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Abstract: In many longitudinal studies, longitudinal responses are subject to left-

censoring and may be correlated with observation times. In this article, we propose

a Tobit quantile regression model for the analysis of left-censored longitudinal data

with informative observation times and with the longitudinal responses allowed

to depend on the past observation history. Estimating equation approaches are

developed for parameter estimation, and the resulting estimators are shown to be

consistent and asymptotically normal. A modified Majorize-Minimize algorithm is

proposed to compute the proposed estimators. Simulation studies show that the

proposed estimators perform well. An application to a data set from an AIDS

clinical trial study is provided.
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1. Introduction

Longitudinal data arise when subjects are followed up over a period of time.

This occurs in such fields as medical follow-up studies, psychology, sociology,

and observational investigations. Due to accuracies of measurement tools or

mechanism, the longitudinal responses are often subject to a lower detection

limit such that some responses are left censored. For example, in an HIV-RNA

level study, viral load measurements are often subject to left censoring due to

a lower limit of quantification (Hammer et al. (2002)). Other examples include

the antibody concentration in blood serum (Moulton and Halsey (1995)) and the

concentration of a pollutant in the environment (Singh and Nocerino (2002)).

Such data are referred to as left-censored longitudinal data (Jacqmin-Gadda et

al. (2000); Wang and Fygenson (2009)).

Several methods have been developed for analyzing left-censored longitudinal
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data (Paxton et al. (1997); Hughes (1999); Wang and Fygenson (2009); Kobayashi

and Kozumi (2012); Xiao et al. (2014)). For example, Paxton et al. (1997)

proposed a multiple imputation approach and each censored residual was replaced

by a random number drawn from the appropriate truncated normal distribution.

Hughes (1999) and Jacqmin-Gadda et al. (2000) used likelihood-based methods

while assuming a Gaussian distribution for both random effects and random

errors (also see Lyles, Lyles and Taylor (2000); Thiébaut and Jacqmin-Gadda

(2004)). Under no distributional assumption, Wang and Fygenson (2009) and

Xiao et al. (2014) suggested a rank score test and a randomly weighting test

for censored quantile regression models, respectively. Kobayashi and Kozumi

(2012) developed Bayesian approaches for analyzing quantile regression models.

For these modeling approaches, a strong assumption is that the longitudinal

responses and the observation times are independent given covariates.

In many applications, however, observation times are informative about the

longitudinal responses. For example, the observation times may be hospitaliza-

tion times of subjects, which are response variable-dependent in the study (Lin,

Scharfstein and Rosenheck (2004); Sun et al. (2005)). Some methods have been

proposed for situations where the longitudinal responses and the observation

times are related (Sun, Sun and Liu (2007); Liu, Huang and O’Quigley (2008);

Liang, Lu and Ying (2009); Sun et al. (2012); Chen, Tang and Zhou (2016)).

For example, Lin, Scharfstein and Rosenheck (2004) proposed a class of inverse

intensity-of-visit process-weighted estimators for a typical marginal regression

model. Sun et al. (2005) suggested a conditional model where the longitudinal

responses are assumed to depend on the past observation history. Sun, Sun and

Liu (2007) and Liang, Lu and Ying (2009) presented some joint models for the

longitudinal responses and the observation times via latent variables. Recently,

Chen, Tang and Zhou (2016) considered a quantile regression method when the

response variable depends on the past observation history. These methods pri-

marily analyze longitudinal data with informative observation times in the ab-

sence of left censoring. To the best of our knowledge, there is no existing work

considering the joint analysis of left-censored longitudinal data with informa-

tive observation times. The method of Chen, Tang and Zhou (2016) cannot

be extended in a straightforward manner to deal with left-censored longitudinal

data because there is a need for considering left-censored responses. In general,

discarding censored measurements or ignoring them leads to biased inferences.

In this article, we propose joint modeling of left-censored longitudinal data

with informative observation times. A Tobit quantile regression model is used for
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the longitudinal responses with left censoring, and a nonhomogeneous Poisson

process is used for the observation times. The longitudinal responses are allowed

to depend on the past observation history. Estimating equation approaches are

developed for parameter estimation, and the resulting estimators are shown to

be consistent and asymptotically normal. The proposed objective function is nei-

ther differentiable nor convex due to left-censored responses, and the theoretical

and computational developments are challenging. A modified Majorize-Minimize

(MM) algorithm is used to handle the computational difficulty. The algorithm is

different from that of Chen, Tang and Zhou (2016).

The remainder of the paper is as follows. Section 2 describes joint models for

the longitudinal responses and the observation times. Section 3 proposes estimat-

ing procedures for regression parameters of interest. The asymptotic properties

of the proposed estimators are established, and the MM algorithm is presented.

Section 4 reports some results from simulation studies for evaluating the pro-

posed methods. An application to a HIV-1 RNA data set from an AIDS clinical

trial is provided in Section 5, and some concluding remarks are made in Section

6. Proofs are relegated to the Appendix.

2. Model Specification

Consider a longitudinal study involving n independent subjects. For the ith

subject, let Y ∗i (t) be the underlying response variable at time t, and Xi(t) be the

p-dimensional vector of possibly time-dependent covariates. Due to limitations

of accuracy of measurement tool or mechanism, the response Y ∗i (t) is subject

to a lower bound d. Without loss of generality, we assume that d = 0. Let

Yi(t) = max{Y ∗i (t), 0}, and Ci be the follow-up or censoring time. If N∗i (t) is the

counting process denoting the number of the observation times before or at time t,

the process Yi(t) is only observed at the jump points of Ni(t) = N∗i (min{t, Ci}).
The covariate histories {Xi(t) : 0 ≤ t ≤ Ci} (i = 1, ..., n) are assumed to be

observed.

Define Fit = {Ni(u), 0 ≤ u < t}. We start with the marginal regression

model

Y ∗i (t) = β′Xi(t) + α′H(Fit) + ei(t), i = 1, ..., n, (2.1)

where β and α are vectors of unknown regression parameters with dimensions p

and q, respectively, H(·) is a vector of known functions on the counting process

Ni(t) up to time t−, and ei(t) is a measurement error process (e.g., Sun et al.

(2005)). We cannot observe the potential response Y ∗i (t) because of its nonneg-
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ative constraint. Hence in view of (2.1), following Wang and Fygenson (2009)

and for a given 0 < τ < 1, we consider the marginal regression model

Yi(t) = max{0, β′Xi(t) + α′H(Fit) + ei(t)}, i = 1, . . . , n, (2.2)

where the τth quantile of ei(t) is assumed to be zero. Here, (2.2) is referred to

as the Tobit quantile regression model for the longitudinal responses with left

censoring (Wang and Fygenson (2009); Xiao et al. (2014)).

For the observation process, we assume that conditioning on Xi(t), N
∗
i (t) is

a nonhomogeneous Poisson process with

E(dN∗i (t)|Xi(t)) = exp (γ′Xi(t))dΛ0(t), i = 1, 2, ..., n, (2.3)

where γ is a vector of unknown regression parameters, and Λ0(t) is an arbitrary

nondecreasing function (e.g., Lin and Ying (2001); Sun et al. (2005)). For con-

venience, models (2.2) and (2.3) assume the same set of covariates X(t). The

proposed estimation procedure can be extended in a straightforward manner to

deal with different sets of covariates.

In contrast with the common Tobit quantile regression models with longitu-

dinal data, a main feature of (2.2) is that it allows the response process Yi(t) to

be correlated with the observation process N∗i (t) and, in particular, in a linear

fashion through the function H. When α = 0, (2.2) reduces to the models stud-

ied by Wang and Fygenson (2009) and Xiao et al. (2014) for the case that the

observation process has no information on the response process.

In (2), the function H can be chosen according to practical matters. As

in Sun et al. (2005), a natural choice for H can be H(Fit) = Ni(t−), which

implies that all information about Yi(t) in Fit is given by the total number of

observations. Another choice is H(Fit) = Ni(t−)−Ni(t−s), which indicates that

Yi(t) depends on Fit only through the number of observations in the last s time

units. The function H also can be defined by some combination of the foregoing

choices if both the total and recent numbers of observations include information

about the response Yi(t). In what follows, we assume that conditional on the

covariate Xi(t), the censoring time Ci is independent of Yi(t) and N∗i (t).

3. Estimation Procedures

3.1. Procedures

We first consider the special case of γ = 0, which implies that the observation

times are independent of the covariate Xi(t). Here a common method to estimate

θ = (β′, α′)′ is to minimize the objection function
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Q(θ) =
1

n

n∑
i=1

∫ L

0
ρτ{Yi(u)− (θ′Zi(u))+}dNi(u), (3.1)

where L is the maximum follow-up time, a+ = max{0, a}, Zi(u) = (X′i(u),

H′(Fiu))′, and ρτ (v) = v{τ − I(v < 0)} is the quantile loss function (e.g., Wang

and Fygenson (2009)). The subgradient of ρτ{Yi(u) − (θ′Zi(u))+}dNi(u) with

respect to θ is

Zi(u)I{θ′Zi(u) > 0}
[
I{Yi(u)− θ′Zi(u) < 0} − τ

]
dNi(u).

Thus, minimizing (3.1) is equivalent to solving the estimating equation

1

n

n∑
i=1

∫ L

0
Zi(u)I{θ′Zi(u) > 0}

[
I{Yi(u)− θ′Zi(u) < 0} − τ

]
dNi(u) = op(n

−1/2),

which can be obtained from the derivative of (3.1) with respect to θ.

We now consider the case in which the observation times depend on the

covariates through model (2.3). Motivated by the above, we take

Mi(t; θ, γ,Λ0) =

∫ t

0
I{θ′Zi(u) > 0}

[
I{Yi(u)− θ′Zi(u) < 0}dNi(u)

− τξi(u) exp (γ′Xi(u))dΛ0(u)
]
,

where ξi(t) = I(Ci ≥ t). Let θ0 and γ0 be true values of θ and γ, respectively.

Under models (2.2) and (2.3) and the assumptions,

E
[
I{θ′0Zi(u) > 0}I{Yi(u)− θ′0Zi(u) < 0}dNi(u)|Zi(u), Ci

]
= τξi(u) exp (γ′0Xi(u))dΛ0(u).

Then it can be checked that

E{Mi(t; θ0, γ0,Λ0)|Zi(u)} = 0,

which implies that Mi(t; θ0, γ0,Λ0) is zero-mean stochastic process. Thus, for

given γ0 and Λ0, we can estimate θ0 using the estimating equation

U(θ; γ0,Λ0) =
1

n

n∑
i=1

∫ L

0
Zi(u)dMi(u; θ, γ0,Λ0) = 0. (3.2)

In reality, γ0 and Λ0 are unknown. Using the approach of Lin et al. (2000),

we propose an estimating equation for γ0:
n∑
i=1

∫ L

0
{Xi(u)− X̄(u; γ)}dNi(u) = 0, (3.3)

where X̄(u; γ) = S(1)(u; γ)/S(0)(u; γ), and
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S(k)(u; γ) =
1

n

n∑
j=1

ξj(u)Xj(u)⊗k exp (γ′Xj(u)), k = 0, 1, 2,

where a⊗2 = aa′ for any vector a. Let γ̂ denote the solution to this estimating

equation. Then Λ0(t) can be consistently estimated by the Aalen-Breslow-type

estimator

Λ̂0(t) =
1

n

n∑
i=1

∫ t

0

dNi(u)

S(0)(u; γ̂)
.

By replacing γ0 and Λ0(t) with γ̂ and Λ̂0(t) in (3.2), we specify an estimating

function for θ0:

U(θ; γ̂, Λ̂0) =
1

n

n∑
i=1

∫ L

0
Zi(u)dMi(u; θ, γ̂, Λ̂0). (3.4)

Since U(θ; γ̂, Λ̂0) is a discontinuous function of θ, we define the estimator θ̂ as

a zero-crossing of U(θ; γ̂, Λ̂0) or as a minimizer of ‖U(θ; γ̂, Λ̂0)‖, where ‖a‖ =

(a′a)1/2.

3.2. Implementation

Due to the complicated nature of U(θ; γ̂, Λ̂0), it is apparently not possible

to obtain θ̂ directly. To overcome this difficulty, we propose a modified MM

algorithm (e.g., Ortega and Rheinboldt (1970, P. 253); Lange, Hunter and Yang

(2000)). Let

qi(θ) =

∫ L

0
Zi(u)I{θ′Zi(u) > 0}

[
I{Yi(u)− θ′Zi(u) < 0} − τ

]
dNi(u),

G(θ; γ̂) =
τ

n

n∑
i=1

∫ L

0

[
Zi(u)I{θ′Zi(u) > 0} − S̃(1)(u; θ, γ̂)

S(0)(u; γ̂)

]
dNi(u),

and ∂Q(θ)/∂θ = n−1
∑n

i=1 qi(θ), where

S̃(1)(u; θ, γ) =
1

n

n∑
i=1

ξi(u)Zi(u)I{θ′Zi(u) > 0} exp (γ′Xi(u)).

Then it can be checked that

U(θ; γ̂, Λ̂0) =
∂Q(θ)

∂θ
+G(θ; γ̂).

Let θk be the kth iteration estimate of θ. Following Hunter and Lange (2000),

the objection function Q(θ) can be replaced with a Majorizing function with a

disturbance constant ε > 0,
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Q̃ε(θ|θk) =
1

n

n∑
i=1

∫ L

0

1

4

{ ri(θ)
2

ε+ |ri(θk)|
+ (4τ − 2)ri(θ) + ci

}
dNi(u),

where ri(θ) = Yi(u)−(θ′Zi(u))+. Since (θ′Zi(u))+ is not continuous with respect

to θ, the function Q̃ε(θ|θk) is still not smooth at θ. To this end, we use a

smoothing function to approximate t+

Kh(t) =
t

1 + exp(−t/h)
,

where h > 0 is a known smoothing parameter. Here, for small enough h, Kh(t) ≈
t+. By substituting r̃i(θ) = Yi(u)−Kh(θ′Zi(u)) for ri(θ) in Q̃ε(θ|θk), we obtain

a smooth Majorizing function

Qε(θ|θk) =
1

n

n∑
i=1

∫ L

0

1

4

{ r̃i(θ)
2

ε+ |r̃i(θk)|
+ (4τ − 2)r̃i(θ) + ci

}
dNi(u),

where ci satisfies

1

4

{ r̃i(θ
k)2

ε+ |r̃i(θk)|
+ (4τ − 2)r̃i(θ

k) + ci

}
= ρτ (ri(θ

k))− ε

2
log(ε+ |ri(θk)|).

Based on the smoothing objection function Qε(θ|θk), the (k + 1)-step esti-

mating function can be constructed as

Ũ(θ; γ̂, Λ̂0|θk) =
∂Qε(θ|θk)

∂θ
+G(θk; γ̂). (3.5)

Then the (k+1)th iteration estimate θk+1 is obtained by solving Ũ(θ; γ̂, Λ̂0)|θk) =

0. Given an initial estimate θ0 and ε > 0, this iteration is continued until

convergence and the estimate θ̂ is obtained at convergence. For the convergence,

several criteria can be applied; in our numerical studies, we used the absolute

differences between the iterative estimates of the parameters.

Remark 1. In the above MM algorithm, we propose to use a one-step Newton-

Raphson method to calculate θk+1 as θk+1 = θk −∆k+1, where

∆k+1 =
(∂2Qε(θ|θk)

∂θ∂θ′

∣∣∣
θ=θk

)−1
Ũ(θk; γ̂, Λ̂0|θk).

3.3. Properties

To establish the asymptotic properties of θ̂, let

S̃(2)(u; θ, γ) =
1

n

n∑
i=1

ξi(u)Zi(u)Xi(u)′I{θ′Zi(u) > 0} exp (γ′Xi(u)),

and Z̄(u; γ, θ) = S̃(1)(u; θ, γ)/S(0)(u; γ). Let s̃(1)(u), s̃(2)(u), and s(k)(u) denote

the limits of S̃(1)(u; θ0, γ0), S̃(2)(u; θ0, γ0), and S(k)(u; γ0) (k = 0, 1, 2), respec-
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tively. Also, let z̄(u) = s̃(1)(u)/s(0)(u) and x̄(u) = s(1)(u)/s(0)(u). Define

M∗i (t) = Ni(t)−
∫ t

0
ξi(u) exp (γ′0Xi(u))dΛ0(u),

A = E
[ ∫ L

0

{s(2)(u)

s(0)(u)
− x̄(u)⊗2

}
dNi(u)

]
,

B = E
[ ∫ L

0

{ s̃(2)(u)

s(0)(u)
− s̃(1)(u)s(1)(u)′

s(0)(u)2

}
dNi(u)

]
,

D = E
[ ∫ L

0
Zi(u)Zi(u)′I{θ′0Zi(u) > 0}fY ∗(u)|{Xi(u),Fiu}(θ

′
0Zi(u))dNi(u)

]
,

where fY ∗(u)|{Xi(u),Fiu}(y) is the density function of Y ∗(u) conditional on {Xi(u),

Fiu} for u ∈ [0, L].

The proof of the following is given in the Appendix.

Theorem 1. Under the regularity conditions (C1)-(C5) stated in the Appendix,

θ̂ is consistent, and n1/2(θ̂−θ0) has an asymptotic normal distribution with mean

zero and covariance matrix Σ = D−1VD−1, where

V = E
[
qi(θ0) + τ

∫ L

0
[Zi(u)I{θ′0Zi(u) > 0} − z̄(u)]dM∗i (u)

−τBA−1

∫ L

0
{Xi(u)− x̄(u)}dM∗i (u)

]⊗2
.

The asymptotic variance of θ̂ can be consistently estimated by Σ̂, which can

be obtained by the usual plug-in method. Note that Σ is of complicated form

involving some nuisance parameters such as the conditional density function of

Y ∗(u). Thus, it is difficult to estimate Σ directly. Here, we propose to use the

bootstrap method to estimate the asymptotic variance of θ̂. In our simulation

studies with the sample size n = 100, we used 200 bootstrap samples and found

the variance estimation to be fairly accurate.

4. Simulation Studies

Simulation studies were conducted to examine the finite sample performance

of the proposed estimators. In the study, we let Xi = (Xi1, Xi2)′, where Xi1 was

generated from the standard normal distribution, and Xi2 was from a Bernoulli

distribution with success probability 0.5. For given Xi, the observation times

were generated from a nonhomogeneous Poisson process with

E(dN∗i (t)|Xi) = exp(γ1Xi1 + γ2Xi2)dΛ0(t),

where Λ0 = 0.5t, γ1 = −0.5 and γ2 = 1. The censoring time was generated



TOBIT QUANTILE REGRESSION OF LEFT-CENSORED LONGITUDINAL DATA 535

from a uniform distribution on (κ/2, κ) with κ = 2 or 4 representing the largest

follow-up time.

For the response variable, we assumed that Yi(t) was given by the Tobit

quantile regression model

Yi(t) = max{0, β1Xi1 + β2Xi2 + αNi(t−) + (1 + πXi1)ei(t)},

where β1 = −1, β2 = 1, and α = 0, 0.25, or 0.5. Here α reflects the dependence

between the response variable and the observation times. While α = 0 has the

response variable and the observation times independent, α 6= 0 has the two

processes with nonzero correlations. For π and ei(t), we considered three cases.

S1. π = 0, ei(t) was generated from the standard normal; S2. π = 1, ei(t) was

generated from the standard normal; S3. π = 0, ei(t) was generated from the

standard Cauchy.

For these three cases, the median of ei(t) was zero, τ = 0.5. Our results

are based on 1,000 replications with sample size n=100, and final estimates were

reached when the absolute difference of the estimates between two successive

iterations was less than 10−5. The asymptotic variance was estimated using the

bootstrap method with 200 bootstrap samples. We found this to be adequate.

Tables 1 and 2 present the simulation results on the estimates of θ = (β1, β2,

α)′ for κ = 2 and 4, respectively. In these tables, TQR stands for the proposed

method, Bias is the sample mean of the estimate minus the true value, SE is the

sampling standard error of the estimate, SEE is the sample mean of the standard

error estimate, and CP is the empirical coverage probability of the 95% confidence

interval based on the normal approximation. It can be seen from Tables 1 and 2

that the proposed method performed well for the situations considered here: the

proposed estimators are virtually unbiased, the standard error estimates are close

to the sampling standard errors, and the 95% empirical coverage probabilities are

reasonable. The results are better with increasing κ or increasing the numbers

of observations. In addition, the proposed estimators are robust to the cases of a

heteroscedastic error distribution (S2) and a heavy-tailed error distribution (S3).

For comparison, we considered the method of Wang and Fygenson (2009)

(denoted by WF). They studied model (2) with α = 0. Under the same setups,

the comparison results on estimation of β1 and β2 are given in Tables 1 and 2.

When the observation times are noninformative, the WF estimators are unbiased.

Here, the methods provide reasonable and comparable estimates. The variances

of our method are only slightly larger than those of WF, because they utilize the

assumption of the independent observation times in their estimation. When
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Table 3. Simulation results for the estimation of θ with κ = 4 for τ = 0.25 and 0.75.

S4 S5
τ α Bias SE SEE CP Bias SE SEE CP
0.25 0 β1 0.0027 0.0567 0.0576 0.943 0.0068 0.0565 0.0563 0.939

β2 −0.0071 0.0393 0.0416 0.941 −0.0072 0.0402 0.0408 0.934
α 0.0009 0.0087 0.0092 0.952 0.0011 0.0090 0.0091 0.935

0.25 β1 0.0168 0.0679 0.0665 0.923 0.0123 0.0636 0.0639 0.927
β2 0.0026 0.0535 0.0510 0.940 −0.0006 0.0499 0.0509 0.958
α 0.0026 0.0133 0.0133 0.940 0.0029 0.0126 0.0133 0.952

S6 S7
Bias SE SEE CP Bias SE SEE CP

0.75 0 β1 0.0120 0.1211 0.1174 0.934 0.0048 0.1119 0.1145 0.946
β2 −0.0101 0.0849 0.0859 0.941 −0.0100 0.0873 0.0847 0.939
α 0.0010 0.0183 0.0189 0.945 0.0006 0.0191 0.0189 0.938

0.25 β1 0.0289 0.1365 0.1340 0.918 0.0279 0.1276 0.128 0.929
β2 −0.0038 0.1018 0.1036 0.954 −0.0007 0.1001 0.1037 0.953
α 0.0085 0.0269 0.0280 0.959 0.0075 0.0267 0.0282 0.964

the independent assumption is violated, WF can lead to large bias and yield

improper coverage probabilities.

We conducted simulation studies to examine the performance of the proposed

method for the cases of τ = 0.25 and 0.75, with κ = 4 and α = 0 or 0.25. For

τ = 0.25, we considered two situations for the error term: S4. ei(t) normal with

mean −Φ−1(0.25) and variance 1; S5. ei(t) a Cauchy with location parameter

1 and scale parameter 1. For τ = 0.75, we considered two situations: S6. ei(t)

normal with mean −Φ−1(0.75) and variance 1; S7. ei(t) Cauchy with location

parameter −1 and scale parameter 1. Here, different mean and location param-

eters guarantee that the τth quantile of ei(t) is zero. For all these situations, we

took π = 0, and all other setups were the same as before.

The simulation results are summarized in Table 3. It can be seen there that

the proposed method still performed reasonably well for the cases of τ = 0.25 and

0.75: the proposed estimators have small biases, reasonable variance estimates,

and the empirical coverage probabilities. We also considered other setups and

obtained similar results.

We conducted some simulation studies to compare the proposed method with

the näıve method that replaces the left censored responses by half of the detection

limit and applied the method of Chen, Tang and Zhou (2016) to the imputation

data. We considered the case S2 in Table 1, where Xi1 was standard normal and

Xi2 was normal with mean 0.2 and variance 1. The results for other cases are
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Table 4. Comparison results on the estimation of θ for our method and a näıve method
with κ = 2.

TQR Naive
α Bias SE SEE CP Bias SE SEE CP
0 β1 0.0244 0.0854 0.0887 0.968 0.2113 0.1604 0.2652 0.849

β2 −0.0843 0.1062 0.1355 0.913 −0.1495 0.1937 0.2446 0.919
α 0.0438 0.0742 0.0861 0.977 0.1057 0.1490 0.1826 0.956

0.25 β1 0.0393 0.0898 0.0980 0.958 0.2169 0.1829 0.2836 0.851
β2 −0.0876 0.1108 0.1412 0.927 −0.1627 0.2070 0.2632 0.901
α 0.0524 0.0822 0.0974 0.974 0.1173 0.1668 0.2039 0.946

0.50 β1 0.0359 0.0852 0.0924 0.962 0.2013 0.1641 0.2597 0.867
β2 −0.0931 0.1106 0.1445 0.917 −0.1610 0.1937 0.2518 0.900
α 0.0518 0.0746 0.0908 0.977 0.1097 0.1464 0.1829 0.958

similar. Table 4 gives the comparison results on estimation of θ = (β1, β2, α)′.

Simulation results show that the näıve method can lead to biases even when

α = 0. In addition, it tends to cause an inflated SEE, and yields improper

coverage probabilities.

5. An Application

We applied the proposed method to the HIV-RNA level data from an AIDS

clinical trial study (Hammer et al. (2002); Sun and Wu (2005); Wang and Fygen-

son (2009)). In this study, some subjects received a single protease inhibitor (PI),

while others received a double-PI antiretroviral regimens in treating HIV-infected

patients. HIV-1 RNA levels in plasma (viral load) was measured repeatedly dur-

ing the follow-up. The scheduled visits for the measurements were at weeks 0,

2, 4, 8, 16, and 24. However, the actual visit times varied around the scheduled

visiting times, and the numbers of measurements differed, which indicates that

the observation times might be informative about the viral load. A total of 481

patients was enrolled in the study. The numbers of patients with 1 to 6 visits

were 10, 11, 13, 29, 69, and 349, respectively. Due to technical limitations, about

22% of measurements were censored from below at 200 copies/ml. Some patients

had prior antiviral treatment with non-nucleoside analogue reverse transcriptase

inhibitors (NNRTI) and others did not have prior NNRTI treatment. The prior

treatment experience was considered to be a factor that would affect the antiviral

response to the antiretroviral regimens. We focused on the effects of the prior

NNRTI treatment and the PI treatment on the HIV viral load response.

Following Sun and Wu (2005) and Sun, Sun and Zhou (2013), we used a
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Table 5. Analysis results for the HIV-1 RNA data.

TQR WF
τ Est SEE p-value Est SEE p-value
0.5 β0 1.1163 0.0814 < 0.0001 1.2183 0.1133 < 0.0001

β1 1.0239 0.1192 < 0.0001 1.0509 0.1212 < 0.0001
β2 −2.0876 0.3753 < 0.0001 −1.8211 0.2754 < 0.0001
α 0.0993 0.0490 0.0427 − − −

0.6 β0 1.3991 0.0784 < 0.0001 1.5888 0.0947 < 0.0001
β1 0.9073 0.1413 < 0.0001 0.8937 0.1432 < 0.0001
β2 −1.8635 0.3696 < 0.0001 −1.0741 0.3428 0.0017
α 0.2038 0.0346 < 0.0001 − − −

0.7 β0 1.7414 0.0799 < 0.0001 2.0793 0.0802 < 0.0001
β1 0.6888 0.1127 < 0.0001 0.6765 0.1218 < 0.0001
β2 −2.0445 0.3219 < 0.0001 −0.7603 0.2355 0.0012
α 0.3295 0.0361 < 0.0001 − − −

transformation of the actual visit times t = log10(day of the actual visit + 40)−
log10(33). For subject i, let Xi1 be the indicator of the prior antiviral treatment

with NNRTI, 1 is so and 0 otherwise. Let X∗2i = 1 if the patient received a double-

PI treatment, and X∗2i = 0 for patients who received a single-PI treatment. Since

Sun and Wu (2005) showed that the effect of X∗2i on the viral load response was

linear over time, we took X2i(t) = X∗2it. Let Yi(t) be the observed log10 (viral

load response). We considered the Tobit quantile regression model

Yi(t) = max{log10(200), β0 + β1Xi1 + β2Xi2(t) + αNi(t−) + ei(t)}, (5.1)

and allowed that the actual visit times can be described by model (2.3) with

Xi(t) = (Xi1, Xi2(t))′ and γ = (γ1, γ2)′. For (2.3), we got γ̂1 = 0.0327 and

γ̂2 = −0.0683, with estimated standard errors of 0.0160 and 0.0450, respectively.

The results show that the patients with the prior NNRTI treatment tend to have

more visit times than those without the NNRTI treatment, whereas the patients

with the double-PI treatment are likely to have less visit times than those with

the single-PI treatment.

We fitted (5.1) at different quantiles with τ at 0.5, 0.6 and 0.7 to obtain a

profile of the treatments’ effects. The asymptotic variance was estimated using

the bootstrap method with 200 bootstrap samples. The analysis results of β and

α are summarized in Table 5. The results imply that the prior NNRTI treatment

and the protease inhibitor treatment have significant effects on the HIV viral load

at several τ ’s. In particular, the patients with the prior NNRTI treatment have

higher viral load than those without the prior NNRTI treatment, and the double-
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Table 6. Sensitivity analysis to the choice of H(Fit) for the HIV-1 RNA data with
τ = 0.7.

H(Fit) Est SEE p-value
log{Ni(t−) + 1} β0 1.8936 0.0825 < 0.0001

β1 0.6682 0.1219 < 0.0001
β2 −1.2867 0.2491 < 0.0001
α 0.3750 0.0797 < 0.0001

Ni(t−)1/2 β0 1.9404 0.0837 < 0.0001
β1 0.6619 0.1435 < 0.0001
β2 −1.1303 0.2662 < 0.0001
α 0.2200 0.0611 0.0004

PI treatment can reduce HIV viral load compared to the single-PI treatment. All

α̂’s are positive for three different τ values, indicating that the HIV viral load

response and the actual visit times are positively correlated.

For comparison, Table 5 gives the results of the WF method assuming the

observation times noninformative. It can be seen that the WF estimators are

nearly the same as our proposed estimators for β1 at three quantile levels. How-

ever, the WF method overestimate slightly β0 and underestimate significantly

β2, especially at the quantile level τ = 0.6 and 0.7. Thus, after adjusting for

informative visit times, the estimate for the double-PI treatment effect becomes

much larger.

We performed a sensitivity analysis to the choice of the function H(Fit) for

the data, and replaced Ni(t−) at (5.1) with log{Ni(t−) + 1} or Ni(t−)1/2. The

other setups were the same as in Table 5 with τ = 0.7. The results are reported

in Table 6. Tables 5 and 6 show results that are similar for the three choices of

H(Fit), and that the conclusions are consistent.

6. Concluding Remarks

In this article, we proposed a Tobit quantile regression model for the anal-

ysis of left-censored longitudinal data in the presence of informative observation

times, where the longitudinal responses are allowed to depend on the past obser-

vation history. Estimating equation approaches were proposed to obtain consis-

tent and asymptotically normal estimators, and the Majorize-Minimize algorithm

was used to compute the proposed estimators. The simulation results suggest

that the proposed estimation approach performs well, and is robust to the cases

of the heteroscedastic error and heavy-tailed error distributions. An application
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to the HIV-1 RNA data set from an AIDS clinical trial has been provided to

illustrate our method.

We have assumed that the observation process is a nonhomogeneous Poisson

process. It would be interesting to extend the proposed estimation procedure

to deal with a counting process. In addition, we have used the multiplicative

intensity (Cox) model for the observation process. Other competing models,

such as the additive intensity (Aalen) model, the accelerated failure time model

(Lin, Wei and Ying (1998)) and the semiparametric transformation models (Zeng

and Lin (2006)), may be used as well. It would be worthwhile to investigate the

potential bias due to misspecification for each of these models.

The proposed method relies on the assumption that the censoring time is

independent of both the longitudinal responses and the observation times condi-

tional on the covariates. In some applications, this assumption may be violated,

especially when censoring is caused by informative dropouts such as death (Wang,

Qin and Chiang (2001)). Some methods have been developed for the analysis of

longitudinal data in the presence of informative observation and censoring times

(e.g., Sun et al. (2012)). It would be useful to extend the existing and proposed

methods to analyze left-censored longitudinal data with informative observation

and censoring times. This is a challenging problem and requires further research

efforts.
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Appendix: Proof of Theorem 1

To study the asymptotic distribution of β̂, we assume that the true values

β0 and γ0 are interior points of compact parameter spaces Θ and Θ̃, respectively.

We need some regularity conditions:

(C1) {Y ∗i (t), N∗i (·), Ci,Xi(·)}, i = 1, 2, ..., n, are independent and identically dis-

tributed.

(C2) Ni(L) is bounded almost surely, and P (Ci ≥ L) > 0.

(C3) The functions Xi(·) and H(·) are continuous and right continuous, respec-
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tively, and have bounded variation on [0, L].

(C4) For any u ∈ [0, L], the conditional density function fY ∗(u)|{Xi(u),Fiu}(·) is

uniformly continuous and bounded.

(C5) A and D are nonsingular.

Lemma 1. Under the assumptions of Theorem 1, we have that for any positive

εn = o(1),

sup
‖θ−θ0‖≤εn

‖U(θ; γ̂, Λ̂0)− U(θ0; γ̂, Λ̂0)− U(θ; γ0,Λ0)‖ = op(n
−1/2),

where U(θ; γ0,Λ0) = E{U(θ; γ0,Λ0)}.

Proof. Let Ii(u, θ) = I{θ′Zi(u) > 0}. Then we have

sup
‖θ−θ0‖≤εn

‖U(θ; γ̂, Λ̂0)− U(θ0; γ̂, Λ̂0)− U(θ; γ0,Λ0)‖ ≤ I1 + I2,

where

I1 = sup
‖θ−θ0‖≤εn

‖U(θ; γ̂, Λ̂0)− U(θ; γ0,Λ0) + U(θ0; γ0,Λ0)− U(θ0; γ̂, Λ̂0)‖,

I2 = sup
‖θ−θ0‖≤εn

‖U(θ; γ0,Λ0)− U(θ; γ0,Λ0)− U(θ0; γ0,Λ0)‖.

For I1, we obtain

I1 = τ sup
‖θ−θ0‖≤εn

∥∥∥ 1

n

n∑
i=1

[ ∫ L

0
Zi(u)ξi(u)

{
Ii(u, θ)−Ii(u, θ0)

}{
exp (γ̂′Xi(u))dΛ̂0(u)

− exp (γ′0Xi(u))dΛ0(u)
}]∥∥∥.

Under (C1)-(C3) and (C5), it follows from Lin et al. (2000) and Sun and Wu

(2005) that

γ̂ − γ0 = n−1A−1
n∑
i=1

∫ L

0
{Xi(t)− X̄(t; γ0)}dM∗i (t) + op(n

−1/2) (A.1)

and, uniformly in t ∈ [0, L],

Λ̂0(t)− Λ0(t) =
1

n

n∑
i=1

∫ t

0

dM∗i (u)

s(0)(u)
−
∫ t

0
X̄(u; γ0)′dΛ0(u)(γ̂ − γ0) + op(n

−1/2).

(A.2)

In addition, we obtain that when θ → θ0, Ii(u, θ) − Ii(u, θ0) = op(1) for any

1 ≤ i ≤ n and u ∈ (0, L). Then using (A.1), (A.2), a Taylor expansion and

Lemma 1 of Lin et al. (2000), we get that I1 = op(n
−1/2). Let

ri(θ) =

∫ L

0
Zi(u)Ii(u, θ)

[
I{Yi(u)− θ′Zi(u) < 0}dNi(u)
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− τξi(u) exp (γ′0Xi(u))dΛ0(u)
]
.

Thus,

I2 = sup
‖θ−θ0‖≤εn

∥∥∥ 1

n

n∑
i=1

[
ri(θ)− E{ri(θ)}

]
− 1

n

n∑
i=1

[
ri(θ0)− E{ri(θ0)}

]∥∥∥.
Hence by Lemma 2.17 in Pakes and Pollard (1989), to prove I2 = op(n

−1/2), it

suffices to prove that {ri(θ), θ ∈ Θ} is a Euclidean class with a square-integrable

envelope and ri(θ) is L2(P ) continuous at θ0.

In view of (C3), it follows from Lemma 22 (ii) in Nolan and Pollard (1987)

and Lemmas 2.14 and 2.15 in Pakes and Pollard (1989) that {Zi(u)Ii(u, θ)I{Yi(u)

− θ′Zi(u) < 0}, θ ∈ Θ} and {Zi(u)Ii(u, θ)τξi(u) exp (γ′0Xi(u)), θ ∈ Θ} are

Euclidean with constant envelope. Thus, following Lemma 5 of Sherman (1994)

and Lemma 2.14 (i) in Pakes and Pollard (1989), we get that {ri(θ), θ ∈ Θ} is a

Euclidean class with a square-integrable envelope.

To prove that rij(θ) is L2(P ) continuous at θ0, let Zij and rij(θ) be the jth

components of Zi and ri(θ), j = 1, ..., p+ q. It can be checked that

E{rij(θ)− rij(θ0)}2 ≤ 2(I3 + I4), (A.3)

where

I3 = E
[ ∫ L

0
Zij(u)

[
Ii(u, θ)I{Yi(u)− θ′Zi(u) < 0}

− Ii(u, θ0)I{Yi(u)− θ′0Zi(u) < 0}
]
dNi(u)

]2
,

I4 = τ2E
[ ∫ L

0
Zij(u)ξi(u){Ii(u, θ)− Ii(u, θ0)} exp (γ′0Xi(u))dΛ0(u)

]2
.

For I3, it follows from the Dominated Convergence Theorem that

I3 ≤

E
[ ∫ L

0 Zij(u)2
{
FY ∗(u)|{Xi(u),Fiu}(θ

′Zi(u))Ii(u, θ) + FY ∗(u)|{Xi(u),Fiu}(θ
′
0Zi(u))Ii(u, θ0)

−2FY ∗(u)|{Xi(u),Fiu}(min{θ′Zi(u), θ′0Zi(u)})I(min{θ′Zi(u), θ′0Zi(u)} > 0)
}
dNi(u)

]
−→ 0 as θ → θ0,

where FY ∗(u)|{Xi(u),Fiu}(y) is the cumulative distribution function of Y ∗(u) con-

ditional on {Xi(u),Fiu}. Similarly, we get that I4 tends to 0 as θ → θ0. Thus,

it follows from (A.3) that

E{rij(θ)− rij(θ0)}2 −→ 0, as θ → θ0.
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That is, rij(θ) is L2(P ) continuous at θ0. This completes the proof of Lemma 1.

Proof of Theorem 1. To prove the consistency of θ̂, it suffices to verify Conditions

(i), (ii) and (iii) of Corollary 3.2 in Pakes and Pollard (1989). By the definition

of θ̂, we have

‖U(θ̂; γ̂, Λ̂0)‖ ≤ op(1) + inf
θ∈Θ
‖U(θ; γ̂, Λ̂0)‖. (A.4)

It follows from (C5) that for each δ > 0, inf‖θ−θ0‖>δ ‖U(θ; γ0,Λ0)‖ > 0. Thus,

Conditions (i) and (ii) of Corollary 3.2 hold. If

I5 = sup
θ∈Θ
‖U(θ; γ̂, Λ̂0)− U(θ; γ0,Λ0)‖,

I5 ≤ I6 + I7, where

I6 = sup
θ∈Θ
‖U(θ; γ̂, Λ̂0)− U(θ; γ0,Λ0)‖, I7 = sup

θ∈Θ
‖U(θ; γ0,Λ0)− U(θ; γ0,Λ0)‖.

Obviously, I7 = supθ∈Θ ‖n−1
∑n

i=1{ri(θ) − E(ri(θ))}‖. Following similar argu-

ments as in the proof of Lemma 1, we obtain that {ri(θ), θ ∈ Θ} is a Euclidean

class with integrable envelope. Thus, it follows from Lemma 2.8 in Pakes and

Pollard (1989) that I7 = op(1). It can be checked that I6 ≤ I8 + I9, where

I8 = sup
θ∈Θ

∥∥∥ τ
n

n∑
i=1

∫ L

0
Zi(u)Ii(u, θ)ξi(u) exp (γ̂′Xi(u))d

{
Λ̂0(u)− Λ0(u)

}∥∥∥,
I9 = sup

θ∈Θ

∥∥∥ τ
n

n∑
i=1

∫ L

0
Zi(u)Ii(u, θ)ξi(u)

{
exp (γ̂′Xi(u))− exp (γ′0Xi(u))

}
dΛ0(u)

∥∥∥.
In view of (A.2 ), the Functional Central Limit Theorem (Pollard (1990)) and the

Continuous Mapping Theorem imply that I8 = op(1). It follows from a Taylor

expansion that I9 = op(1). Thus, I5 = op(1), which is Condition (iii) of Corollary

3.2 in Pakes and Pollard (1989). It then follows that θ̂ converges in probability

to θ0.

To prove the asymptotic normality of θ̂, it is sufficient to verify Conditions (i)-

(v) of Theorem 3.3 in Pakes and Pollard (1989). In view of (C3) and (C5), using

(A.4) and Lemma 1, we can show that Conditions (i)-(iii) and (v) of Theorem

3.3 in Pakes and Pollard (1989) holds:

(i) ‖U(θ̂; γ̂, Λ̂0)‖ ≤ op(1) + infθ∈Θ ‖U(θ; γ̂, Λ̂0)‖;

(ii) U(θ; γ0,Λ0) is differentiable at θ0 with the derivative matrix D of full rank;

(iii) for every sequence {εn} of positive numbers that converges to zero,

sup
‖θ−θ0‖≤εn

‖U(θ; γ̂, Λ̂0)− U(θ0; γ̂, Λ̂0)− U(θ; γ0,Λ0)‖ = op(n
−1/2);
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(v) θ0 is an interior point of Θ.

To verify Condition (iv), it can be shown that by (A.1) and (A.2),

n1/2U(θ0; γ̂, Λ̂0) = n−1/2
n∑
i=1

qi(θ0)

+ τn−1/2
n∑
i=1

∫ L

0

{
Zi(u)Ii(u, θ0)− z̄(u)

}
dM∗i (u)

− τBA−1n−1/2
n∑
i=1

∫ L

0

{
Xi(u)− x̄(u)

}
dM∗i (u) + op(1),

which implies by the Multivariate Central Limit Theorem that

n1/2U(θ0; γ̂, Λ̂0) −→ N(0,V) in distribution. (A.5)

Thus, Condition (iv) of Theorem 3.3 in Pakes and Pollard (1989) holds, and it

follows that n1/2(θ̂−θ0) is asymptotically normal with mean zero and covariance

matrix Σ defined in Theorem 1.
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