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Appendix A Proof of Formulas

Proof of Formulas (F1) and (F2)

TBRc(x) = P (Y1 − Y0 > c|X = x)

= P
(
(α1,0 − α0,0) + (α1,1 − α0,1)Tx+ (α1,2 − α0,2)U + (α1,3 − α0,3)TxU + (ε1 − ε0

)
> c)

= P
( ε0 − ε1√

σ2
0 + σ2

1

<
(α1,0 − α0,0) + (α1,1 − α0,1)Tx+ (α1,2 − α0,2)U + (α1,3 − α0,3)TxU − c√

σ2
0 + σ2

1

)
=

∫
Φ
( (α1,0 − α0,0) + (α1,1 − α0,1)Tx+ (α1,2 − α0,2)u+ (α1,3 − α0,3)Txu− c√

σ2
0 + σ2

1

)
fU (u)du

=

∫
Φ
((
w1 + w2u

)
/w3

)
fU (u)du

=

∫ ∫ (w1+w2u)/w3

−∞

1√
2π

exp
(
− s2/2

)
fU (u)dsdu

=

∫ ∫ 0

−∞

1

2π
exp

[
− 1

2w2
3

{
(w2

2 + w2
3)
(
u+

w2(w3s+ w1)

w2
2 + w2

3

)2
+
w2

3(w3s+ w1)2

w2
2 + w2

3

}]
dsdu

=

∫ 0

−∞

1√
2π

√
w2

3

w2
2 + w2

3

exp
{
− (w3s+ w1)2

2(w2
2 + w2

3)

}
ds

= Φ
( w1√

w2
2 + w2

3

)
,

where fU (·) is the density functions of U , w1 = (α1,0 − α0,0) + (α1,1 − α0,1)Tx − c, w2 =

(α1,2−α0,2) + (α1,3−α0,3)Tx,w3 =
√
σ2
0 + σ2

1 . Similarly, we can derive the form for THRc(x).

Proof of Formulas (F3) and (F4)
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Let K(αt, x, u) = αt,0 + αTt,1x+ αt,2u+ αTt,3xu, we have

TBR(x) =

∫ {
1− Φ

(
K(α0, x, u)

)}
Φ
(
K(α1, x, u)

)
fU (u)du

=

∫ {∫ ∞
K(α0,x,u)

1√
2π

exp(−s20/2)ds0
}{∫ K(α1,x,u)

−∞

1√
2π

exp(−s21/2)ds1
}
fU (u)du

=

∫ ∫ 0

−∞

∫ ∞
0

1

(2π)3/2
exp

{
− (s0 +K(α0, x, u))2 + (s1 +K(α1, x, u))2 + u2

2

}
ds0ds1du.

Let K1(αt, x) = αt,0+αTt,1x,K2(αt, x) = αt,2+αTt,3x, thus K(αt, x, u) = K1(αt, x)+uK2(αt, x).

Then

{s0 +K(α0, x, u)}2 + {s1 +K(α1, x, u)}2 + u2

=
{

1 +K2(α0, x)2 +K2(α1, x)2
}
u2 + 2

{
(s0 +K1(α0, x))K2(α0, x) + (s1 +K1(α1, x))K2(α1, x)

}
u

+{s0 +K1(α0, x)}2 + {s1 +K1(α1, x)}2

=
{

1 +K2(α0, x)2 +K2(α1, x)2
}{
u+

(s0 +K1(α0, x))K2(α0, x) + (s1 +K1(α1, x))K2(α1, x)

1 +K2(α0, x)2 +K2(α1, x)2
}2

+
1

1 +K2(α0, x)2 +K2(α1, x)2

[
{s0 +K1(α0, x)}2{1 +K2(α1, x)2}

+{s1 +K1(α1, x)}2{1 +K2(α0, x)2}

−2{s0 +K1(α0, x)}K2(α0, x){s1 +K1(α1, x)}K2(α1, x)
]
.

So

TBR(x) =

∫ ∞
0

∫ 0

−∞

1

(2π)S
exp

(
− F

2

)
ds0ds1, (A1.1)

where S2 = 1 +K2(α0, x)2 +K2(α1, x)2,

F =
[
{s0 +K1(α0, x)}2{1 +K2(α1, x)2}+ {s1 +K1(α1, x)}2{1 +K2(α0, x)2}

−2{s0 +K1(α0, x)}K2(α0, x){s1 +K1(α1, x)}K2(α1, x)
]
/S2

=
{

(s0, s1)− µ
}

Σ−1
{

(s0, s1)− µ
}T
,

µ = (−K1(α0, x), −K1(α1, x)),
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Σ =

 1 +K2(α0, x)2 K2(α0, x)K2(α1, x)

K2(α0, x)K2(α1, x) 1 +K2(α1, x)2

 .

Thus, TBR(x) = Φ2

(
(0,∞), (−∞, 0);µ,Σ

)
, where Φ2(A0, A1;µ,Σ) is the distribution function

of bivariate normal vector with mean µ, covariance matrix Σ and integral region A0 × A1.

Similarly, we can derive the form for THR(x).

Relationship of ATE(x), TBRc(x) and THRc(x)

Note for any random variable Z, we have

E(Z) =

∫ ∞
0

{1− FZ(z)}dz −
∫ 0

−∞
FZ(z)dz,

where FZ is the cumulative distribution function of Z. Thus,

ATE(x) = E(Y1 − Y0|X = x)

=

∫ ∞
0

{1− FY1−Y0|x(c)}dc−
∫ 0

−∞
FY1−Y0|x(c)dc

=

∫ ∞
0

TBRc(x)dc−
∫ 0

−∞
{1− TBRc(x)}dc

=

∫ ∞
0

TBRc(x)dc−
∫ 0

−∞
THR−c(x)dc

=

∫ ∞
0

{TBRc(x)− THRc(x)}dc,

where the penultimate step holds since Y1 − Y0 is continuous.

Appendix B Proof of Theorem 1

Instead of proving Theorem 1 directly, we first provide sufficient and necessary identification

conditions of (gt(X);ht(X)) in the general models (3) and (4).

Theorem B.1. Under Assumption 2,
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(i) When the outcome is continuous, if the following model (??) holds for t=0,1,
Yt = gt(X) + Uht(X) + εt,

εt⊥(X,U), εt ∼ N(0, σ2
t ), U ∼ N(0, 1), ht(0) > 0,

(A2.2)

then the following Condition A is the sufficient and necessary condition to identify (g0(X), h0(X), σ2
0 , g1(X), h1(X), σ2

1)

Condition A. ht(X) belongs to the family S(X) for t = 0, 1, where

S(X) =
{
h(X) : h(X) can be identified if h(X)h′(X) is known.

}
(ii) When the outcome is continuous, if the following model (??) holds for t=0,1,

Y ∗t = gt(X) + Uht(X) + εt,

Yt = I(Y ∗t > 0),

εt⊥(X,U), εt ∼ N(0, σ2), U ∼ N(0, 1), ht(0) > 0,

(A2.3)

then the following Condition B is the sufficient and necessary condition to identify (g0(X), h0(X), g1(X), h1(X)).

Condition B. (gt(X), ht(X)) belongs to the family
(
S1(X),S2(X)

)
for t = 0, 1,

where (
S1(X),S2(X)

)
=

{(
g(X;α1), h(X;α2)

)∣∣(α1, α2) ∈ A, ∀(α1, α2) 6= (β1, β2) ∈ A, g(X;α1)√
1 + h2(X;α2)

6= g(X;β1)√
1 + h2(X;β2)

}
.

Proof.

(i) Since E[Y |X,T = t] = E[Yt|X] = gt(X), we can identify gt(X) and we have

(
Y − gt(X)

)∣∣(X,T = t
)
∼ N(0, h2

t (X) + σ2
t ).

Thus At(X) = h2
t (X) + σ2

t can also be identified, so is A′t(X) = ht(X)h′t(X).

Next we show that Condition A is sufficient and necessary to identify ht(x), t = 0, 1.

It is easy to see that if ht(X) belongs to S(X), then ht(X) is also identified. On the



ASSESSING THE TREATMENT EFFECT HETEROGENEITY 5

other hand, if ht(X) does not belong to S(X), then ht(X) can not be decided uniquely

from ht(X)h′t(X). Besides, knowing ht(X)h′t(X) is equivalent to knowing h2
t (X) up to

a constant, i.e., h2
t (X1) − h2

t (X2) for all X1, X2. Note that
(
Y − gt(X)

)∣∣∣(X,T = t) ∼

N(0, h2
t (X) + σ2

t ), the distribution of Y − gt(X) condition on (X,T = t) is determined

by the variance, so all the information we have about ht(X) is h2
t (X) + σ2

t , which is the

same as knowing h2
t (X1) − h2

t (X2) for all X1, X2. Thus, we can not identify ht(X). So

the sufficient and necessary condition is that ht(X) ∈ S(X) for t = 0, 1.

(ii) Since P (Y = 1|X,U, T = t) = Φ
(
gt(X) + Uht(X)

)
, we have

P (Y = 1|X,T = t) = Φ
( gt(X)√

1 + h2
t (X)

)
,

It is easy to see that (g0(X), h0(X), g1(X), h1(X)) can be identified if and only if the

Condition B holds.

The identification of heterogeneous treatment effects given in Theorem 1 follows from the

following corollaries.

Corollary 1. When h(X) = h(X; η) = η0 + ηT1 X, where η = (η0, η
T
1 )T , η1 =

(
η1,1, · · · , η1,p

)T
and η0 > 0, we have h(X) ∈ S.

Proof. Since h(X)h′(X) =
(
η0 + ηT1 X

)
η1 = η0η1 + η1η

T
1 X, we can identify (η0η1, η1η

T
1 ) if

h(X)h′(X) is known. Besides, h(0) = η0 > 0, so the sign of every component of η1 can be

determined since we know η0η1. Then η1 can be identified since we know the diagonal elements

of η1η
T
1 . Then η0 can also be identified from η0η1. Thus (η0, η1) is identifiable, so is h(X). This

completes the proof of the part (i) in Theorem 1.

We impose the following regularity condition on X which is the domain of X.
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Condition C. There exists linear independent (τ1, · · · , τp) ⊂ X , where X is the domain of X,

s.t. P (Y = 1|X = τi) = 0, i = 1, . . . , p.

Corollary 2. When g(X) = g(X;α) = α0+αT1X, h(X) = h(X;α) = α2+αT3X with (α0, α1) 6=

0, α2 > 0, α3 6= 0, where α = (α0, α
T
1 , α2, α

T
3 )T , α1 = (α1,1, · · · , α1,p)

T , α3 = (α3,1, · · · , α3,p)
T ,

if the Condition C holds, we have {g(X), h(X)} ∈ {S1(X),S2(X)}.

Proof. It is enough to show that if α = (α0, α
T
1 , α2, α

T
3 )T , β = (β0, β

T
1 , β2, β

T
3 )T satisfy:

α0 + αT1X√
1 + (α2 + αT3X)2

=
β0 + βT1 X√

1 + (β2 + βT3 X)2
, ∀X ∈ X , (A2.4)

then α = β. To keep the same signs on both sides, the following two subsets of a hyperplane

(H0, H1) must be the same,

H0 = {X ⊂ X|α0 + αT1X = 0}, H1 = {X ⊂ X|β0 + βT1 X = 0},

since there exists linear independent (τ1, · · · , τp) ⊂ X such that P (Y = 1|X = τi) = 0.5, i =

1, . . . , p, thus, the following two hyperplane (H̃0, H̃1) must be the same,

H̃0 = {X ⊂ Rp|α0 + αT1X = 0}, H̃1 = {X ⊂ Rp|β0 + βT1 X = 0},

which means (α0, α
T
1 ) = k(β0, β

T
1 ), and k ≥ 0 since the signs on the two sides of equations (??)

must be the same. And (α0, α1) 6= 0 exclude the case k = 0. Thus from equation (??) we have

k2 =
1 + (α2 + αT3X)2

1 + (β2 + βT3 X)2
.

By arranging the equation above we have

XT (α3α
T
3 − k2β3βT3 )X + 2(α2α

T
3 − k2β2βT3 )X + 1 + α2

2 − k − kβ2
2 = 0.
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So

α3α
T
3 − k2β3βT3 = 0, (A2.5a)

α2α
T
3 − k2β2βT3 = 0, (A2.5b)

1 + α2
2 − k2 − k2β2

2 = 0. (A2.5c)

With a little abuse of notation, we use 0 to denote not only the number 0 but also the matrix and

vector of 0 in (??) and (??) respectively. Take the (i, i) element of (??) and the i-th component

of (??), with a little arrangement we have

α2
3i = k2β2

3i, (A2.5d)

α2α3i = k2β2β3i, (A2.5e)

α2
2 = k2 + k2β2

2 − 1. (A2.5f)

Note (??) · (??)− (??)2 = k2β2
3i(k

2 − 1) = 0, since k > 0 we have k = 1. And since α2, β2 ≥ 0,

from (??) we have α2 = β2, then from (??) we have α3 = β3. Thus, α = β. This completes the

proof of part (ii) in Theorem 1.

Appendix C Non-identification without interaction term

between X and U

Theorem C.1. Under the same assumptions as in Theorem ??,

(i) If there is no interaction term between X and U in model (??), i.e., ht(X) = ht is a

constant, the (TBRc(x),THRc(x)) can not be identified for any c 6= ±E[Y1 − Y0].

(ii) If there is no interaction term between X and U in model (??), i.e., ht(X) = ht is a

constant, the (TBR(x),THR(x)) can not be identified for any
(
g0(x), g1(x)

)
6= (0, 0).
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Proof.

(i) We have

Y
∣∣∣(X,T = t

)
∼ N

(
gt(X), h2

t + σ2
t

)
.

Since P (Y,X, T ) = P (Y |X,T )P (X,T ) and P (X,T ) is not related to the parameters in

the model, we can only identify gt(X) and h2
t + σ2

t for t = 0, 1. Since h2
t is a constant,

we can no longer separate ht and σ2
t from

(
h2
t + σ2

t

)
without further assumptions, i.e.,

(ht, σ
2
t ) can not be identified. Additionally, we have

(Y0, Y1)
∣∣∣X = x ∼ N(µ(x),Σ(x)),

where

µ(x) = (g0(x), g1(x)), Σ(x) =

 h2
0 + σ2

0 h0h1

h0h1 h2
1 + σ2

1

 .

Thus,

(Y1 − Y0)|X = x ∼ N
(
g1(x)− g0(x), (h2

0 + σ2
0) + (h2

1 + σ2
1)− 2h0h1

)
.

Since h2
t + σ2

t can be identified while (h2
t , σ

2
t ) can not, the joint distribution of (Y0, Y1)

given X = x can not be identified, so is the distribution of Y1 − Y0 given X = x.

Since TBRc(x) = P (Y1−Y0 > c|X = x) and Y1−Y0 given X = x is normally distributed

with mean identified and variance unidentified, so TBRc(x) is unidentified if c 6= E[Y1 −

Y0]. Similarly, THRc(x) is unidentified if c 6= −E[Y1 − Y0].

(ii) Since

P (Y = 1|X,T = t) = Φ
( gt(X)√

1 + h2
t

)
,

we can only identify gt(X)/
√

1 + h2
t in the model with the numerator and denominator
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unseparate, which means (gt(X), h2
t ) can not be identified. Additionally, we have

TBR(x) = P (Y0 = 0, Y1 = 1|X = x)

=

∫ 0

−∞

∫ ∞
0

1

2π|Σb|1/2
exp

{
− 1

2

(
(s0, s1)− µb

)
Σ−1
b

(
(s0, s1)− µb

)}
ds0ds1,

where

µb = (−g0(x),−g1(x)), Σb =

 1 + h2
0 h0h1

h0h1 1 + h2
1

 .

Let (t0 = s0/
√

1 + h2
0, t1 = s1/

√
1 + h2

1), we have

TBR(x) = P (Y0 = 0, Y1 = 1|X = x)

=

∫ 0

−∞

∫ ∞
0

1

2π|Σ̃b|1/2
exp

{
− 1

2

(
(t0, t1)− µ̃b

)
Σ̃−1
b

(
(t0, t1)− µ̃b

)}
dt0dt1,

where

µ̃b =
(
− g0(x)/

√
1 + h2

0,−g1(x)/
√

1 + h2
1

)
, Σ̃b =

 1 h0h1√
1+h2

0

√
1+h2

1

h0h1√
1+h20

√
1+h2

1

1

 .

So µ̃b is identified while Σ̃b not. Thus, we can easily conclude that TBR(x) can not be

identified when
(
g0(x), g1(x)

)
6= (0, 0), so is THR(x) and the joint distribution of (Y0, Y1)

given X = x.

Appendix D Proof of Theorem 2

Proof. The estimator θ̂ = (α̂0,0, α̂
T
0,1, α̂0,2, α̂

T
0,3, σ̂

2
0 , α̂1,0, α̂

T
1,1, α̂1,2, α̂

T
1,3, σ̂

2
1)T maximize the fol-

lowing likelihood

` = logL(Y |X)

=

n∑
i=1

∑
t=0,1

1

2

[
I(Ti = t)

{
− log(2π)− log

(
(αt,2 + αTt,3Xi)

2 + σ2
t

)
−

(Yi − αt,0 − αTt,1Xi)2

(αt,2 + αTt,3Xi)
2 + σ2

t

}]
.
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According to the M-estimator property, we have

√
n(θ̂ − θ) d−→ N

(
0,
[
P0

{ ∂2ψ

∂θ∂θT
}]−1

P0

{∂ψ
∂θ

∂ψ

∂θT
}[
P0

{ ∂2ψ

∂θ∂θT
}]−1)

,

where P0 is the true mean and

ψ(T,X, Y ; θ)

=
∑
t=0,1

1

2

[
I(T = t)

{
− log(2π)− log

(
(αt,2 + αTt,3X)2 + σ2

t

)
−

(Y − αt,0 − αTt,1X)2

(αt,2 + αTt,3X)2 + σ2
t

}]
.

Let

mB(X; θ) = Φ
( (α1,0 − α0,0) + (α1,1 − α0,1)TX − c√

((α1,2 − α0,2) + (α1,3 − α0,3)TX)2 + (σ2
0 + σ2

1)

)
,

and

mH(X; θ) = Φ
( (α0,0 − α1,0) + (α0,1 − α1,1)TX − c√

((α0,2 − α1,2) + (α0,3 − α1,3)TX)2 + (σ2
0 + σ2

1)

)
,

thus, T̂BRc(x) − TBRc(x) = mB(x; θ̂) − mB(x; θ) and T̂HRc(x) − THRc(x) = mH(x; θ̂) −

mH(x; θ).

By the Delta-Method, we have

√
n
(
T̂BR(x)− TBR(x)

) d−→ N(0, σ2
cB(x; θ)),

√
n
(
T̂HR(x)− THR(x)

) d−→ N(0, σ2
cH(x; θ)),

where

σ2
cB(x; θ) =

∂

∂θT
mB(x; θ)

[
P0

{ ∂2ψ

∂θ∂θT
}]−1

P0

{∂ψ
∂θ

∂ψ

∂θT
}[
P0

{ ∂2ψ

∂θ∂θT
}]−1 ∂

∂θ
mB(x; θ),

and

σ2
cH(x; θ) =

∂

∂θT
mH(x; θ)

[
P0

{ ∂2ψ

∂θ∂θT
}]−1

P0

{∂ψ
∂θ

∂ψ

∂θT
}[
P0

{ ∂2ψ

∂θ∂θT
}]−1 ∂

∂θ
mH(x; θ).
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Appendix E Proof of Theorem 3

Proof. The estimator θ̂ = (α̂0,0, α̂
T
0,1, α̂0,2, α̂

T
0,3, α̂1,0, α̂

T
1,1, α̂1,2, α̂

T
1,3)T maximize the following

likelihood

` = logL(Y |X) =

n∑
i=1

∑
t=0,1

[
I(Ti = t)

{
Yi log

(
G(Xi; θt)

)
+ (1− Yi) log

(
1−G(Xi; θt)

)}]
,

where

G(X; θt) = Φ
( αt,0 + αTt,1X√

1 + (αt,2 + αTt,3X)2

)
.

According to the M-estimator property, we have

θ̂ − θ = −
[
P0

{ ∂2

∂θ∂θT
ψ(T,X, Y ; θ)

}]−1 1

n

n∑
i=1

∂

∂θ
ψ(Ti, Xi, Yi; θ) + op(1/

√
n),

where

ψ(T,X, Y ; θ) =
∑
t=0,1

[
I(T = t)

{
Y log

(
G(X; θt)

)
+ (1− Y ) log

(
1−G(X; θt)

)}]
.

LetmB(X; θ) = Φb
(
µ(x; θ),Σ(x; θ)

)
, andmH(X; θ) = Φh

(
µ(x; θ),Σ(x; θ)

)
, we have T̂BR(x)−

TBR(x) = mB(x; θ̂)−mB(x; θ) and T̂HR(x)− THR(x) = mH(x; θ̂)−mH(x; θ).

By the Delta-Method, we have

√
n
(
T̂BR(x)− TBR(x)

) d−→ N(0, σ2
bB(x; θ)),

√
n
(
T̂HR(x)− THR(x)

) d−→ N(0, σ2
bH(x; θ)),

where

σ2
bB(x; θ) =

∂

∂θT
mB(x; θ)

[
P0

{ ∂2ψ

∂θ∂θT
}]−1

P0

{∂ψ
∂θ

∂ψ

∂θT
}[
P0

{ ∂2ψ

∂θ∂θT
}]−1 ∂

∂θ
mB(x; θ),

and

σ2
bH(x; θ) =

∂

∂θT
mH(x; θ)

[
P0

{ ∂2ψ

∂θ∂θT
}]−1

P0

{∂ψ
∂θ

∂ψ

∂θT
}[
P0

{ ∂2ψ

∂θ∂θT
}]−1 ∂

∂θ
mH(x; θ).
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Appendix F Estimates of Parameters and Their Asymp-

totic Properties in Models (3) and (4)

The corresponding formulas of (F1), (F2), (F3) and (F4) for the general models are:
TBRc(x) = Φ

( (
g1(x)− g0(x)

)
− c√(

h1(x)− h0(x)
)2

+ σ2
0 + σ2

1

)
,

THRc(x) = Φ
( (

g0(x)− g1(x)
)
− c√(

h0(x)− h1(x)
)2

+ σ2
0 + σ2

1

)
,

and 
TBR(x) = Φb

(
µ̃(x), Σ̃(x)

)
,

THR(x) = Φh
(
µ̃(x), Σ̃(x)

)
,

where

µ̃(x) = −
(
g0(x), g1(x)

)
,

Σ̃(x) =

 1 + h2
0(x) h0(x)h1(x)

h0(x)h1(x) 1 + h2
1(x)

 .

In estimation, we first model gt(X) and ht(X) as gt(X;αt,1) and ht(X;αt,2). Also let

ψ(T,X, Y ; θ) denote the log-density function, where θ = (α0,1, α0,2, σ
2
0 , α1,1, α1,2, σ

2
1)T in the

continuous case and θ = (α0,1, α0,2, α1,1, α1,2)T in the binary case. The estimation for θ can be

obtained by maximizing Pn[ψ(T,X, Y ; θ)], denote as θ̂. Then TBR(x), THR(x), TBRc(x) and

THRc(x) can be estimated by:

T̂BRc(x) = Φ
( (

g1(X; α̂1,1)− g0(X; α̂0,1)
)
− c√(

h1(X; α̂1,2)− h0(X; α̂0,2)
)2

+ σ̂2
0 + σ̂2

1

)
,

T̂HRc(x) = Φ
( (

g1(X; α̂0,1)− g0(X; α̂1,1)
)
− c√(

h1(X; α̂0,2)− h0(X; α̂1,2)
)2

+ σ̂2
0 + σ̂2

1

)
,

T̂BR(x) = Φb
(
µ̃(X; θ̂), Σ̃(X; θ̂)

)
,

T̂HR(x) = Φh
(
µ̃(X; θ̂), Σ̃(X; θ̂)

)
,

where

µ̃(X; θ̂) =
(
− g0(X; α̂0,1), − g1(X; α̂1,1)

)
,
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Σ̃(X; θ̂) =

 1 + h2
0(X; α̂0,2) h0(X; α̂0,2)h1(X; α̂1,2)

h0(X; α̂0,2)h1(X; α̂1,2) 1 + h2
1(X; α̂1,2)

 .

We estimate the variances of T̂BRc(x), T̂HRc(x), T̂BR(x) and T̂HR(x) by the plug-in

estimator respectively.

Appendix G Identification When U Depends on X

Theorem G.1. Under the Assumption 2:

(i) When the outcome is continuous, if the following model (??) holds for t=0,1
Yt = gt(X) + ht(X)U + εt, εt ∼ N(µt, σ

2
t ), εt⊥(X,U, εu),

U = W (X) + εu, εu ∼ N(µu, σ
2), εu⊥X

(A7.6)

then the Condition A in the Appendix ?? is sufficient to identify the joint distribution of

(Y0, Y1) given X.

(ii) When the outcome is binary, if the following model (??) holds for t=0,1

Y ∗t = gt(X) + ht(X)U + εt, εt ∼ N(µt, σ
2
t ), εt⊥(X,U, εu),

Yt = I(Y ∗t > 0),

U = W (X) + εu, εu ∼ N(µu, σ
2), εu⊥X,

(A7.7)

then the following Condition D is sufficient to identify the joint distribution of (Y0, Y1)

given X.

Condition D.
(
gt(X) + W (X)ht(X), ht(X)

)
belongs to the family

(
S1(X),S2(X)

)
for

t = 0, 1, where

(
S1(X),S2(X)

)
=
{(
S1(X;β1), S2(X;β2)

)∣∣(β1, β2) ∈ A,

∀(β(1)
1 , β

(1)
2 ) 6= (β

(2)
1 , β

(2)
2 ) ∈ A, S1(X;β

(1)
1 )√

1 + S2
2(X;β

(1)
2 )

6= S1(X;β
(2)
1 )√

1 + S2
2(X;β

(2)
2 )

}
.
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Proof.

(i) Without loss of generality, we assume σ2 = 1 since otherwise it can be absorbed into

ht(X), µu = 0 since otherwise it can be absorbed into W (X) and assume µt = 0 since

otherwise it can be absorbed into gt(X). Also, we assume ht(0) > 0 since otherwise we

use U∗ = −U to replace U . By a little arrangement, we have

Yt =
(
gt(X) + ht(X)W (X)

)
+ ht(X)εu + εt.

Thus,

Y
∣∣∣(X,T = t

)
∼ N

(
gt(X) + ht(X)W (X), h2

t (X) + σ2
t

)
.

Then
(
gt(X) + ht(X)W (X)

)
and

(
h2
t (X) + σ2

t

)
can both be identified, so is ht(X)h′t(X).

Since ht(X) belongs to S(X), we can also identify ht(X) and σ2
t .

Note that

P (Y0, Y1|X = x) = P
((
g0(x)+h0(x)W (x)

)
+h0(x)εu+ε0,

(
g1(X)+h1(X)W (X)

)
+h1(X)εu+ε1

)
.

Thus, we can identify the joint distribution of (Y0, Y1) given X.

(ii) Without loss of generality, we can assume that εu follows a standard normal distribution.

Also, we assume µt = 0 since otherwise it can be absorbed into gt(X), σ2
t = 1 since

otherwise we can use Ỹ ∗t = Y ∗t /σt to replace Y ∗t and ht(0) > 0 since otherwise we can

use U∗ = −U to replace U . By a little arrangement, we have
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P (Y = 1|X,T = t) = P (Yt = 1|X)

= P
(
gt(X) + ht(X)W (X) + ht(X)εu + εt > 0|X

)
=

∫ ∫
1

2π
exp

(
− s2u + s2t

2

)
I
(
gt(X) + ht(X)W (X) + ht(X)su + st > 0

)
dstdsu

=

∫ ∫ gt(X)+ht(X)W (X)+ht(X)su

−∞

1

2π
exp

(
− s2u + s2t

2

)
dstdsu

=

∫ ∫ 0

−∞

1

2π
exp(−

s2u +
(
gt(X) + ht(X)W (X) + ht(X)su + st

)2
2

)dstdsu

=

∫ 0

−∞

∫
1

2π
exp

(
− 1

2

(
(1 + h2

t (X))(su +
ht(X)(gt(X) + ht(X)W (X) + st)

1 + h2
t (X)

)2

+

(
gt(X) + ht(X)W (X) + st

)2
1 + h2

t (X)

)
dsudst

=

∫ 0

−∞

1√
2π
√

1 + h2
t (X)

exp
(
− 1

2

(
st + gt(X) + ht(X)W (X)

)2
1 + h2

t (X)

)
dst

= Φ
(gt(X) + ht(X)W (X)√

1 + h2
t (X)

)
.

Thus, if the Condition D is satisfied, we can identify
(
gt(X) +W (X)ht(X), ht(X)

)
. Let

Kt(x, εu) = gt(x) + ht(x)W (x) + ht(x)εu, we have

TBR(x) =
{

1− Φ
(
K0(x, s)

)}
Φ
(
K1(x, s)

)
fεu(s)ds

=

∫ {∫ ∞
K0(x,s)

1√
2π

exp(−s20/2)ds0
}{∫ K1(x,s)

−∞

1√
2π

exp(−s21/2)ds1
}
fεu(s)ds

=

∫ ∫ 0

−∞

∫ ∞
0

1

(2π)3/2
exp

{
− (s0 +K0(x, s))2 + (s1 +K1(x, s))2 + s2

2

}
ds0ds1ds.

Let Kt,1(x) = gt(x) + ht(x)W (x), thus Kt(x, s) = Kt,1(x) + sht(x). Then the term in
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exp
(
− 1

2
(·)
)

can be arranged as

{s0 +K0(x, s)}2 + {s1 +K1(x, s)}2 + s2

=
{

1 + h2
0(x) + h2

1(x)
}
s2 + 2

{
(s0 +K0,1(x))h0(x) + (s1 +K1,1(x))h1(x)

}
s

+{s0 +K0,1(x)}2 + {s1 +K1,1(x)}2

=
{

1 + h2
0(x) + h2

1(x)
}{
s+

(s0 +K0,1(x))h0(x) + (s1 +K1,1(x))h1(x)

1 + h2
0(x) + h2

1(x)

}2
+

1

1 + h2
0(x) + h2

1(x)

[
{s0 +K0,1(x)}2{1 + h2

1(x)}+ {s1 +K1,1(x)}2{1 + h2
0(x)}

−2{s0 +K0,1(x)}h0(x){s1 +K1,1(x)}h1(x)
]
.

So

TBR(x) =

∫ ∞
0

∫ 0

−∞

1

(2π)S
exp

(
− F

2

)
ds0ds1,

where

S2 = 1 + h2
0(x) + h2

1(x),

F =
[
{s0 +K0,1(x)}2{1 + h2

1(x)}+ {s1 +K1,1(x)}2{1 + h2
0(x)}

−2{s0 +K0,1(x)}h0(x){s1 +K1,1(x)}h1(x)
]
/S2

=
{

(s0, s1)− µ
}

Σ−1
{

(s0, s1)− µ
}T
,

µ = (−K0,1(x), −K1,1(x)),

Σ =

 1 + h2
0(x) h0(x)h1(x)

h0(x)h1(x) 1 + h2
1(x)

 .

Thus, TBR(x) = Φ2

(
(0,∞), (−∞, 0);µ,Σ

)
, where Φ2(A0, A1;µ,Σ) is the distribution

function of bivariate normal vector with mean µ, covariance matrix Σ and integral region

A0×A1. Similarly, we can derive the form for THR(x). Thus, we can identify the TBR(x)

and THR(x), so the joint distribution of (Y0, Y1) given X are identifiable.

Appendix H Additional Tables
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Table 1: The true value, bias, average estimated standard error (ASE), empirical stan-

dard error (ESE) and 95% confidence interval (CI) coverage in continuous case. Every

table cell contains two elements, which corresponds to the population TBRc (first row

in each cell) and THRc (second row in each cell) (c = 0.5) respectively.

Distribution of U true value bias ASE ESE 95% CI coverage

Normal
0.501 −0.001 0.017 0.017 0.945

0.397 −0.001 0.016 0.016 0.949

t(3)
0.500 −0.001 0.017 0.017 0.951

0.396 0.002 0.016 0.016 0.948

t(10)
0.499 < 0.001 0.017 0.017 0.953

0.395 0.002 0.016 0.016 0.939

χ2(3)
0.501 −0.001 0.017 0.016 0.955

0.397 < 0.001 0.016 0.016 0.954

χ2(10)
0.502 −0.002 0.017 0.017 0.952

0.397 < 0.001 0.016 0.016 0.956

P(3)
0.502 −0.002 0.017 0.017 0.951

0.398 −0.002 0.016 0.016 0.943

P(10)
0.503 −3e-03 0.017 0.017 0.933

0.397 −7e-04 0.016 0.016 0.942

B(0.5)
0.501 −8e-04 0.017 0.017 0.949

0.395 6e-04 0.016 0.016 0.953
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Table 2: Estimates, estimated standard deviation (SD) and p-value of parameters of the

Mind Study

t = 0 t = 1

Estimate SD p-value Estimate SD p-value

Gender −0.656 0.275 0.017 −0.248 0.321 0.439

CVD 0.581 0.353 0.100 0.100 0.395 0.801

Age 1.075 0.202 < 0.001 0.500 0.231 0.030

DSST −0.483 0.190 0.011 −0.652 0.231 0.005

Race 0.619 0.309 0.045 0.355 0.383 0.354

U 1.768 0.791 0.025 0.148 0.374 0.693

UGender −1.916 0.480 < 0.001 −1.742 0.414 < 0.001

UCVD −0.321 0.398 0.420 −1.669 0.506 0.001

UAge 1.280 0.513 0.013 2.090 0.435 < 0.001

UDSST −1.166 0.313 < 0.001 −1.157 0.339 0.001

URace 1.729 0.390 < 0.001 2.239 0.479 < 0.001

σ2
t 1.080 0.277 < 0.001 1.992 0.491 < 0.001


