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S1 Technical proofs

Proof of Proposition 1. Recall that, by our convention, the data have been centered,

µ̂ = n−1
∑K

k=1 nkµ̂k = 0, so B = n−1
∑K

k=1 nkµ̂kµ̂
⊤
k . Note that B is semi-positive definite.

For a special case W = I, {vk}rk=1 are just eigenvectors of B corresponding to positive

eigenvalues. For any vector u ⊥ Ĉ, we have

u ⊥ µ̂k, k = 1, 2, ..., K

⇔ u⊤Bu =
1

n

K∑
k=1

nku
⊤µ̂kµ̂

⊤
k u =

1

n

K∑
k=1

nk(µ̂
⊤
k u)

2 = 0

⇔ u belongs to the eigen-space of B corresponding to eigenvalue 0

⇔ u ⊥ span{vk}rk=1.

S1



That is, Ĉ and span{vk}rk=1 have the same orthogonal complement. Hence they are the

same linear subspace and have the same dimension.

For arbitrary nonsingular W, we may transform the data by linear operator W−1/2.

That is, define X̃i = W−1/2Xi, 1 ≤ i ≤ n. It is easy to see that the statistics after

transformation satisfy W̃ = I, B̃ = W−1/2BW−1/2, µ̃k = W−1/2µ̂k, C̃ = W−1/2Ĉ, ṽk =

W1/2vk (no negative sign on the power). By the argument above, we have C̃ = span{ṽk}rk=1,

so W−1Ĉ = W−1/2C̃ = span{W−1/2ṽk}rk=1 = span{vk}rk=1.

In fact, the proof goes through if W is replaced by an arbitrary nonsingular equivariant

covariance estimator. Hence we have the following corollary.

Corollary 1 The conclusion of Proposition 1 still holds if W is replaced by any nonsingu-

lar equivariant within-class covariance estimate. In particular, replacing W by its diagonal

part D̂w, we can view diagonal LDA as a dimension reduction tool.

Proof of Theorem 1. We show a proof for a large family described in Remark 5

Σρ = Σw +
∑K

k=1 ρkµkµ
⊤
k , where ρ = (ρ1, ..., ρK)

⊤ with ρk > 0 for all k. Theorem 1 can be

obtained as a special case because the family {Σγ}γ>0 is included in the larger one.

Let us fix an arbitrary ρ = (ρ1, ..., ρK)
⊤ with all positive entries, and U⊤

OΣρUO = DO.

By the spiked condition, we can write

Σw = λpI+
s∑

i=1

(λi − λp)ξiξ
⊤
i ,

where {ξi}si=1 are eigenvectors to eigenvalues larger than λp. For 1 ≤ k < ℓ ≤ K, we have

Σ−1
w (µk − µℓ)

=

(
λpI+

s∑
i=1

(λi − λp)ξiξ
⊤
i

)−1

(µk − µℓ)

=

(
λ−1
p I−

s∑
i=1

λi − λp

λpλi

ξiξ
⊤
i

)
(µk − µℓ)

= λ−1
p (µk − µℓ)−

s∑
i=1

[
λi − λp

λpλi

ξ⊤i (µk − µℓ)

]
ξi

∈ span{µk − µℓ, ξ1, ..., ξs}. (S1.1)
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Moreover,

Σρ = λpI+
s∑

i=1

(λi − λp)ξiξ
⊤
i +

K∑
k=1

ρkµkµ
⊤
k . (S1.2)

If p > s +K − 1, the dimension of linear subspace S = span
{
{ξi}si=1, {µk}Kk=1

}
is at most

s+K−1 because of our convention
∑K

k=1 πkµk = 0. On one hand, by (S1.1), Σ−1
w (µk−µℓ) ∈

S. On other the hand, the eigenspace of Σρ corresponding to eigenvalue λp is orthogonal to

S by (S1.2). Therefore, columns of UO2 are orthogonal to S, and hence to Σ−1
w (µk −µℓ) for

all k, ℓ.

Proof of Theorem 2. The proof follows the proof of Theorem 1 by noticing that

µk =
∑Rk

t=1 πktµkt, and span{µk}Kk=1 ⊂ span{µkt : 1 ≤ k ≤ K; 1 ≤ t ≤ Rk}.

Proof of Lemma 1.

Tγ = W + γB

=
1

n

(
K∑
k=1

∑
i∈Ck

(Xi − µ̂k)(Xi − µ̂k)
⊤ +

K∑
k=1

γnk(µ̂k − µ̂)(µ̂k − µ̂)⊤

)

=
1

n

(
i∑

i=1

(Xi − µ̂Yi
)(Xi − µ̂Yi

)⊤ +
K∑
k=1

γnk(µ̂k − µ̂)(µ̂k − µ̂)⊤

)
=

1

n
A⊤

γ Aγ

Lemma 2 In the context of formula (2.1), let βk,ℓ = Σ−1
w (µk−µℓ) andH ⊂ Rp is arbitrary

linear subspace such as βk,ℓ ∈ H. Let PH be the projection operator from Rp to H. Then

the normal vector to the optimal discriminant boundary separating groups k and ℓ using

information from only the projected data PH(X) is the same as βk,ℓ.

The conclusion below (2.1) follows Lemma 2 with the choice H = Σ−1
w C.

Proof of Lemma 2. Let {hj}pj=1 be an orthonormal basis for Rp, and H = span{hj}qj=1,

G = span{hj}pj=q+1. By abuse of notation, we also use H and G to denote q × p matrix

(h1, ...,hq)
⊤ and (p− q)× p matrix (hq+1, ...,hp)

⊤, respectively. Let F = (H⊤,G⊤)⊤ be an

orthogonal matrix. Let X̃ = FX. Then (X̃|Y = k) ∼ N (Fµk,FΣwF
⊤).
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Now we work on an equivalent model (X̃, Y ), where the projection PH is simply a pro-

jection to the first q coordinates. In this equivalent model, it is sufficient to show that the

optimal discriminant boundaries obtained from whole data X̃ and the projected data are

exactly the same.

First, using the whole data X̃, the normal vector to the optimal discriminant boundary

separating groups k and ℓ is

β̃k,ℓ =
(
FΣwF

⊤)−1
(Fµk − Fµℓ) = FΣ−1

w (µk − µℓ) = Fβk,ℓ. (S1.3)

Note that the condition βk,ℓ ∈ H implies Fβk,ℓ =
(
Hβk,ℓ

Gβk,ℓ

)
=
(
Hβk,ℓ

0

)
. That is, β̃k,ℓ is a sparse

vector supported in its first q coordinates. By (S1.3), we have

F(µk − µℓ) =
(
FΣwF

⊤)Fβk,ℓ,

which implies (
H(µk − µℓ)

G(µk − µℓ)

)
=

(
HΣwH

⊤ GΣwH
⊤

HΣwG
⊤ GΣwG

⊤

)(
Hβk,ℓ

0

)
.

Comparing the top q rows of both sides, we have H(µk − µℓ) = (HΣwH
⊤)Hβk,ℓ. So

Hβk,ℓ = (HΣwH
⊤)−1H(µk − µℓ). (S1.4)

To summarise, β̃k,ℓ is a sparse vector with its first q coordinates defined as in (S1.4).

Second, we consider the projected data. Write X̃ =
(
HX
GX

)
=
(
X̃1

X̃2

)
, where X̃1|Y = k ∼

N (Hµk,HΣwH
⊤). Using information from the projected data X̃1 only, we find the normal

vector to the optimal discriminant boundary is (HΣwH
⊤)−1H(µk − µℓ) which is the same

as Hβk,ℓ by (S1.4). Therefore, we lose no information to retain β̃k,ℓ using projected data X̃1

instead of whole data X̃.
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