

CONDITIONAL INFERENCE FOR α STABLE PROCESSES 575

= | det(A1)
−1|V ol(C),

where V ol(A−11 C) is the volume of C under the linear transformation defined by

A−11 . This completes the proof.

References

Applebaum, D. (2009). Lévy Processes and Stochastic Calculus. Cambridge University Press.

Banerjee, S., Carlin, B. P. and Gelfand, A. E. (2004). Hierarchical Modeling and Analysis for

Spatial Data, volume 101. Chapman & Hall.

Buckle, D. J. (1995). Bayesian inference for stable distributions. Journal of the American Sta-

tistical Association, 605–613.

Chambers, J. M., Mallows, C. L. and Stuck, B. W. (1976). A method for simulating stable

random variables. Journal of the American Statistical Association, 340–344.

Chen, R. B., Wang, W. and Wu, C. F. J. (2010). Building surrogates with overcomplete bases

in computer experiments with applications to bistable laser diodes. IIE Transactions 43,

39–53.

de Berg, M., Cheong, O. and Van Kreveld, M. (2008). Computational Geometry: Algorithms

and Applications. Springer-Verlag New York Inc.

Durrett, R. (2010). Probability: Theory and Examples. Cambridge University Press.

Gottlieb, D. and Shu, C. W. (1997). On the gibbs phenomenon and its resolution. SIAM Review,

644–668.

Gramacy, R. B. and Lee, H. K. H. (2008). Bayesian treed gaussian process models with an

application to computer modeling. Journal of the American Statistical Association 103,

1119–1130.

Karcher, W., Shmileva, E. and Spodarev, E. (2013). Extrapolation of stable random fields.

Journal of Multivariate Analysis 115, 516–536.

Lombardi, M. J. (2007). Bayesian inference for α-stable distributions: A random walk mcmc

approach. Computational Statistics & Data Analysis 51, 2688–2700.

Neal, R. M. (2010). Mcmc using hamiltonian dynamics. Handbook of Markov Chain Monte Carlo

54, 113–162.

Nolan, J. P. (1997). Numerical calculation of stable densities and distribution functions. Com-

munications in Statistics. Stochastic Models 13, 759–774.

Nolan, J. P. (2001). Maximum likelihood estimation and diagnostics for stable distributions.

Lévy Processes: Theory and Applications, 379–400.

Padoan, S. A., Ribatet, M. and Sisson, S. A. (2010). Likelihood-based inference for max-stable

processes. Journal of the American Statistical Association 105, 263–277.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. The

MIT Press.

Samorodnitsky, G., Taqqu, M. S. and Linde, R. W. (1996). Stable non-gaussian random pro-

cesses: stochastic models with infinite variance. Bulletin of the London Mathematical So-

ciety 28, 554–555.

Santner, T. J., Williams, B. J. and Notz, W. (2003). The Design and Analysis of Computer

Experiments. Springer Verlag.

576 RUI TUO

Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer Verlag.

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China

100190.

E-mail: tuorui@amss.ac.cn

(Received October 2015; accepted February 2017)

mailto:tuorui@amss.ac.cn

