ASSESSING THE HETEROGENEITY OF TREATMENT
 EFFECTS BY IDENTIFYING THE TREATMENT BENEFIT RATE AND TREATMENT HARM RATIO

Yunjian Yin 1, Xiao-Hua Zhou ${ }^{1,2}$, Zhi Geng ${ }^{1}$, and Fang Lu^{3}
${ }^{1}$ School of Mathematical Sciences, Peking University, Beijing, China
${ }^{2}$ Department of Biostatistics, University of Washington, Seattle, USA
${ }^{3}$ China Academy of Chinese Medical Sciences

Supplementary Material

S1 Proof of Proposition 1

By using the fact that $P\left(G=a \mid X \in S_{0}\right)=P\left(G=n \mid X \in S_{1}\right)=0$, we can have

$$
\left.\left.\begin{array}{l}
P\left(Y_{1}=1, X \in S_{0}\right)=E\left[p_{1 X} I\left(X \in S_{0}\right)\right] \geq E\left[\max \left(0, p_{1 X}-p_{0 X}\right) I\left(X \in S_{0}\right)\right] \\
P\left(Y_{1}=1, X \in S_{0}\right)=P\left(Y_{1}=1, G \in\{a, b\}, X \in S_{0}\right)=P\left(Y_{1}=1, G=b, X \in S_{0}\right) \\
\\
=P\left(Y_{0}=0, Y_{1}=1, X \in S_{0}\right) \leq E\left[\min \left(p_{1 X}, 1-p_{0 X}\right) I\left(X \in S_{0}\right)\right] \\
P\left(Y_{0}=0, X \in S_{1}\right)
\end{array}\right)=E\left[\left(1-p_{0 X}\right) I\left(X \in S_{1}\right)\right] \geq E\left[\max \left(0, p_{1 X}-p_{0 X}\right) I\left(X \in S_{1}\right)\right]\right] \begin{aligned}
P\left(Y_{0}=0, X \in S_{1}\right) & =P\left(Y_{0}=0, G \in\{b, n\}, X \in S_{1}\right)=P\left(Y_{0}=0, G=b, X \in S_{1}\right) \\
& =P\left(Y_{0}=0, Y_{1}=1, X \in S_{1}\right) \leq E\left[\min \left(p_{1 X}, 1-p_{0 X}\right) I\left(X \in S_{1}\right)\right]
\end{aligned}
$$

Thus,

$$
\begin{aligned}
L_{b}= & P\left(Y_{1}=1, X \in S_{0}\right)+P\left(Y_{0}=0, X \in S_{1}\right)+E\left[\max \left(0, p_{1 X}-p_{0 X}\right) I\left(X \in S_{2}\right)\right] \\
\geq & E\left[\max \left(0, p_{1 X}-p_{0 X}\right) I\left(X \in S_{0}\right)\right]+E\left[\max \left(0, p_{1 X}-p_{0 X}\right) I\left(X \in S_{1}\right)\right] \\
& +E\left[\max \left(0, p_{1 X}-p_{0 X}\right) I\left(X \in S_{2}\right)\right] \\
= & E\left[\max \left(0, p_{1 X}-p_{0 X}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
U_{b}= & P\left(Y_{1}=1, X \in S_{0}\right)+P\left(Y_{0}=0, X \in S_{1}\right)+E\left[\min \left(p_{1 X}, 1-p_{0 X}\right) I\left(X \in S_{2}\right)\right] \\
\leq & E\left[\min \left(p_{1 X}, 1-p_{0 X}\right) I\left(X \in S_{0}\right)\right]+E\left[\min \left(p_{1 X}, 1-p_{0 X}\right) I\left(X \in S_{1}\right)\right] \\
& +E\left[\min \left(p_{1 X}, 1-p_{0 X}\right) I\left(X \in S_{2}\right)\right] \\
= & E\left[\min \left(p_{1 X}, 1-p_{0 X}\right)\right]
\end{aligned}
$$

Similarly, we can have

$$
\begin{equation*}
U_{h} \leq E\left[\min \left\{p_{0 X}, 1-p_{1 X}\right\}\right], L_{h} \geq E\left[\max \left\{0, p_{0 X}-p_{1 X}\right\}\right] \tag{S1.1}
\end{equation*}
$$

So the "LE" bounds for TBR and THR can not be worse than the covariates adjusted simple bounds. What's more, these two kinds of bounds are equivalent if and only if $P\left(X \in S_{0}\right)+P\left(X \in S_{1}\right)=0$.

S2 Proof of Theorem 2

Let $\rho_{g k}=P\left(X_{k}=1 \mid G=g\right)$, we can have the following equations:

$$
\left\{\begin{array}{l}
P\left(X_{1}=1, X_{2}=1, X_{3}=1, Y=1 \mid T=1\right)-P\left(X_{1}=1, X_{2}=1, X_{3}=1, Y=0 \mid T=0\right) \\
\quad=\rho_{a 1} \rho_{a 2} \rho_{a 3} \pi_{a}-\rho_{n 1} \rho_{n 2} \rho_{n 3} \pi_{n}, \\
P\left(X_{1}=1, X_{2}=1, Y=1 \mid T=1\right)-P\left(X_{1}=1, X_{2}=1, Y=0 \mid T=0\right)=\rho_{a 1} \rho_{a 2} \pi_{a}-\rho_{n 1} \rho_{n 2} \pi_{n}, \\
P\left(X_{1}=1, X_{3}=1, Y=1 \mid T=1\right)-P\left(X_{1}=1, X_{3}=1, Y=0 \mid T=0\right)=\rho_{a 1} \rho_{a 3} \pi_{a}-\rho_{n 1} \rho_{n 3} \pi_{n}, \\
P\left(X_{2}=1, X_{3}=1, Y=1 \mid T=1\right)-P\left(X_{2}=1, X_{3}=1, Y=0 \mid T=0\right)=\rho_{a 2} \rho_{a 3} \pi_{a}-\rho_{n 2} \rho_{n 3} \pi_{n}, \\
P\left(X_{1}=1, Y=1 \mid T=1\right)-P\left(X_{1}=1, Y=0 \mid T=0\right)=\rho_{a 1} \pi_{a}-\rho_{n 1} \pi_{n}, \\
P\left(X_{2}=1, Y=1 \mid T=1\right)-P\left(X_{2}=1, Y=0 \mid T=0\right)=\rho_{a 2} \pi_{a}-\rho_{n 2} \pi_{n}, \\
P\left(X_{3}=1, Y=1 \mid T=1\right)-P\left(X_{3}=1, Y=0 \mid T=0\right)=\rho_{a 3} \pi_{a}-\rho_{n 3} \pi_{n}, \\
P(Y=1 \mid T=1)-P(Y=0 \mid T=0)=\pi_{a}-\pi_{n} .
\end{array}\right.
$$

Let us define the following notations:

$$
\left\{\begin{array}{l}
\phi_{1}=P\left(X_{1}=1, X_{2}=1, X_{3}=1, Y=1 \mid T=1\right)-P\left(X_{1}=1, X_{2}=1, X_{3}=1, Y=0 \mid T=0\right), \\
\phi_{2}=P\left(X_{1}=1, X_{2}=1, Y=1 \mid T=1\right)-P\left(X_{1}=1, X_{2}=1, Y=0 \mid T=0\right), \\
\phi_{3}=P\left(X_{1}=1, X_{3}=1, Y=1 \mid T=1\right)-P\left(X_{1}=1, X_{3}=1, Y=0 \mid T=0\right), \\
\phi_{4}=P\left(X_{2}=1, X_{3}=1, Y=1 \mid T=1\right)-P\left(X_{2}=1, X_{3}=1, Y=0 \mid T=0\right), \\
\phi_{5}=P\left(X_{1}=1, Y=1 \mid T=1\right)-P\left(X_{1}=1, Y=0 \mid T=0\right), \\
\phi_{6}=P\left(X_{2}=1, Y=1 \mid T=1\right)-P\left(X_{2}=1, Y=0 \mid T=0\right), \\
\phi_{7}=P\left(X_{3}=1, Y=1 \mid T=1\right)-P\left(X_{3}=1, Y=0 \mid T=0\right), \\
\phi_{8}=P(Y=1 \mid T=1)-P(Y=0 \mid T=0), \\
x_{1}=\pi_{a}, \quad x_{2}=\rho_{a 1}, \quad x_{3}=\rho_{a 2}, \quad x_{4}=\rho_{a 3}, \quad x_{5}=\pi_{n}, \quad x_{6}=\rho_{n 1}, \quad x_{7}=\rho_{n 2}, \quad x_{8}=\rho_{n 3} .
\end{array}\right.
$$

With these notations, we can rewrite the equations above as follows:

$$
\left\{\begin{array}{l}
\phi_{1}=x_{1} x_{2} x_{3} x_{4}-x_{5} x_{6} x_{7} x_{8} \tag{S2.2}\\
\phi_{2}=x_{1} x_{2} x_{3}-x_{5} x_{6} x_{7} \\
\phi_{3}=x_{1} x_{2} x_{4}-x_{5} x_{6} x_{8} \\
\phi_{4}=x_{1} x_{3} x_{4}-x_{5} x_{7} x_{8} \\
\phi_{5}=x_{1} x_{2}-x_{5} x_{6} \\
\phi_{6}=x_{1} x_{3}-x_{5} x_{7} \\
\phi_{7}=x_{1} x_{4}-x_{5} x_{8} \\
\phi_{8}=x_{1}-x_{5}
\end{array}\right.
$$

Some arrangements can lead to the following equations:

$$
\begin{cases}\frac{\phi_{2}-\phi_{6} x_{2}}{\phi_{5}-\phi_{8} x_{2}}=\frac{\phi_{1}-\phi_{4} x_{2}}{\phi_{3}-\phi_{7} x_{2}}, & \frac{\phi_{2}-\phi_{6} x_{5}}{\phi_{5}-\phi_{8} x_{5}}=\frac{\phi_{1}-\phi_{4} x_{5}}{\phi_{3}-\phi_{7} x_{5}} \\ \frac{\phi_{2}-\phi_{5} x_{3}}{\phi_{6}-\phi_{8} x_{3}}=\frac{\phi_{1}-\phi_{3} x_{3}}{\phi_{4}-\phi_{7} x_{3}}, & \frac{\phi_{2}-\phi_{5} x_{6}}{\phi_{6}-\phi_{8} x_{6}}=\frac{\phi_{1}-\phi_{3} x_{6}}{\phi_{4}-\phi_{7} x_{6}} \\ \frac{\phi_{3}-\phi_{5} x_{4}}{\phi_{7}-\phi_{8} x_{4}}=\frac{\phi_{1}-\phi_{2} x_{4}}{\phi_{4}-\phi_{6} x_{4}}, & \frac{\phi_{3}-\phi_{5} x_{8}}{\phi_{7}-\phi_{8} x_{8}}=\frac{\phi_{1}-\phi_{2} x_{8}}{\phi_{4}-\phi_{6} x_{8}}\end{cases}
$$

Thus we can get the following equations:

$$
\left\{\begin{array}{l}
\left(\phi_{6} \phi_{7}-\phi_{4} \phi_{8}\right) x_{2}^{2}+\left(\phi_{1} \phi_{8}+\phi_{4} \phi_{5}-\phi_{2} \phi_{7}-\phi_{3} \phi_{6}\right) x_{2}+\phi_{2} \phi_{3}-\phi_{1} \phi_{5}=0 \\
\left(\phi_{6} \phi_{7}-\phi_{4} \phi_{8}\right) x_{6}^{2}+\left(\phi_{1} \phi_{8}+\phi_{4} \phi_{5}-\phi_{2} \phi_{7}-\phi_{3} \phi_{6}\right) x_{6}+\phi_{2} \phi_{3}-\phi_{1} \phi_{5}=0 \\
\left(\phi_{5} \phi_{7}-\phi_{3} \phi_{8}\right) x_{3}^{2}+\left(\phi_{1} \phi_{8}+\phi_{3} \phi_{6}-\phi_{4} \phi_{5}-\phi_{2} \phi_{7}\right) x_{3}+\phi_{2} \phi_{4}-\phi_{1} \phi_{6}=0 \\
\left(\phi_{5} \phi_{7}-\phi_{3} \phi_{8}\right) x_{7}^{2}+\left(\phi_{1} \phi_{8}+\phi_{3} \phi_{6}-\phi_{4} \phi_{5}-\phi_{2} \phi_{7}\right) x_{7}+\phi_{2} \phi_{4}-\phi_{1} \phi_{6}=0 \\
\left(\phi_{5} \phi_{6}-\phi_{2} \phi_{8}\right) x_{4}^{2}+\left(\phi_{1} \phi_{8}+\phi_{2} \phi_{7}-\phi_{4} \phi_{5}-\phi_{3} \phi_{6}\right) x_{4}+\phi_{3} \phi_{4}-\phi_{1} \phi_{7}=0 \\
\left(\phi_{5} \phi_{6}-\phi_{2} \phi_{8}\right) x_{8}^{2}+\left(\phi_{1} \phi_{8}+\phi_{2} \phi_{7}-\phi_{4} \phi_{5}-\phi_{3} \phi_{6}\right) x_{8}+\phi_{3} \phi_{4}-\phi_{1} \phi_{7}=0
\end{array}\right.
$$

So x_{i} and $x_{i+4}, \mathrm{i}=2,3,4$ are both the solutions to the same quadratic equation, Assumption 5 can ensure that there exists at least one $i \in\{2,3,4\}$ so that $x_{i} \neq x_{i+4}$. Without loss of generality, let $x_{4} \neq x_{8}$, so x_{4} and x_{8} are the two different solutions of the last quadratic equations above, denoted root $_{1}$ and root $_{2}$. But it is still unknown which is x_{4} and which is x_{8}. There are two cases for possible values for x_{4} and x_{8} :

$$
x_{4}^{(1)}=\text { root }_{1}, x_{8}^{(1)}=\text { root }_{2}, \quad \text { or } \quad x_{4}^{(2)}=\text { root }_{2}, x_{8}^{(2)}=\text { root }_{1} .
$$

And from (S2.2) we can get the following equations: $x_{1}=\frac{\phi_{7}-\phi_{8} x_{8}}{x_{4}-x_{8}}, x_{5}=\frac{\phi_{7}-\phi_{8} x_{4}}{x_{4}-x_{8}}$. So the two cases for x_{4} and x_{8} are corresponding to the following two cases for x_{1} and x_{5} :

$$
\left\{\begin{array} { l }
{ x _ { 1 } ^ { (1) } = \frac { \phi _ { 7 } - \phi _ { 8 } \text { root } _ { 2 } } { \text { root } _ { 1 } - \text { root } _ { 2 } } , } \\
{ x _ { 5 } ^ { (1) } = \frac { \phi _ { 7 } - \phi _ { 8 } \text { root } _ { 1 } } { \text { root } _ { 1 } - \text { root } _ { 2 } } , }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
x_{1}^{(2)}=\frac{\phi_{7}-\phi_{8} r^{\text {root }}}{2} \\
\text { root }_{1}-\text { root }_{2}
\end{array},\right.\right.
$$

We can see that if $x_{1}^{(1)}=-x_{5}^{(2)}, x_{5}^{(1)}=-x_{1}^{(2)}$. So if the first case is true, the second case must be invalid since x_{1} and x_{5} must be positive, and vice versa. Then there should be only one valid case for x_{4} and x_{8}. Thus, TBR and THR are identified.

In addition, for x_{4} and x_{8}, we have proved they are identified if $x_{4} \neq x_{8}$. If $x_{4}=x_{8}$, we can obtain from the last two equations from equations (S2.2) that: $x_{4}=x_{8}=\phi_{7} / \phi_{8}$. So x_{4} and x_{8} can be identified. Similarly, we can identify $\left\{x_{2}, x_{3}, x_{6}, x_{7}\right\}$. Thus, $\theta=\left(x_{i}, i=1, \ldots, 8\right)$ can be identified.

S3. THE TABLE OF THE ESTIMATED"LE" BOUNDS FOR TBR AND THE UNDER DIFFERENT VALUES OF M_{0} AND M_{1}

This complete a proof of Theorem 2.

S3 The table of the estimated "LE" bounds for TBR

and THE under different values of m_{0} and m_{1}

Table 1: The "LE" bounds for TBR and THR

m_{0}	m_{1}	bounds		${ }^{*}$	bounds		
		TBR	THR			TBR	THR
0	1	$[0.680,0.680]$	$[0.221,0.221]$	0	2	$[0.680,0.680]$	$[0.221,0.221]$
0	3	$[0.680,0.680]$	$[0.221,0.221]$	0	4	$[0.641,0.680]$	$[0.182,0.221]$
0	5	$[0.576,0.680]$	$[0.117,0.219]$	0	6	$[0.550,0.680]$	$[0.091,0.221]$
0	7	$[0.498,0.680]$	$[0.039,0.221]$	0	8	$[0.472,0.680]$	$[0.013,0.221]$
0	9	$[0.472,0.680]$	$[0.013,0.221]$	1	2	$[0.706,0.706]$	$[0.221,0.221]$
1	3	$[0.706,0.706]$	$[0.221,0.221]$	1	4	$[0.667,0.695]$	$[0.182,0.221]$
1	5	$[0.602,0.706]$	$[0.117,0.219]$	1	6	$[0.576,0.706]$	$[0.091,0.221]$
1	7	$[0.524,0.706]$	$[0.039,0.221]$	1	8	$[0.498,0.706]$	$[0.013,0.221]$
1	9	$[0.498,0.706]$	$[0.013,0.221]$	2	3	$[0.681,0.681]$	$[0.259,0.259]$
2	4	$[0.642,0.681]$	$[0.220,0.233]$	2	5	$[0.577,0.681]$	$[0.155,0.219]$
2	6	$[0.551,0.681]$	$[0.129,0.259]$	2	7	$[0.499,0.681]$	$[0.077,0.259]$
2	8	$[0.473,0.681]$	$[0.051,0.259]$	2	9	$[0.473,0.681]$	$[0.051,0.259]$
3	4	$[0.695,0.695]$	$[0.233,0.233]$	3	5	$[0.630,0.695]$	$[0.168,0.219]$
3	6	$[0.604,0.695]$	$[0.142,0.233]$	3	7	$[0.552,0.695]$	$[0.090,0.233]$
3	8	$[0.526,0.695]$	$[0.064,0.233]$	3	9	$[0.526,0.695]$	$[0.064,0.233]$
4	5	$[0.723,0.723]$	$[0.219,0.219]$	4	6	$[0.697,0.723]$	$[0.193,0.219]$
4	7	$[0.645,0.723]$	$[0.141,0.219]$	4	8	$[0.619,0.723]$	$[0.115,0.219]$
4	9	$[0.619,0.723]$	$[0.115,0.219]$	5	6	$[0.725,0.725]$	$[0.283,0.283]$
5	7	$[0.673,0.725]$	$[0.231,0.270]$	5	8	$[0.647,0.725]$	$[0.205,0.282]$
5	9	$[0.647,0.725]$	$[0.205,0.283]$	6	7	$[0.740,0.740]$	$[0.270,0.270]$
6	8	$[0.727,0.740]$	$[0.257,0.270]$	6	9	$[0.714,0.740]$	$[0.244,0.270]$
7	8	$[0.831,0.831]$	$[0.282,0.282]$	7	9	$[0.831,0.792]$	$[0.282,0.282]$

