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Abstract: The average treatment effect (ATE) is commonly used to assess the ef-

fect of treatment. However, the ATE implicitly assumes a homogenous treatment

effect even amongst individuals with different characteristics. In order to describe

the magnitude of heterogeneity, we define the treatment benefit rate (TBR) as the

proportion of individuals in different subgroups who benefit from the treatment

and define the treatment harm rate (THR) as the proportion harmed. These rates

involve the joint distribution of the potential outcomes and cannot be identified

without further assumptions, even in randomized clinical trials. Under the as-

sumption that the potential outcomes are independent conditional on the observed

covariates and an unmeasured latent variable, we show the identification of the

TBR and THR in non-separable (generalized) linear mixed models for both contin-

uous and binary outcomes. We then propose estimators and derive their asymptotic

distributions. The proposed methods are implemented in an extensive simulation

study and two randomized controlled trials.

Key words and phrases: Average treatment effect, causal inference, heterogeneity,

latent variable.

1. Introduction

The average treatment effect (ATE) is used in evaluating the effect of a treat-

ment or an intervention in a wide range of disciplines such as medicine, social

sciences, econometrics, etc. An assumption implicitly made by the ATE is the

similarity of treatment effect across heterogeneous individuals. Although this

assumption is warranted for some treatments, it is less plausible for others. For

example, most patients treated with MMR (measles, mumps, and rubella) vac-

cine benefit from a very low risk of having Measles (one dose of MMR vaccine is

about 93% effective while two doses are about 97% effective at preventing measles

if exposed to the virus). In contrast, clinical evidence was found that prescrip-

tion of a beta-blocker may or may not provide the desired response in treating

patients with hypertension (Bradley et al. (2007)). Likewise, the prescription

of anti-anxiety drugs such as Benzodiazepines may or may not be effective in
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treating patients with anxiety: some patients suffer from side effects such as

drowsiness and depression while some others experienced paradoxical reactions

such as increased anxiety, irritability, and agitation.

Formally, the heterogeneity of treatment effect is present if the effect of the

treatment varies across subsets of individuals in a population (Poulson, Gad-

bury and Allison (2012)). This variability at the individual level is also called

subject-treatment interaction (Gadbury, Iyer and Allison (2001); Gadbury, Iyer

and Albert (2004)). The heterogeneity of treatment effect may not only arise from

different baseline characteristics of individuals (also known as pre-treatment het-

erogeneity) such as age, sex and social status but also from distinct individual

responses to a particular treatment or intervention (Brand and Thomas (2013)).

From a clinician’s perspective, the heterogeneity of treatment effect plays an

essential role in selecting the most effective treatment and designing individual-

ized treatment regimens (Imai and Ratkovic (2013)). Specifically, a treatment

with large response variability among patients should be used with more vigilant

than a treatment with similar ATE but smaller variability. From a pharmaceu-

tical company’s perspective, it is crucial to identify and target the individuals

that would benefit from the treatment. Finally, it is also critical for policy mak-

ers to understand treatment effect heterogeneity so as to generalize causal effect

estimates obtained from an experimental sample to a target population.

With observed effect modifiers, the conditional ATE for different subpopu-

lations is typically calculated. In principle, such subgroup analysis would yield

homogeneous treatment effect controlling for all effect modifications. However, it

is hard to target and collect all effect modifiers based on the existing knowledge

and limited resources (Zhang et al. (2013)). As a result, the residual hetero-

geneity stand in the way of better understanding the treatment effect and more

effectively designing the optimal treatment for each individual. Furthermore, the

evidence of heterogeneous treatment effect urges further pursuit of unknown ef-

fect modifiers. Novel methods are thus of demand to assess the treatment effect

heterogeneity of the study population or subpopulation.

To better illustrate the treatment effect heterogeneity, we use the framework

of potential outcomes (Rubin (1974); Rosenbaum and Rubin (1983); Holland

(1986)). Under this framework, each individual has a potential outcome for every

possible treatment, and the individual level effect of an experimental treatment

relative to a control is defined by a comparison between the corresponding po-

tential outcomes. However, for each individual, only one potential outcome, the

one corresponds to the actual treatment, can be observed in practice.
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Under the potential outcomes framework, the treatment benefit rate (TBR)

and the treatment harm rate (THR) have been defined to assess the treatment

effect heterogeneity (Gadbury and Iyer (2000); Gadbury, Iyer and Allison (2001);

Gadbury, Iyer and Albert (2004); Albert, Gadbury and Mascha (2005); Poulson,

Gadbury and Allison (2012); Shen et al. (2013); Zhang et al. (2013)). When the

outcomes are binary, the TBR (THR) is the proportion of individuals in different

subgroups who have better (worse) outcomes if given the treatment compared

with control. We define the TBR and THR similarly for continuous outcomes

by comparing the difference between the potential outcomes with some level c.

The definitions of the TBR and THR involve the joint distribution of the two

potential outcomes, thus cannot be identified without further assumptions even

in randomized trials.

Various bounds have been derived for the TBR and THR. Gadbury, Iyer and

Albert (2004) derived the simple bounds of the THR by using only the observed

data without further assumptions, along with tighter bounds by estimating the

quality of matching in a matched design. Albert, Gadbury and Mascha (2005)

extended the results to block trials that include the matched trial as a special

case. Yin and Zhou (2016) used a secondary outcome to obtain tighter bounds

under monotonicity, transitivity and causal necessity assumptions.

To identify and estimate the TBR and THR, Shen et al. (2013) and Zhang

et al. (2013) assumed that the two potential outcomes were independent condi-

tional on observed covariates. However, this assumption is stringent in practice

since the two potential outcomes are from the same individual and there is no

guarantee that all the observed covariates are sufficient to explain the depen-

dence. Yin et al. (2016) estimated the TBR and THR assuming the existence

of at least three covariates which are mutually independent. Their assumption

could be tested when more than three such covariates were available without any

modeling assumptions. However, it is hard to find such covariates in practice.

In this article, we make the weaker assumption that the potential outcomes

are independent given the observed covariates and an unmeasured latent variable.

Under non-separable (generalized) linear mixed models, we prove identification

and construct estimators using maximum-likelihood estimation (MLE). All pa-

rameters in the models can be identified, including the coefficients corresponding

to the unmeasured latent variable. Thus, we can empirically test whether it

is necessary to include such unmeasured latent variable in the independence as-

sumption and whether our models are indeed non-seperable. Moreover, we derive

the asymptotic distributions and variances for the estimators.
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We organize the paper as follows. In Section 2, we introduce the notation

and describe the assumptions. In Section 3, we provide identification conditions

for the TBR and THR under non-separable models for continuous and binary

outcomes, respectively. The estimators and their asymptotic properties are de-

rived in Section 4. We report simulation results in Section 5. We illustrate our

proposed method in two randomized trials in Section 6. The paper concludes

with a discussion in Section 7.

2. Preliminaries

Let T denote a binary treatment assignment variable that is completely ran-

domized and let Y denote a primary outcome of interest. Let X = (X1, · · · , Xp)
T

denote a p–dimensional observed covariate, where the superscript T denotes

transposition. Let t denote a possible value T could take (t = 1 for treatment and

t = 0 for placebo). Assume a larger value of Y indicates better response. Under

the Stable Unite Treatment Value Assumption (SUTVA) (Rubin (1980)), let Y1

and Y0 denote the potential outcomes under treatment and control, respectively.

When the outcome variable Y is binary, define the TBR (THR) for the

subpopulation with specific covariate value X = x as

TBR(x) = P (Y0 = 0, Y1 = 1|X = x) and THR(x) = P (Y0 = 1, Y1 = 0|X = x)∗.

The TBR(x) is the proportion of individuals in the subpopulation with covariates

X = x that have better outcomes if given treatment compared to control. In

contrast, the THR(x) is the proportion of individuals in the subpopulation that

have better outcomes if given control compared to treatment. Let ATE(x) =

E(Y1 − Y0|X = x) denote the average treatment effect among subgroup with

covariates X = x. When the outcomes are binary, we have ATE(x) = TBR(x)−
THR(x), that is, the subgroup ATE is the difference between the beneficial and

harmful rates of the subgroup. Thus, TBR(x) and THR(x) not only provide

information about the overall treatment effect but also how treatment effect may

vary across individuals.

When Y is continuous, we extend the definition of the TBR(x) and the

THR(x) by comparing the difference between the potential outcomes with some

level c:

TBRc(x) = P (Y1 − Y0 > c|X = x) and THRc(x) = P (Y0 − Y1 > c|X = x),

∗When the outcome is binary, a similar definition for the TBR and THR on the population level
was proposed by Shen et al. (2013). Throughout the paper, we focus on the subpopulation TBR(x) and
THR(x) since it provides more detailed information on how the heterogeneity changes across different
subgroups.
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where c is a pre-specified constant. The TBRc(x) is the proportion of individuals

in the subpopulation whose outcome Y would benefit greater than c from the

treatment compared with the control and THRc(x) is the proportion of the indi-

viduals whose outcome Y would be harmed by at least c by the treatment com-

pared with the control. A special case is when c = 0, TBRc=0(x) (THRc=0(x))

denotes the proportion of the individuals whose outcomes benefit from (harmed

by) the treatment regardless of the magnitude. If Y1 − Y0 is a continuous vari-

able, we have TBRc(x) = 1− P (Y1 − Y0 < c|X = x) = 1− P (Y0 − Y1 > −c|X =

x) = 1 − THR−c(x). Thus, we only consider the case of c ≥ 0. When c = 0,

we have TBRc=0(x) = 1− THRc=0(x), that is, regardless of the magnitude, the

proportions of individuals who would benefit and be harmed sum to 1. This does

not hold if Y1 − Y0 has a point mass at 0.

From the definitions of TBRc(x) and THRc(x), 1−TBRc(x) or equivalently

THR−c(x), is the cumulative distribution function of Y1 − Y0 conditional on X.

That is, TBRc(x) and THRc(x) characterize the entire distribution of treatment

effect rather than the mean in the subpopulation. Hence, the heterogeneity of

treatment effect can be inferred from the TBRc(x) and THRc(x). Similar to

the binary case, we can obtain the ATE(x) from the TBRc(x) and THRc(x)

as ATE(x) =
∫∞

0 {TBRc(x) − THRc(x)}dc (Appendix A). However, one cannot

fully recover TBRc(x) and THRc(x) from ATE(x). Thus, TBRc(x) and THRc(x)

provide more information on the subgroup treatment effect than does ATE(x).

Due to the randomization, we can identify the marginal distributions of Y0

and Y1 (conditional distributions of Y0 given X and that of Y1 given X) as well

as ATE(x). However, TBR(x) and THR(x), TBRc(x) and THRc(x) involve the

joint distribution of the two potential outcomes, thus cannot be identified even

in randomized trails without further assumptions. To make progress, Shen et al.

(2013) and Zhang et al. (2013) made the following assumption, where ⊥ denotes

independence between variables.

Assumption 1 (Conditional Independence). Y0⊥Y1|X.

Assumption 1 states that the two potential outcomes are independent con-

ditional on a set of observed baseline covariates. Hence, the joint distribution of

Y0 and Y1 can be identified by the factorization P (Y0, Y1|X) = P (Y0|X)P (Y1|X).

However, this assumption requires the collection of relevant covariates X to con-

trol for all the dependency between two potential outcomes, which is hard to

satisfy in practice and impossible to test from the observed data. Alternatively,

we make an assumption that there is independence between the potential out-



120 YUNJIAN YIN, LAN LIU AND ZHI GENG

comes conditional on observed covariates X and a latent variable U .

Assumption 2 (Latent Independence). Y0⊥Y1|(X,U), U⊥X.

Assumption 1 is a special case of Assumption 2 when there is no latent vari-

able U . The independence between X and U can be relaxed to a decomposition

of U into any function of X and a random error εu that is independent of X

(Appendix G). For the ease of illustration, we assume U and X are independent.

Zhang et al. (2013) claimed that, under Assumption 2, the information of U is

not identifiable in a generalized linear mixed model (GLMM) and thus adopted

a sensitivity analysis.

3. Identification

In this section, we show the identifications for the subpopoulations TBR

and THR under non-separable GLMM for both continuous and binary outcomes.

Specifically, we have the following model for continuous outcomes{
Yt = αt,0 + αT

t,1X + αt,2U + αT
t,3XU + εt,

εt⊥(X,U), εt ∼ N(0, σ2
t ), U ∼ N(µU , σ

2
U ), αt,3 6= 0,

(3.1)

where αt,1 = (α
(1)
t,1 , · · · , α

(p)
t,1 )T , αt,3 = (α

(1)
t,3 , · · · , α

(p)
t,3 )T and t = 0, 1. Without

loss of generality, we take αt,2 > 0, since otherwise set U∗ = sign(αt,2) · U and

α∗t,2 = sign(αt,2) · αt,2, where sign(k) denotes the sign of k. If αt,3 6= 0, the

model is not separable, i.e., the model cannot be written in the form of Yt =

l1(X)+ l2(U). This is not a stringent assumption when the observed covariate X

is high dimensional since it requires at least one, but not all, interactions between

X and U . We will show that, although U is a latent variable, the non-separability

assumption can be empirically tested. Under the GLMM (3.1), we can also

empirically test whether Assumption 2 is more reasonable than Assumption 1.

The latent variable U can be interpreted as a subject-specific random effect

and the distribution of U is assumed normal. Without loss of generality, we

take (µU , σ
2
U ) = (0, 1) since otherwise U can be standardized. We evaluate the

performance of the proposed estimators when the normality of U is violated with

a sensitivity analysis in Section 5.2.

We have the following formulas (F1) and (F2) for TBRc(x) and THRc(x),

the proofs of which are given in Appendix A. From (F1) and (F2), once the

parameters in model (3.1) are identified, TBRc(x) and THRc(x) can be identified.

Specifically,
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TBRc(x) = Φ
( (α1,0 − α0,0) + (α1,1 − α0,1)Tx− c√(

(α1,2 − α0,2) + (α1,3 − α0,3)Tx
)2

+ σ2
0 + σ2

1

)
, (F1)

THRc(x) = Φ
( (α0,0 − α1,0) + (α0,1 − α1,1)Tx− c√(

(α0,2 − α1,2) + (α0,3 − α1,3)Tx
)2

+ σ2
0 + σ2

1

)
, (F2)

where Φ(·) is the cumulative distribution function of a standard normal variable.

When outcomes are binary, we consider the following model
Y ∗t = αt,0 + αT

t,1X + αt,2U + αT
t,3XU + εt,

Yt = I(Y ∗t > 0),

εt⊥(X,U), εt ∼ N(0, σ2
t ), U ∼ N(µU , σ

2
U ), (αt,0, αt,1) 6= 0, αt,3 6= 0,

(3.2)

for t = 0, 1, where αt,1 = (α
(1)
t,1 , · · · , α

(p)
t,1 )T , αt,3 = (α

(1)
t,3 , · · · , α

(p)
t,3 )T . Again, we

assume that U is standard normal. Additionally, without loss of generality, we

assume σ2
0 = σ2

1 = 1 since otherwise set Ỹ ∗t = Y ∗t /σt, α̃t,k = αt,k/σt and ε̃t = εt/σt
for t = 0, 1 and k = 0, . . . , 3. Here Y ∗t is a latent variable and (3.2) indicates a

probit model for the outcome Yt:

P (Yt = 1|X,U) = Φ
(
αt,0 + αT

t,1X + αt,2U + αT
t,3XU

)
.

Similar to the continuous case, under (3.2) we can empirically evaluate whether

Assumption 2 is more reasonable than Assumption 1 and whether the GLMM is

separable despite U is unobserved.

We have the following formulas (F3) and (F4) for TBR(x) and THR(x), the

proofs of which are given in Appendix A. From (F3) and (F4), once the param-

eters in model (3.2) are identified, TBR(x) and THR(x) can also be identified

as

TBR(x) = Φb

(
µ(x; θ),Σ(x; θ)

)
, (F3)

THR(x) = Φh

(
µ(x; θ),Σ(x; θ)

)
, (F4)

where

µ(x; θ) =
(
µ0(x; θ), µ1(x; θ)

)
=
(
− α0,0 − αT

0,1x, − α1,0 − αT
1,1x

)
,

Σ(x; θ) =

(
1 + (α0,2 + αT

0,3x)2 (α0,2 + αT
0,3x)(α1,2 + αT

1,3x)

(α0,2 + αT
0,3x)(α1,2 + αT

1,3x) 1 + (α1,2 + αT
1,3x)2

)
,

Φb

(
µ,Σ

)
= Φ2

(
(0,∞), (−∞, 0);µ,Σ

)
,

Φh

(
µ,Σ

)
= Φ2

(
(−∞, 0), (0,∞);µ,Σ

)
,

and
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Φ2(A0, A1;µ,Σ) =∫ ∫
A0×A1

1

2π|Σ|1/2
exp

{
− 1

2
(s0 − µ0, s1 − µ1)Σ−1(s0 − µ0, s1 − µ1)T

}
ds0ds1.

Let θ = (θT0 , θ
T
1 )T denote the parameters in models (3.1) and (3.2), θt =

(αt,0, α
T
t,1, αt,2, α

T
t,3, σ

2
t )T in the continuous model and θt = (αt,0, α

T
t,1, αt,2, α

T
t,3)T

in the binary model, for t = 0, 1. We have the following theorem for the identifi-

cation of θ and thus the identification of (TBRc(x), THRc(x)) for the continuous

outcomes and (TBR(x), THR(x)) for the binary outcomes, the proof of which is

given in Appendix B.

Theorem 1. Under Assumption 2,

(i) If the model (3.1) holds, the parameters θ can be identified, thus the TBRc(x)

and THRc(x) can also be identified for any constant c.

(ii) If the model (3.2) holds, the regularity Condition C (given in Appendix B)

holds, then the parameters θ can be identified, thus the TBR(x) and THR(x)

can also be identified.

The non-separable condition plays an important role in the identification

of the parameters θ in the presence of U . When marginalizing over U , the

interaction term between U and X helps identify the effect of U on Y which

would otherwise be absorbed in the intercept. Although the identification of

αt,0, αt,1 and σt are straightforward, as shown in the Appendix B, it is αt,2 and

αt,3 that captures the unmeasured heterogeneous treatment effect and allow the

identification of TBR and THR. Since U is not measured, the identification of

αt,2 and αt,3 relies on borrowing information from the observed data. Intuitively,

this cannot be achieved when αt,3 = 0 since αt,2 will be absorbed in the variance

of εt. In Appendix C, we provide proof of non-identification of TBR and THR

for both discrete and continuous outcomes when the interaction between X and

U is absent.

Theorem 1 implies the identification of the parameters θ in models (3.1)–

(3.2). Thus both the non-separability assumption and Assumption 2 can be

empirically evaluated using the observed data. We can empirically test for the

interaction between X and U , i.e., whether αt,3 is significantly different from

0. We can also empirically test the inclusion of U in the models (3.1)–(3.2) by

checking whether the coefficients αt,2 and αt,3 are significant. If there is at least

one of them significant in the models for both Y0 and Y1, then the Assumption 1

is violated and we must include a latent U to make the conditional independence
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of Y0 and Y1 hold.

The covariate X is linear in models (1) and (2). This is not required and is

imposed for ease of illustration. When the outcomes are continuous, the general

form of the GLMM is{
Yt = gt(X) + Uht(X) + εt,

εt⊥(X,U), εt ∼ N(0, σ2
t ), U ∼ N(0, 1), ht(0) > 0,

(3.3)

for t = 0, 1. Similarly, when the outcomes are binary, the general form of the

GLMM is 
Y ∗t = gt(X) + Uht(X) + εt,

Yt = I(Y ∗t > 0),

εt⊥(X,U), εt ∼ N(0, 1), U ∼ N(0, 1), ht(0) > 0,

(3.4)

for t = 0, 1. Models (3.1) and (3.2) are special cases of models (3.3) and (3.4) with

gt(X) = αt,0 + αT
t,1X and ht(X) = αt,2 + αT

t,3X. In Appendix B, we give neces-

sary and sufficient conditions to identify θ = (g0(X), h0(X), σ2
0, g1(X), h1(X), σ2

1)

in model (3.3) and θ = (g0(X), h0(X), g1(X), h1(X)) in model (3.4). Once

(h0(X), h1(X)) is identified, we can test the inclusion of U by testing whether

(h0(X), h1(X)) is significant with the observed data, and test the non-separability

by testing whether (h0(X), h1(X)) = (h0, h1), where h0 and h1 are constants.

4. Inference

When the outcomes are continuous, the parameters θ can be estimated by

the MLE θ̂, obtained by maximizing the log-likelihood

` = logL(T,X, Y ) = Pn

{
ψ(T,X, Y ; θ)

}
,

where Png(X) =
∑n

i=1 g(Xi)/n, and

ψ(T,X, Y ; θ) =∑
t=0,1

1

2

[
I(T=t)

{
− log(2π)− log

(
(αt,2 + αT

t,3X)2 + σ2
t

)
−

(Y − αt,0−αT
t,1X)2

(αt,2 + αT
t,3X)2 + σ2

t

}]
.

By the theory of M-estimators, we have the asymptotic normality of θ̂, which

can be used to test the significance of the parameters. Additionally, following

(F1) and (F2), we can estimate the TBRc and THRc by

T̂BRc(x) = Φ
( (α̂1,0 − α̂0,0) + (α̂1,1 − α̂0,1)Tx− c√(

(α̂1,2 − α̂0,2) + (α̂1,3 − α̂0,3)Tx
)2

+ σ̂2
0 + σ̂2

1

)
,
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T̂HRc(x) = Φ
( (α̂0,0 − α̂1,0) + (α̂0,1 − α̂1,1)Tx− c√(

(α̂0,2 − α̂1,2) + (α̂0,3 − α̂1,3)Tx
)2

+ σ̂2
0 + σ̂2

1

)
,

where α̂t,k and σ̂2
t are MLEs of the corresponding parameters. The following theo-

rem shows the
√
n consistency, asymptotic normality and provides the asymptotic

variances of the estimators when the outcomes are continuous.

Theorem 2. If the model (3.1) holds for continuous outcomes, we have
√
n
(
T̂BRc(x)− TBRc(x)

) d−→ N(0, σ2
cB(x; θ)),

√
n
(
T̂HRc(x)− THRc(x)

) d−→ N(0, σ2
cH(x; θ)),

where
d−→ denotes convergence in distribution. The expressions and consistent

estimators of σ2
cB(x; θ) and σ2

cH(x; θ) are given in Appendix D.

When the outcomes are binary, parameters θ can be estimated by the MLE

θ̂, which is obtained by maximizing the log-likelihood,

` = logL(T,X, Y ) = Pn

{
ψ(T,X, Y ; θ)

}
,

and

ψ(T,X, Y ; θ) =
∑
t=0,1

[
I(T = t)

{
Y log

(
G(X; θt)

)
+ (1− Y ) log

(
1−G(X; θt)

)}]
,

where

G(X; θt) = Φ

(
αt,0 + αT

t,1X√
1 + (αt,2 + αT

t,3X)2

)
.

Similarly, we have the asymptotic normality of θ̂, which can be used to test the

significance of the parameters. Additionally, following (F3) and (F4), we can

estimate the TBR and THR by

T̂BR(x) = Φb

(
µ(x; θ̂),Σ(x; θ̂)

)
,

T̂HR(x) = Φh

(
µ(x; θ̂),Σ(x; θ̂)

)
.

The following theorem shows the
√
n consistency, asymptotic normality and

provides the asymptotic variances of the estimators when the outcomes are bi-

nary.

Theorem 3. If the model (3.2) holds for binary outcomes and the regularity

Condition C holds, we have
√
n
(
T̂BR(x)− TBR(x)

) d−→ N(0, σ2
bB(x; θ)),
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√
n
(
T̂HR(x)− THR(x)

) d−→ N(0, σ2
bH(x; θ)),

where the expressions and consistent estimators of σ2
bB(x; θ) and σ2

bH(x; θ) are

given in the Appendix E.

5. Simulation

5.1. Finite sample performance

We first assess the finite sample performance of the estimators proposed in

Section 4. The simulations were conducted with (a) the continuous outcomes and

(b) the binary outcomes. For scenario (a), the simulation study was conducted

as follows.

Step 1: A population of size 1,000 was created. Variables T , X and U were

generated independently. Treatment T was generated from a Bernoulli

distribution with P (T = 1) = 0.5, the components of covariates X =

(X1, X2, X3)T were identically and independently generated from a stan-

dard normal distribution and latent variable U was also generated from

a standard normal distribution. Potential outcomes (Y0, Y1) were gener-

ated from (3.1) with parameters set to

(α0,0, α
(1)
0,1, α

(2)
0,1, α

(3)
0,1, α0,2, α

(1)
0,3, α

(2)
0,3, α

(3)
0,3)

= (−0.3, 1.2,−1.0,−0.8, 0.7,−0.5, 1.3, 0.6),

(α1,0, α
(1)
1,1, α

(2)
1,1, α

(3)
1,1, α1,2, α

(1)
1,3, α

(2)
1,3, α

(3)
1,3)

= (0.2,−0.8, 1.2, 1.0, 0.8,−0.6, 1.0, 0.6),

σ2
0 = 1.0, σ2

1 = 1.2.

Step 2: The parameters θ were estimated using MLE and the estimates of

(TBRc(x0.25), THRc(x0.25)) and the variances of the estimators were

calculated, where c = 1, x0.25 = (x1,0.25, x2,0.25, x3,0.25) and xi,0.25 is

the value of the first quartile of the ith covariate distribution.

Step 3: Steps 1 and 2 were repeated for 1,000 times to obtain the biases, average

estimated standard error (ASE) and the empirical standard error (ESE).

The results where U follows a normal distribution are reported in Table 1. The

biases are −0.002 and 0.001 for TBRc(x0.25) and THRc(x0.25), respectively, and

the ASEs are 0.027 and 0.035 respectively (both approximate their ESEs which

are 0.028 and 0.036). The coverages of the 95% CI approximate 0.95, indicating
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Table 1. The true value, bias, average estimated standard error (ASE), empirical stan-
dard error (ESE), and 95% confidence interval (CI) coverage in scenario (a) with contin-
uous outcomes. Each table cell contains two elements, which corresponds to TBRc(x0.25)
(first row in each cell) and THRc(x0.25) (second row in each cell) (c = 1), respectively.

Distribution of U true value bias ASE ESE 95% CI coverage

Normal
0.201 −0.002 0.027 0.028 0.947
0.585 0.001 0.035 0.036 0.945

t(3)
0.288 0.001 0.027 0.028 0.942
0.470 0.001 0.029 0.029 0.945

t(10)
0.214 0.002 0.027 0.029 0.938
0.564 −0.001 0.034 0.035 0.946

χ2(3)
0.182 0.001 0.029 0.029 0.947
0.612 0.001 0.037 0.036 0.954

χ2(10)
0.182 −0.001 0.028 0.029 0.943
0.612 0.002 0.037 0.037 0.952

P(3)
0.234 −0.001 0.028 0.028 0.953
0.540 −0.002 0.033 0.033 0.955

P(10)
0.215 −0.002 0.028 0.028 0.943
0.564 0.002 0.034 0.034 0.947

B(0.5)
0.112 −0.001 0.025 0.025 0.954
0.728 0.001 0.04 0.039 0.955

good performance of our estimators. We also carried out simulations for the

TBRc(x) and THRc(x) at x0.5 and x0.75, where x0.5 and x0.75 are the the median

and third quartile of the corresponding covariates distributions. We observed

similar results. They are not shown here due to space constraints.

For binary outcomes, the simulation process was similar, except in Step 1, we

set the sample size to be 2,000 and generated (Y0, Y1) from (3.2) with the same

θ excluding (σ2
0, σ

2
1) and in Step 2, the (TBR(x0.25),THR(x0.25)) were calculated

instead of the (TBRc(x0.25),THRc(x0.25)). The results for the binary outcomes

where U was simulated from a normal distribution are shown in Table 2. The

biases are -0.001 and 0.001 for TBR(x0.25) and THR(x0.25), respectively, and the

ASEs are 0.031 and 0.048, respectively (both approximate their ESEs which are

0.031 and 0.047). The coverages of the 95% CI approximate 0.95, indicating good

performance of our estimators.

5.2. Sensitivity analysis with respect to the distribution of U

We assumed that U was normally distributed for the identification of the

joint distribution of (Y0, Y1). We carried out a sensitivity analysis to evaluate

the performance of the estimators for TBR(x0.25), THR(x0.25) with U distributed
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Table 2. The true value, bias, average estimated standard error (ASE), empirical stan-
dard error (ESE), and 95% confidence interval (CI) coverage in scenario (b) with binary
outcomes. Each table cell contains two elements, which corresponds to TBR(x0.25) (first
row in each cell) and THR(x0.25) (second row in each cell), respectively.

Distribution true value bias ASE ESE 95% coverage

Normal
0.109 −0.001 0.031 0.031 0.937
0.420 0.001 0.048 0.047 0.948

t(3)
0.174 −0.004 0.025 0.023 0.956
0.315 0.003 0.040 0.040 0.935

t(10)
0.123 −0.002 0.030 0.028 0.963
0.400 0.001 0.048 0.046 0.951

χ2(3)
0.094 0.003 0.030 0.027 0.958
0.443 0.012 0.053 0.050 0.937

χ2(10)
0.095 0.003 0.031 0.030 0.947
0.442 0.007 0.051 0.050 0.945

P(3)
0.136 −0.001 0.029 0.028 0.950
0.379 0.001 0.050 0.047 0.955

P(10)
0.121 0.001 0.031 0.030 0.950
0.403 0.001 0.050 0.049 0.942

B(0.5)
0.039 0.025 0.037 0.040 0.836
0.513 −0.026 0.052 0.050 0.952

as t, chi-squared, Poisson and Bernoulli. The estimation was carried out as in

Section 5.1 except U was generated from the distributions above. We standard-

ized U to have mean 0 and variance 1 under each distribution.

The results for continuous outcomes are shown in Table 1. When U follows a

t(3) distribution, the biases are 0.001 and 0.001 for TBRc(x0.25) and THRc(x0.25)

respectively, and the ASEs are 0.027 and 0.029, respectively, where the ESEs are

0.028 and 0.029, respectively. The coverages of 95% CI are 0.942 and 0.945,

respectively. Similar performance is also observed when U follows distributions

such as chi-squared, Poisson and Bernoulli. As the degrees of freedom increase

for distributions such as chi-squared and Poisson, the standardized U can be

approximated by normal and the good performances of estimators is expected.

When the degrees of freedom are small, the performance of estimators are ro-

bust for symmetric distributions (e.g., t-distribution) and skewed distributions

(e.g., chi-squared distribution). The estimators are robust even for the discrete

distributions (Poisson, Bernoulli).

The results of the binary case are in Table 2. When U follows a t(3) distri-

bution, the biases are −0.004 and 0.003 for TBR(x0.25),THR(x0.25), respectively,

and the ASE are 0.025 and 0.040, respectively (the ESEs which are 0.023 and
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0.040, respectively). The coverages are 0.956 and 0.935, respectively, which ap-

proximate 0.95. From the table we infer that when the outcomes are binary, the

estimators are robust to the different distributions of the unmeasured variable

U , including symmetric, non-symmetric, and discrete distributions.

We carried out sensitivity analysis for different distributions of U for the con-

ditional heterogenous treatment effects at x0.5 and x0.75, as well as the marginal

heterogeneous treatment effects under scenario (a) and (b). We observed similar

results, which were not shown here.

6. Statistical Analysis

6.1. MIND study

The Memory in Diabetes (MIND) study was the first randomized trial in

older persons with type 2 diabetes to test the effect of intensive compared to

standard glycaemic therapeutic strategies on multiple cognitive domains and on

structural changes in the brain (Launer et al. (2011)). People with type 2 diabetes

are at risk for cognitive impairment and brain atrophy. The study participants

were randomized to an intensive glycaemic therapeutic strategy targeting HbA1c

to <6%, or a standard strategy targeting HbA1c to 7%–7.9%. Of the 614 partic-

ipants with a baseline MRI, 230 intensive and 273 standard therapy participants

were included in the analysis. Our primary outcome is the abnormal white mat-

ter (AWM) tissue volume at 40 months, which reflects diffuse and focal ischemic,

demyelinating, and inflammatory processes leading to small vessel disease, and

is associated with diabetes and impaired cognition (van Harten et al. (2006);

Debette and Markus (2010)).

We calculated the ATE among different subgroups. We adjusted for gen-

der (male or female), race (white or not), history of CVD (yes or no), age (<

60, 60–69, 70+ yrs), and the number of correctly completed cells on the 40-

month Digit Symbol Substitution Test (DSST) (< 47, 47–59, 60+), as suggested

in Launer et al. (2011). For illustration, we focus on three subgroups: group

A is nonwhite females under 60 years old without CVD history and DSST <

47; group B is white male under 60 years with CVD history and DSST > 60,

and group C is nonwhite males over 70 years old without CVD history and

DSST < 47. Amongst the subgroups defined by the available covariates, the

only subgroup with a significant ATE is group A: ÂTE(xA) = 1.043, 95% CI

[0.102, 1.984], p-value = 0.030. Groups B and C have negative ATEs with simi-

lar p-values: ÂTE(xB) = −0.449, 95% CI [−1.605, 0.707], p-value = 0.447, and
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Figure 1. Estimated curves of TBRc(x) and THRc(x) of MIND study. Note: Group A
is nonwhite females under 60 years old without CVD history, DSST < 47; group B is
white male under 60 years with CVD history, DSST > 60; group C is nonwhite males
over 70 years old without CVD history, DSST < 47.

ÂTE(xC) = −0.514, 95% CI [−1.813, 0.785], p-value = 0.439. However, with

the average mean treatment effect for each subgroup, additional information is

needed to further describe the treatment effect. For example, what proportion

of individuals in group A that benefit from the treatment, and what is the distri-

bution of such benefit. Although groups B and C have negative ATE, are there

any individuals benefit from the treatment in these groups, and how much harm

does the treatment cause in these groups.

To further estimate the TBRc(x) and THRc(x), we adjusted in model (2) for
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the same set of covariates when calculating ATE(x). The results of the regres-

sion suggest some significant interactions, as shown in Table 2 of the Appendix

H (e.g., the coefficient of Ugender is estimated to be α̂
(1)
0,1 = −1.916, 95% CI:

[−2.856,−0.975], p-value < 0.001, α̂
(1)
1,1 = −1.742, 95% CI: [−2.553, 0.931], p-

value < 0.001). This justifies the inclusion of U in the model (3.2) and the non-

separable assumption holds. The estimated curves of TBRc(x) and THRc(x)

with different threshold values c are given in Figure 1 (a) and (c). Each line

stands for a subgroup with specific covariate values. A comparison of the TBR

and THR curves for group A with groups B and C reveals individuals in group

A benefit the most from the treatment as compared with groups B and C since

the TBRc(x) is larger and THRc(x) is smaller for group A at all levels of c. This

information goes beyond the mean treatment effect being larger in group A as

compared with group B and C.

Due to the space constraint, we show only the confidence band of the TBRc

and THRc for group A in Figure 1 (b) and (d). Although the ATE(xA) is sig-

nificantly different from 0, the individual treatment effect is quite heterogenous:

about two thirds of individuals benefit from it (T̂BRc=0(xA) = 0.677, 95% CI

[0.467, 0.886], p-value < 0.001) and approximately a third of individuals in this

subgroup are harmed by it (T̂HRc=0(xA) = 0.323, 95% CI [0.113, 0.533], p-value

< 0.001). Additionally, there are about 20% of individuals having a relative

large positive treatment effect, e.g., T̂BRc=3(xA) = 0.195, 95% CI [0.024, 0.365],

p-value = 0.025. Thus, the covariates in the models do not fully describe the

individual characteristics that would benefit from the treatment and it would

harm a third of individuals if the treatment is advocated uniformly in group A.

Although groups B and C have similar negative ATEs with comparable

standard errors, the treatment has quite different impact on the two groups. For

group B, there are 12.5% of individuals having a relatively large positive treat-

ment effect (T̂BRc=3(xB) = 0.125, 95% CI [0.017, 0.233], p-value < 0.001) while

that is only 2.2% for group C (T̂BRc=3(xC) = 0.022, 95% CI [−0.021, 0.065],

p-value = 0.317). These results suggest group C may have a more homogenous

treatment effect as compared with group B. Since some individuals in group B

have a relatively large treatment effect, it may be worthwhile to incoporate more

information and subject matter knowledge to identify these individuals. These

information will all be missed if we only investigate the subgroup ATE.

6.2. ACCORD eye study

Diabetic retinopathy (DR) is one of the most common causes of vision loss
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Figure 2. Estimates and confidence intervals of ATE(x), TBR(x) and THR(x) for dif-
ferent groups x = (x1, x2) in ACCORD Eye study.

among people with diabetes, and the leading cause of vision impairment and

blindness among adults younger than 65 in the United States (Chew et al. (2007)).

It has been found that poor glycemic control is one of the most important risk

factors associated with the development of DR. The Action to Control Car-

diovascular Risk in Diabetes Eye (ACCORD Eye) study aimed at determining

whether the intensive glycemia control could reduce the risk of development or

progression of diabetic retinopathy, as compared with the standard treatments.

The study included 2,856 eligible participants randomly assigned to either inten-

sive or standard treatment for glycemia. The primary outcome for this study

was the composite end point of either progression of diabetic retinopathy by at

least three steps on the Early Treatment Diabetic Retinopathy Study (ETDRS)

Severity Scale, or development of proliferative diabetic retinopathy necessitating

photocoagulation therapy or vitrectomy in 4 years (Y = 0 if the progression

of diabetic retinopathy was seen, and Y = 1 otherwise) (The ACCORD Study

Group and ACCORD Eye Study Group (2010)).

At the end of four years of follow-up, progression of diabetic retinopathy was

seen in 7.3% of participants (104 out of 1,429) in the intensive glycemic control

group, as compared with 10.4% of participants (149 out of 1,427) in the standard

glycemic therapy group, suggesting a significant effect of the intensive glycemic

control for the entire study population (ÂTE = 0.032, 95% CI [0.011, 0.052],

p-value = 0.003).

To investigate how the ATE changes across different subgroups, we carried
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out a subgroup analysis. We adjusted for the other treatment that individuals

used and the qualification to participate in the Lipid and blood pressure (BP)

trials, that is, we define subgroups by X1 (0 if in Lipid placebo arm, 1 if in Lipid

Fibrate arm, and 2 if not eligible for the Lipid trial) and X2 (0 if in standard BP

arm, 1 if in intensive BP arm, and 2 if not eligible for the BP trial). Covariates

(X1, X2) were considered by The ACCORD Study Group and ACCORD Eye

Study Group (2010). The estimates and CIs of subgroup ATE are presented in

Figure 2. Although the population ATE is significant, as shown above, the only

subgroup with a significant ATE is the group (0, 2) (ÂTE(0, 2) = 0.062, 95%

CI [0.023, 0.101], p-value = 0.002). The subgroup ATE suggests only using the

intensive glycemic control in group (0, 2), that is in individuals not eligible for

the BP trial but in the Lipid placebo arm.

To estimate TBR(x) and THR(x), we adjusted in model (2) for (X1, X2) as

nominal variables. The results of the regression suggest some significant inter-

actions, including UX
(1)
1 (α̂

(1)
0,3 = 0.556, 95% CI: [0.238, 0.873], p-value = 0.021),

UX
(2)
1 (α̂

(2)
1,3 = 0.531, 95% CI: [0.210, 0.852], p-value = 0.027), where X

(1)
1 and

X
(2)
1 are indicators for eligibility to participate in the Lipid trial and the use of

Lipid Fibrate treatment. This justifies the inclusion of U in the model (3.2) and

the non-separable assumption holds.

The estimates and confidence intervals for TBR(x) and THR(x) in different

subgroups are shown in Figure 2. The estimates of both are relatively small

across all groups. Specifically, for the individuals not eligible for the BP trial but

in the Lipid placebo arm (group (0, 2)), T̂BR(0, 2) = 0.101, 95% CI [0.074, 0.128],

p-value < 0.001 and T̂HR(0, 2) = 0.039, 95% CI [0.023, 0.055], p-value < 0.001.

Although the subgroup ATE suggests the use of the intensive glycemic control

for group (0, 2), the heterogeneity analysis reveals that over 85% of individuals in

this subgroup neither benefit nor are harmed. This trend holds for most groups

defined by the available covariates (X1, X2): over 80% of individuals have no

effect at all across all subgroups. On the other hand, although having a non-

significant subgroup ATE, group (2, 2) has about 15% individuals benefit from

the intensive glycemic control (T̂BR(2, 2) = 0.146, 95% CI [0.060, 0.232], p-value

< 0.001), which is the highest proportion of individuals having benefits among all

subgroups. Additional information is needed to further identify these subjects.

7. Discussion

In this article, we assessed the treatment effect heterogeneity by evaluating
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the TBR and THR. We relaxed the conditional independence Assumption 1 by

allowing the presence of an unmeasured latent variable. Under non-separable

(generalized) linear mixed models, the existence of the latent variable can be

tested, and we provided identification and estimation methods.

We imposed a normality assumption on the latent variable U . Normality of

U is not necessary for identification, but when the distribution of U is not normal,

the distribution of Y − g(X), conditional on X, may not have a distribution in

closed form and the identification condition may thus be complicated. We carried

out a sensitivity analysis to evaluate the performance of estimators under different

underlying distributions of U . We leave the generalization of identification and

estimation of treatment effect heterogeneity under different distributions of U as

future research topics.

The identification and inference method we developed in this paper rely

on the parametric assumptions. They have efficiency gains and result in better

convergence as compared with a semiparametric approach, but are not as robust.

We leave the development of a semiparametric approach for future research.

Supplementary Materials

In Appendix A, we provide the proof of formulas (F1), (F2), (F3), and

(F4) and derive the relationship of ATE(x), TBRc(x) and THRc(x). In Ap-

pendix B, we provide the sufficient and necessary identification conditions for

(gt(X);ht(X)) in the models (3.3) and (3.4), and prove Theorem 1. In Appendix

C, we prove that the treatment effect heterogeneity cannot be identified in sepa-

rable models. In Appendices D and E, we prove Theorems 2 and 3. In Appendix

F, we provide the estimation and asymptotic properties for the models (3.3) and

(3.4). In Appendix G, we provide identification conditions when U depends on X.

In Appendix H, there are additional tables from simulation study and statistical

analysis.
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