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Abstract: We consider multi-class classification problems for high-dimensional data.

Following the idea of reduced-rank linear discriminant analysis (LDA), we intro-

duce a new dimension reduction tool with a flavor of supervised principal compo-

nent analysis (PCA). The proposed method is computationally efficient and can

incorporate the correlation structure among the features. Besides the theoretical

insights, we show that our method is a competitive classification tool by simulated

and real data examples.
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1. Introduction

Targeting on cancer classification and other modern applications, many high-

dimensional classification techniques have been studied recently; see Hastie, Tib-

shirani and Friedman (2009) for an extensive introduction, and Witten and Tib-

shirani (2011), Cai and Liu (2011), Fan, Feng and Tong (2012), and Mai, Zou

and Yuan (2012) for some recent developments. Although these contemporary

classification tools can be applied to high-dimensional data, most of them rely

on strong assumptions. For example, many methods assume that the features

are independent of each other; other methods assume sparsity conditions. These

assumptions make the model simple and robust against growing dimensionality,

so classification accuracy and computational efficiency can be achieved. How-

ever, they may be too restrictive, and when violated, lead to information loss

in data analysis. Moreover, many methods target the binary classification case

and are not straightforward to use if more than two classes are present. Con-

venient and efficient classification tools for multi-class data are quite limited.

Therefore, it is desirable to develop new classification techniques that can han-

dle high-dimensional, multi-class data, and also take into account the correlation

among the features.

Many linear classification rules depend on the Mahalanobis distance. But it
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cannot be well-estimated for high-dimensional data when the number of features

is greater than the sample size, as the sample covariance is singular. Under the

assumption that features are independent, the sample covariance matrix is diag-

onal and strictly positive definite, so the Mahalanobis distance can be calculated.

That is one of the main reasons that the independence assumption is crucial in

many classification methods. For example, the nearest shrunken centroids (NSC,

Tibshirani et al. (2002)), independence rule (IR, Bickel and Levina (2004)), fea-

tures annealed independence rule (FAIR, Fan and Fan (2008)) all assume that

the features are independent of each other. Moreover, some other methods such

as regularized discriminant analysis (RDA, Guo, Hastie and Tibshirani (2007))

use a covariance estimator the sample covariance regularized towards a diagonal

matrix. Recently, new classification tools have been developed, including penal-

ized linear discriminant analysis (PLDA, Witten and Tibshirani (2011)), linear

programming discriminant rule (LPD, Cai and Liu (2011)), regularized opti-

mal affine discriminant rule (ROAD, Fan, Feng and Tong (2012)), direct sparse

discriminant analysis (DSDA, Mai, Zou and Yuan (2012)), sparse discriminant

analysis (SDA, Clemmensen et al. (2011)), multi-class sparse discriminant analy-

sis (MSDA, Mai, Yang and Zou (2015)). Roughly speaking, these sparse methods

obtain sparse models by solving penalized or constrained optimization problems,

and their efficiency relies on the sparsity level of the normal vectors to the optimal

discriminant boundaries.

Reduced-rank LDA is a classical approach to classification. It conducts di-

mension reduction by projecting the data to the centroid-spanning space and

classifies the data based on nearest centroid. Another commonly used dimension

reduction tool is PCA, which projects the data to the space spanned by the top

principal components of the total sample covariance matrix. Reduced-rank LDA

makes use of the label information (through centroids) but ignores the (within

class) covariance information. On the other hand, PCA relies on the covariance

information only and is mainly regarded as an unsupervised learning tool.

We propose a new reduced-rank LDA method combining the advantages

of the classical reduced-rank LDA and PCA. The principal components of a

weighted sum of the sample within class and between class covariance matrices

are used for dimension reduction, and standard LDA is employed to the pro-

jected data for classification. In this dimension reduction process, both label

and covariance information can be taken into account, through between class

and within class covariance, respectively. We regard it as a version of supervised

PCA. This method does not rely on the aforementioned sparsity or independence
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assumptions and offers an alternative classification tool for various applications.

For insight on our method, we consider spiked structure of the covariance

(Johnstone (2001)). Roughly speaking, a symmetric positive definite matrix is

called spiked if all of its eigenvalues are equal except for a few large ones. In

other words, it is a sum of a scalar matrix and a low rank matrix. Intuitively, the

spiked structure might be a better model than the diagonal one to approximate

the true covariance, as it can take into account strong correlation among the

features, which is not uncommon in applications.

We propose here a novel dimension reduction and classification tool that in-

corporates covariance among features and works well for high-dimensional multi-

class data. It illustrates a new supervised way to conduct PCA and is generally

applicable to both classification and regression models. Importantly, the pro-

posed method is computationally efficient and can be applied directly to such

data as gene expression data in cancer research.

The rest of the paper is organized as follows. Section 2 introduces notation

and reviews some linear classification methods from the perspective of dimension

reduction. In Section 3, we study a new reduced-rank LDA method for classifi-

cation and offer some insights about it. Numerical studies and data applications

are illustrated in Section 4, followed by a short discussion in Section 5. Proofs

are given in the Supplementary Material.

2. Linear Methods for Classification

2.1. Notation

We consider a standard setup for classification. Let X = (X1, · · · ,Xn)> be

a n× p matrix with each Xi is a p-dimensional vector. Let Y = (Y1, ..., Yn)> be

a response vector with Yi ∈ {1, ...,K}, 1 ≤ i ≤ n, with the interpretation that Xi

belongs to group k if Yi = k. Denote the index set of group k by Ck = {i : Yi = k}
and its cardinality by nk = |Ck|, where 1 ≤ k ≤ K. The goal of classification

is to establish a classification rule that labels a new observation X∗ based on

training data.

The Gaussian assumption is often used to facilitate statistical analysis of

various methods. In the simplest setting, the data from all groups share a com-

mon covariance matrix Σw, (X|Y = k) ∼ N (µk,Σw), 1 ≤ k ≤ K. For easy

presentation, we assume that the prior probabilities πk = P(Y = k) are equal for

all k. In practice, the prior probability can be estimated and taken into account

for most methods considered in this paper.
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For a specified strictly positive definite symmetric matrix S, the Mahalanobis

distance between two vectors u and v is

dM (u,v) =
{

(u− v)>S−1(u− v)
}1/2

.

Under the Gaussian assumption, the classification rule minimizing the expected

classification error is called the Bayes rule, which simply classifies a data point to

a group with the nearest centroid in terms of Mahalanobis distance with S = Σw,

Y = argmin
1≤k≤K

(X− µk)
>Σ−1w (X− µk) = argmin

1≤k≤K

∥∥∥Σ−1/2w (X− µk)
∥∥∥2
2
. (2.1)

A key observation from (2.1) is that if we rotate the sample space by Σ
−1/2
w

first, then the Bayes rule is equivalent to a nearest centroid classifier with stan-

dard Euclidian distance. It then follows that the optimal decision boundary sepa-

rating groups k and ` is the affine space given by {X−(µk+µ`)/2}Σ−1w (µk−µ`) =

0. The normal vector to this affine space is Σ−1w (µk − µ`). Therefore, the

decision boundary of the Bayes rule to the whole classification problem is a

subset of the union of these affine spaces, whose normal vectors span a vector

space Σ−1w C, where C is the vector space spanned by {µk − µ`}1≤k<`≤K . Here

dim C = dim(span{µk − µK}K−1k=1 ) ≤ K − 1, with equality when the set of cen-

troids {µk}Kk=1 is in general linear position. By Lemma 2 in the Supplementary

Material, when p is larger than K, we lose no information in projecting the data

from Rp to a small subspace Σ−1w C for classification. Applying the Bayes rule

to the projected data and the original data are equivalent. In practice, when p

is large, it is extremely helpful to find a reasonable approximation subspace to

Σ−1w C to reduce the dimensionality.

Without loss of generality, we assume that the columns of X are centered to

have mean zero as the methods considered here are translation invariant. The

within-class sample covariance matrix is

W =
1

n

K∑
k=1

∑
i∈Ck

(Xi − µ̂k)(Xi − µ̂k)
>,

where µ̂k = n−1k
∑

i∈Ck
Xi. The between-class sample covariance matrix is

B =
1

n

K∑
k=1

nk(µ̂k − µ̂)(µ̂k − µ̂)> =
1

n

K∑
k=1

nkµ̂kµ̂
>
k ,

where µ̂ = n−1
∑K

k=1 nkµ̂k = 0. The total sample covariance matrix is

T = n−1X>X = W + B.
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2.2. Simple reduced-rank linear discriminant analysis

A reduced-rank LDA (Hastie, Tibshirani and Friedman (2009)) projects the

data to the centroid-spanning subspace Ĉ = span{µ̂k− µ̂`}1≤k<`≤K . The idea is

that, when calculating the (Euclidean) distances to find the closest centroid, one

can ignore the distances orthogonal to Ĉ which contribute equally to all groups.

This simple method reduces the dimensionality remarkably. The main drawback

is that it does not incorporate the covariance structure and one can lose much

information if Σw is far from a scalar matrix.

2.3. Fisher’s approach and the standard LDA

Fisher’s approach is to find a subspace so the projected centroids are spread

out as much as possible with respect to the covariance. It finds the first direction

by solving

v1 = argmax
v

v>Bv subject to v>Wv = 1, (2.2)

provided W is not singular. When K = 2, v1 is the same as the normal vector (up

to a scalar) of the decision boundary separating two groups obtained by standard

LDA. When K > 2, one can continue to solve this generalized eigenvalue problem

until step rank(B), as

v2 = argmax
v

v>Bv subject to v>Wv = 1; v>Wv1 = 0,

· · ·
vk = argmax

v
v>Bv subject to v>Wv = 1; v>Wv` = 0, ` < k, (2.3)

· · ·

The covariance plays a role here through the sample pooled covariance W

and the dimension of the subspace can be pre-specified or chosen data-adaptively.

The standard LDA can be viewed as a dimension reduction technique. Roughly

speaking, it mimics the Bayes rule by plugging in estimators of the common co-

variance and centroids. It labels an observation X by Ŷ = argmin1≤k≤K ‖W−1/2

(X − µ̂k)‖2. Similar to the analysis of the Bayes rule, the normal vectors of

the decision boundaries of standard LDA span a subspace W−1Ĉ ⊂ Rp. It is

equivalent to apply standard LDA to, instead of the original data, the projected

data onto subspace W−1Ĉ.

Proposition 1. If W is nonsingular, then dim W−1Ĉ = rank(B), and W−1Ĉ =

span{vk}rk=1 where r = dim Ĉ, vk is as defined in (2.3).

The standard LDA performs well only when the sample size is large enough
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so W−1Ĉ is a good approximation to Σ−1w C.

2.4. The independence rule and related approaches

LDA does not work well when p ∼ n and p > n. In the context of dimension

reduction, the reason is that W−1Ĉ or W−Ĉ is no longer a good approxima-

tion to Σ−1w C for high-dimensional data, where W− is a pseudo-inverse of W.

A remedy is to assume that the features are independent, which leads to the

independence rule or diagonal LDA. To apply diagonal LDA, one just uses the

diagonal part D̂w = diag(W) instead of W in the standard LDA. The IR or di-

agonal LDA usually outperforms standard LDA when p > n (Bickel and Levina

(2004)).

In the spirit of Proposition 1, one can see the equivalence between the IR

and Fisher’s approach with W replaced by D̂w in (2.3), as stated in Corollary

1 in the Supplementary Material. Witten and Tibshirani (2011) imposed some

sparse assumptions on the vk’s to derive a penalized LDA (PLDA). One can also

conduct dimension reduction based on the rank of marginal discriminant power.

Two well-known approaches are the NSC (Tibshirani et al. (2002)) and the FAIR

(Fan and Fan (2008)).

2.5. Principal component analysis

PCA has been used to solve supervised learning problems, e.g., principal

component regression (Jolliffe (2002)), supervised PCA (Bair et al. (2006)), etc.

In our context, standard PCA ignores the label information and keeps the eigen-

vectors corresponding to q top eigenvalues of T, where q can be pre-specified or

chosen data adaptively. There is no guarantee that the top principal components

have good discrimination power. Bair et al. (2006) proposed a variant of super-

vised PCA, a two-stage procedure in which marginal statistics are used to reduce

dimension before applying standard PCA. It seems that the label information is

used only in the first stage.

3. A New Reduced-Rank Linear Discriminant Analysis Method

3.1. Method

To take advantage of existing methods and study the multi-class classification

problem in a unified manner, we consider Tγ = W+γB with γ > 0, with W and

B the within class and between class sample covariance matrices, respectively,

and γ is a tuning parameter. If γ = 1, our proposed procedure is equivalent



A NEW REDUCED-RANK LDA METHOD 195

to the standard PCA; and if γ → ∞, the procedure is equivalent to the simple

reduced-rank LDA.

Consider the eigenvalue decomposition

U>γ TγUγ = Dγ , (3.1)

where Dγ is a diagonal matrix with diagonal entries ranked in a descending order

and Uγ is an orthogonal matrix. Our reduced-rank LDA procedure based on the

first q principal components of Tγ is carried out as follows.

1. Calculate Tγ and Uγ and project the data from Rp to the linear subspace

spanned by the first q columns of Uγ .

2. Apply the standard LDA to the projected data.

This procedure allows a varying parameter γ which, along with q, can be

chosen adaptively. The label information is taken into account through γ in

dimension reduction, and so we call it supervised PCA-based LDA (SPCALDA).

The parameter γ makes our procedure more flexible. For example, the qualities

of W and B to approximate their population counterparts are usually not equally

good, and γ can serve as a weight to balance them.

3.2. Theory

To understand the proposed method, we consider a population version. De-

note by Σb and Σt the population versions of between-class and total covariance

matrix, respectively. Take Σγ = Σw+γΣb, γ > 0 with eigenvalue decomposition

U>OΣγUO = DO,

where DO is a diagonal matrix with diagonal entries ranked in a descending order

and UO is orthogonal. Because γ plays only a minor role here, we drop it from

UO, DO, etc. We ask when we can project the data by oracle procedure without

information loss.

Let {λj}pj=1 be eigenvalues of Σw in a descending order, and consider a spiked

covariance structure (Johnstone (2001)).

Spiked Condition: λ1 ≥ · · · ≥ λs > λs+1 = · · · = λp for some integer s < p.

Theorem 1. Suppose p > s + K − 1, s > 1, with UO = (UO1,UO2), UO1 and

UO2 p× (s+K − 1) and p× (p− s−K + 1) matrices, respectively. Under spiked

condition, we have

U>O2Σ
−1
w (µk − µ`) = 0, for all 1 ≤ k < ` ≤ K.
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Thus we lose no discriminant power by projecting the data to a s + K − 1

dimensional subspace spanned by the columns of UO1. We can generalize this

result further as follows. Without loss of generality, assume µ =
∑K

k=1 πkµk = 0.

From the proof of Theorem 1 in the Supplementary Material, we see the conclu-

sion of Theorem 1 holds for principal components of Σρ = Σw +
∑K

k=1 ρkµkµ
>
k ,

where ρ = (ρ1, ..., ρK)> with ρk > 0, 1 ≤ k ≤ K. Still, when K is more than

three, it is complicated to tune K parameters.

A more general model than the Gaussian is the mixture Gaussian model

that allows each group to be distributed as mixture Gaussian with the same

covariance; see e.g. Hastie, Tibshirani and Friedman (2009), Section 12.7. Let

(X|Y = k) ∼
∑Rk

t=1 πktN (µkt,Σw), where 1 ≤ k ≤ K, 1 ≤ t ≤ Rk,
∑Rk

t=1 πkt = 1.

Theorem 2. Let R =
∑K

k=1Rk. Then Theorem 1 holds if we replace each K by

R.

Remark 1. The spiked condition is crucial in Theorems 1 and 2. It is employed

by Hao, Dong and Fan (2015), which aimed to sparsify the normal vector of op-

timal discriminant boundary for binary classification problems. In applications,

the spiked condition may not hold exactly, but our numerical studies show that

the procedure performs very well.

Remark 2. In practice, we work with U instead of its population version UO.

Although UO may be quit different from U when n � p, U1 can be similar to

UO1 under some conditions. For example, when the leading eigenvalues are large

enough or their corresponding eigenvectors are sparse, UO1 can be well-estimated

by U1 or its sparse counterpart (Johnstone and Lu (2009)).

3.3. Computation

In many applications, p is much larger than n. For example, in some gene

expression data sets, p is a few thousands or more, and n is a few hundreds or

less. So it is time-consuming to calculate the p× p matrix Tγ and its eigenvalue

decomposition directly. The following lemma offers a shortcut to finding U1.

Lemma 1. We can write Tγ = n−1A>γ Aγ, where

Aγ =
(
X1 − µ̂Y1

, ...,Xn − µ̂Yn
, (γn1)

1/2(µ̂1 − µ̂), ..., (γnG)1/2(µ̂K − µ̂)
)>

is an (n+K)×p matrix. Note that µ̂Yi
= µ̂k when Yi = k, µ̂ = n−1

∑K
k=1 nkµ̂k =

0 by our convention.

When p > n+K we can conduct the eigenvalue decomposition for the (n+
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K)×(n+K) matrix AγA
>
γ instead of the p×p matrix A>γ Aγ . Thus, by singular

decomposition, Aγ = VγΓU>γ where Γ is diagonal, Vγ is an (n+K)× (n+K)

orthogonal matrix, and Uγ is p × p orthogonal matrix identical to Uγ in (3.1).

For n+K small or moderate, it is easy to find Vγ which consists of eigenvectors

of AγA
>
γ , and the first (n+K) columns of Uγ can be obtained by standardizing

A>γ Vγ column-wise, as A>γ Vγ = UγΓ
>. Here, it is sufficient to consider only the

first (n+K) columns of Uγ because the other columns correspond to eigenvalue

0 and contain little information.

For a fixed K, suppose n < p. The computational complexities of finding

AγA
>
γ and conducting its singular decomposition are O(n2p) and O(n3), re-

spectively. The computational complexity in finding and standardizing A>γ Vγ is

O(n2p). The overall computational complexity is then O(n2p). Our method is

computationally efficient for analyzing high-dimensional data.

4. Numerical Studies

4.1. Simulated data examples

We compared the SPCALDA method with some other classification tools in

simulations. In particular, we considered simple reduced-rank LDA (SRRLDA),

LDA after standard PCA (PCALDA), a special case of SPCALDA with fixed

γ = 1, and the independence rule (IR). We added the Bayes rule as an oracle

benchmark for comparison.

Six scenarios are reported here. For each scenario, 200 observations were

generated and equally split between four classes. Among the 200 observations,

100 were assigned to the training set, and the other 100 served as test data.

There were p = 500 features. For each class k, X ∼ N (µk,Σw), where µk and

Σw were as follows.

Scenario 1. The covariances were Σw = Ip. The mean vectors were given by

µ1j = 0.3 ∗ I1≤j≤125, µ2j = 0.3 ∗ I126≤j≤250, µ3j = 0.3 ∗ I251≤j≤375, µ4j =

0.3 ∗ I376≤j≤500, with IS a vector with entries 1 for indices in S and 0

elsewhere.

Scenario 2. Again Σw = Ip, now with µ1j ∼ N (0, 0.32) when 1 ≤ j ≤ 125,

and µ1j = 0 otherwise, µ2j ∼ N (0, 0.32) when 126 ≤ j ≤ 250, and µ2j = 0

otherwise, µ3j ∼ N (0, 0.32) when 251 ≤ j ≤ 375 and µ3j = 0 otherwise,

µ4j ∼ N (0, 0.32) when 376 ≤ j ≤ 500, and µ4j = 0 otherwise.

Scenario 3. Σw = (σij) with σii = 1 and σij = 0.5 for i 6= j. µ1j = 0.21 ∗
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I1≤j≤125, µ2j = 0.21 ∗ I126≤j≤250, µ3j = 0.21 ∗ I251≤j≤375, µ4j = 0.21 ∗
I376≤j≤500.

Scenario 4. Σw is the same as in Scenario 3. µ1j ∼ N (0, 0.212) when 1 ≤ j ≤
125, and µ1j = 0 otherwise, µ2j ∼ N (0, 0.212) when 126 ≤ j ≤ 250, and

µ2j = 0 otherwise, µ3j ∼ N (0, 0.212) when 251 ≤ j ≤ 375, and µ3j = 0

otherwise, µ4j ∼ N (0, 0.212) when 376 ≤ j ≤ 500, and µ4j = 0 otherwise.

To investigate the robustness of the proposed method against departures

from the Gaussian and the equal covariance assumptions, we included two more

scenarios. Scenario 5 considers a case where the data are contaminated by a

random heavy-tailed noise, and in Scenario 6 the observations from different

classes do not share a common covariance structure.

Scenario 5. X was generated as in Scenario 3. With Z is a p dimensional

random vector with entries IID from the t-distribution with 3 degrees of

freedom. We took realizations of X̃ = X + 0.2Z as observed instead of X.

Scenario 6. X was generated as in Scenario 3. For each class k, we generated

a p-dimensional vector dk with entries IID from the standard uniform dis-

tribution, and fixed a diagonal covariance matrix ∆k =diag(d2
k). For each

class k, we had Z ∼ N (0,∆k), and took realizations of X̃ = X + Z as

observed instead of X.

There are two tuning parameters for SPCALDA, γ and q, and one parameter

for the PCALDA method; they were chosen by five-fold cross validation. The

fitted models were evaluated using the test set for all methods. We repeated

each experiment 100 times. The average and standard deviation of classification

error rates for each method are listed in Table 1. The SPCALDA method always

outperformed PCALDA, which indicates that it is helpful to tune the parameter

γ. In the independence cases, SPCALDA is comparable with SRRLDA and IR,

but much better than them in the correlated cases. When the Gaussian assump-

tion or the equal covariance assumption is violated, we see that SPCALDA still

performs reasonably well.

4.2. Data examples

In this section, we illustrate the performance of our method using six gene

expression data sets, that have been studied in the literature. In particular,

we considered three binary data sets, Chin (Chin et al. (2006)), Chowdary

(Chowdary et al. (2006)), Gordon (Gordon et al. (2002)), and three multi-class
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Table 1. Mean (and standard errors) of classification error rates (%).

SPCALDA PCALDA SRRLDA IR Oracle
Scenario 1 18.93(4) 26.53(4.52) 19.33 (3.94) 18.45(3.86) 2.69(1.6)
Scenario 2 19.96(3.91) 27.71(5.1) 20.46 (4.7) 19.29(4.03) 2.8 (1.75)
Scenario 3 20.73(4.32) 30 (5.64) 36.61(10.75) 63.92(5.41) 2.73(1.63)
Scenario 4 22.78(4.4) 32.26(5.82) 38.61(10.31) 64.38(7.92) 3.07(1.69)
Scenario 5 28.8 (4.82) 38.42(6.41) 43.52 (9.66) 64.38(5.8) NA
Scenario 6 38.29(5.35) 50.75(6.72) 49.44 (8.85) 64.79(6.57) NA

Table 2. Data sets used in this study.

Data set related disease # samples # features # classes data distribution
Chin breast cancer 118 22,215 2 43, 75
Chowdary breast cancer 104 22,283 2 42, 62
Gordon lung cancer 181 12,533 2 87, 94
Golub leukemia 72 7,129 3 9, 25, 38
Nakayama soft tissue tumor 86 22,283 5 15, 15, 16, 19, 21
Sun glioma 180 54,613 4 23, 26, 50, 81

data sets, Golub (Golub et al. (1999)), Nakayama (Nakayama et al. (2007)),

and Sun (Sun et al. (2006)). The three binary data sets are available in R package

datamicroarray. The data set Golub is available in R package golubEsets.

The original Nakayama data set contains 105 samples from 10 types of soft

tissue tumors. We considered a subset of 86 samples belonging to 5 tumor types

and ignored the other tumor types for which less than 7 samples were available.

Nakayama and Sun are available on Gene Expression Omnibus (Barrett et al.

(2005)) with accession numbers GDS2736 and GDS1962, respectively. We list in

Table 2 the sample size, number of features, number of classes, data distribution

among different classes, and related disease for each data set.

Besides the methods considered in Section 4.1, we included the multi-class

classification tools NSC (Tibshirani et al. (2002)), RDA (Guo, Hastie and Tibshi-

rani (2007)), PLDA (Witten and Tibshirani (2011)), and SDA (Clemmensen et al.

(2011)); these have been implemented by R packages pamr, rda, penalizedLDA,

and sparseLDA, respectively. These methods are based on various sparsity as-

sumptions.

For each of the data sets, we randomly split the data, with a 3 to 1 ratio,

into a training set and a test set. Five-fold cross-validation was conducted on the

training set to select the tuning parameters for all methods, and the classification

error rates using the test sets were recorded. In Table 3 we list the average clas-
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Table 3. Mean (and standard errors) of classification error rates (%).

SPCALDA SRRLDA NSC PLDA RDA SDA
Chin 11.57(6.57) 12.11(6.13) 12.41(7.42) 13.87(6.79) 12.25(5.32) 10.13 (4.47)
Chowdary 4.13(3.62) 10.43(5.82) 5.19(5.03) 33.63(9.52) 4.75(3.9) 17.19 (8.26)
Gordon 0.62(1.19) 2.29(2.99) 0.79(1.08) 0.53(0.96) 1.4 (1.25) 6.02 (3.41)
Golub 5.43(5.44) 24.2(12.93) 4.6 (4.17) 7.41(5.91) 6.3 (3.74) 15.89(11.62)
Nakayama 16.37(7.05) 20.6 (8.94) 23.51(6.36) 27.6 (8.84) 15.68(7.98) 33.73 (6.89)
Sun 30.43(5.73) 31.63(6.89) 33.24(6.03) 33.21(5.89) 33.48(6.97) 33.33 (8.78)

Table 4. Mean (and standard error) of computation time per replicate (in second).

SPCA-LDA SRR-LDA NSC PLDA RDA SDA
Chin 14.5 (1.03) 0.05(0.03) 3.93(0.61) 13.51(0.77) 51.17(3.27) 1.12(0.22)
Chowdary 12.09(0.25) 0.05(0.04) 3.63(0.21) 12.41(0.75) 49.52(0.43) 1.09(0.17)
Gordon 11.68(0.15) 0.04(0.02) 1.95(0.07) 6.82(0.1) 30.2 (0.44) 0.53(0.04)
Golub 2.98(0.08) 0.01(0.01) 0.71(0.04) 3.9 (0.34) 10.97(0.25) 0.22(0.03)
Nakayama 8.77(0.2) 0.06(0.02) 2.33(0.09) 27.46(0.73) 38.14(0.55) 1.75(0.22)
Sun 55.16(1.19) 0.24(0.02) 9.16(0.28) 56.3 (0.94) 162.03(2.46) 6.42(0.75)

sification error rates and their standard deviations over 25 random training/test

set splits. We omit the results of PCALDA and IR which were dominated by

SPCALDA and NSC, respectively. We see that SPCALDA performed best for

two data sets, and second best for four data sets. In particular, SPCALDA did

the best in pairwise comparisons with other methods. We list in Table 4 the

computation time for each method. All methods were reasonably fast in han-

dling contemporary high-dimensional data sets. SPCALDA offers a competitive

classification tool for high-dimensional gene expression data.

5. Discussion

Feature selection and feature extraction are two popular strategies in sta-

tistical machine learning. In the context of this paper, the sparse methods such

as NSC and SDA can conduct variable selection and model estimation simul-

taneously, and belong to the first category. Our methods, including classical

reduced-rank LDA and PCA as special cases, belong to a second. While sparse

methods can achieve model selection consistency and efficiency under various as-

sumptions, they can fail when the true model is far from sparse. Our approach

does not depend on sparse assumptions and is robust against the sparsity level

of the true model. Our data examples support the robustness of our method.

In general, we can not expect a result on model selection consistency or effi-
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ciency, but we discuss a spiked covariance condition under which our method

may achieve efficiency.

Supplementary Materials

The Supplementary Material is available on the journal web site. It contains

Corollary 1, Lemma 2, and proofs for Theorems 1 and 2.
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