NONPARAMETRIC CONFIDENCE BANDS IN WICKSELL'S PROBLEM

Jakub Wojdyła and Zbigniew Szkutnik

AGH University of Science and Technology

Supplementary Material

This supplementary material contains proofs of Lemma 1 and Corollary 1. They refer to formulas, conditions, and theorems by numbers assigned in the main article.

S1 Proof of Lemma 1

Integration by parts, the fact that $K(x)|x|^{1/2}[\log \log |x|]^{1/2} \to 0$, $|x| \to \infty$, and the law of iterated logarithm for the Wiener process yield

$$Y_{n,3}(t) = h^{-3/2} \int K'\left(\frac{t-x}{h}\right) W(x) \, dx.$$

Combining this with (A.6) gives

$$|Y_{n,2}(t) - Y_{n,3}(t)| \le |I_1| + |I_2|,$$

where

$$I_{1} = h^{-1/2} \int K'(x) \frac{g(t-hx)^{1/2} - g(t)^{1/2}}{g(t)^{1/2}} W(t-hx) \, dx,$$

$$I_{2} = h^{1/2} \int_{(t-1)/h}^{t/h} K(x) \frac{g'(t-hx)}{2g(t-hx)^{1/2}g(t)^{1/2}} W(t-hx) \, dx.$$

Furthermore, $I_1 = I_{1,1} + I_{1,2} + I_{1,3}$, with

$$I_{1,1} = h^{-1/2} \int_{(t-1)/h}^{t/h} K'(x) \frac{g(t-hx)^{1/2} - g(t)^{1/2}}{g(t)^{1/2}} W(t-hx) \, dx,$$
$$I_{1,2} = -h^{-1/2} \int_{-\infty}^{(t-1)/h} K'(x) W(t-hx) \, dx,$$

$$I_{1,3} = -h^{-1/2} \int_{t/h}^{\infty} K'(x) W(t - hx) \, dx.$$

It follows from assumption (2a) that g is Hölder continuous with any exponent $0 < \beta \leq 1$ and an appropriate constant C. Consequently, for the integral $I_{1,1}$ one obtains

$$|I_{1,1}| \le Ch^{-1/2+\beta} \sup_{x \in [0,1]} |W(x)| \int |K'(x)| |x|^{\beta} dx.$$

Taking $\beta = 1/2 + \min\{\alpha, 1/2\}$ and using assumption (1b), we deduce that $|I_{1,1}| = O_p(h^{\min\{\alpha, 1/2\}})$.

For a constant $\bar{C} \ge 1/(1-b)^{\alpha/2}$,

$$|I_{1,2}| \le \bar{C}h^{-1/2} \int_{-\infty}^{(t-1)/h} |K'(x)| |hx|^{\alpha/2} |W(t-hx)| \, dx$$

and, after another application of the law of iterated logarithm for the Wiener process,

$$|I_{1,2}| \le O_p(h^{\alpha/2}) \int |K'(x)| |x|^{1/2 + \alpha/2} [\log \log^+ |x|]^{1/2} dx,$$

uniformly in $t \in [a, b]$, where $\log \log^+ |x| = 0$, if |x| < e and $\log \log^+ |x| = \log \log |x|$, otherwise. Therefore, $|I_{1,2}| = O_p(h^{\alpha/2})$. Similarly, one obtains $|I_{1,3}| = O_p(h^{\alpha/2})$.

To complete the proof of Lemma 1, it is sufficient to notice that $|I_2| = O_p(h^{1/2})$, uniformly in $t \in [a, b]$.

S2 Proof of Corollary 1

We begin by introducing the following processes on [a, b]:

$$Y_{n,4}(t) = -\frac{n^{1/2}h\pi}{2m\tilde{g}_n(t)^{1/2}}[f_n(t) - E\{f_n(t)\}],$$

$$Y_{n,5}(t) = -\frac{n^{1/2}h\pi}{2m\tilde{g}_n(t)^{1/2}}[f_n(t) - f(t)],$$

$$Y_{n,6}(t) = -\frac{n^{1/2}h\pi}{2\hat{m}\tilde{g}_n(t)^{1/2}}[\hat{f}_n(t) - f(t)].$$

Note that $nh/(\log n)^3 \to \infty$, since $nh^2/\log(1/h) \to \infty$. Thus, the assumptions of Theorem 1 are satisfied. From that theorem, $||Y_n|| = O_p\{\log(1/h)^{1/2}\}$. Taking the difference of Y_n and $Y_{n,4}$, one has

$$Y_n(t) - Y_{n,4}(t) = Y_n(t) \frac{\tilde{g}_n(t) - g(t)}{\tilde{g}_n(t)^{1/2} [\tilde{g}_n(t)^{1/2} + g(t)^{1/2}]},$$

and, hence, $||Y_n - Y_{n,4}|| = o_p \{ \log(1/h)^{-1/2} \}$ by an application of (2.4). Furthermore, (2.3) and the condition $n^{1/2}h^{k+1}\log(1/h)^{1/2} \to 0$ imply that, uniformly for $t \in [a, b]$,

$$|Y_{n,4}(t) - Y_{n,5}(t)| = \left|\frac{n^{1/2}h\pi}{2m\tilde{g}_n(t)^{1/2}}\right| |f(t) - E\{f_n(t)\}| = o_p\{\log(1/h)^{-1/2}\}.$$

Finally,

$$Y_{n,5}(t) - Y_{n,6}(t) = Y_{n,5}(t)\frac{\hat{m} - m}{m} + \frac{n^{1/2}h\pi}{2\hat{m}\tilde{g}_n(t)^{1/2}}[f_n(t) - f(t)]\frac{\hat{m} - m}{m} + \frac{n^{1/2}h\pi}{2\hat{m}\tilde{g}_n(t)^{1/2}}f(t)\frac{\hat{m} - m}{m} = Y_{n,5}(t)\left[\frac{\hat{m} - m}{m}\right]^2 + \frac{n^{1/2}h\pi}{2\hat{m}\tilde{g}_n(t)^{1/2}}f(t)\frac{\hat{m} - m}{m},$$

and, hence, $||Y_{n,5} - Y_{n,6}|| = o_p\{n^{-1+\delta}\log(1/h)^{1/2}\} + o_p(n^{\delta}h) = o_p\{\log(1/h)^{-1/2}\},\$ because of (2.5) and of $n^{-1+\delta}\log(1/h) = O(1)$ and $n^{\delta}h\log(1/h)^{1/2} = O(1).$

Therefore, replacing Y_n in Theorem 1 with, consecutively, $Y_{n,4}$, $Y_{n,5}$ and $Y_{n,6}$, one gets

$$P\left(\left[2\log(1/h)\right]^{1/2} \left[\left\|Y_{n,6}\right\| / C_{K,1}^{1/2} - d_n\right] < x \right) \to \exp\{-2\exp(-x)\},\$$

and Corollary 1 follows by rearranging the terms.