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Abstract

This document includes five sections. Section 1 presents simulation studies

that compare SMA with SIS, FR, MCV, and Bstg for less sparse regression

models. These numerical results are given in Tables S1 and S2 for 10 and

20 true relevant predictors, respectively. Section 2 compares SMA with the

Bayesian model averaging method for Examples 1-4, and the simulation results

are given in Tables S3 and S4. Section 3 investigates the average number of

steps reached via our proposed stopping rule. Sections 4 and 5 provide useful

lemmas and theoretical proofs, respectively.

Section 1: Simulation Results For Less Sparse Models

We adopt and modify the simulation settings of Examples 1 and 2, respectively,

from the manuscript. Specifically, we generate data from the model Yi = X⊤
i β + σεi,

where εi is generated from a standard normal distribution for i = 1, · · · , n, and σ

is selected to generate a theoretical R2 = var(X⊤
i β)/{var(X⊤

i β) + σ2} = 20%. The

detailed structures of Xi and β in these two examples are illustrated below.

Example S1: We adapt this example from Fan and Lv (2008) and let d0 be the

size of the true model. In addition, for each i, the j-th covariates Xij (1 ≤ j ≤ p) are
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independently generated from N(0, 1). The r-th (1 ≤ r ≤ d0) nonzero true coefficient

of β is set equal to (−1)ur(ar + |vr|)/10, ar = 4 log(n)n−1/2, where ur is a binary

random variable with P (ur = 1) = 0.5 and vr is generated from a standard normal

distribution.

Example S2: This example is modified from Tibshirani (1996). Specifically, the

covariate vector Xi is generated from a multivariate normal distribution with mean

zero and cov(Xij1 , Xij2) = 0.5|j1−j2| for 1 ≤ j1, j2 ≤ p. In addition, the true non-zero

coefficients are set to be β0j = (−1)j × 0.5 for any 1 ≤ j ≤ d0. Accordingly, β0j = 0

for any j > d0.

The simulation results for d0 = 10 and 20 based on 1,000 realizations are presented

in Tables S1 and S2, respectively. Both tables indicate that SMA performs well in

comparison with SIS, FR, MCV and Bstg.

Section 2: Comparison of SMA versus Bayesian Model Averaging

In this section, we compare SMA with the Bayesian model averaging method. It

is worth noting that, when p is ultra-high, the size of possible candidates models is

2p. Hence, this method is computationally infeasible. To this end, we propose the

following approach.

We randomly select a sub-model with size d0, and then evaluate its BIC score

(Chen and Chen, 2008). We next repeat the same procedure 1,000 times, which

yields 1,000 sub-models, denoted them by S(1), · · · ,S(1000). Afterwards, we record

their associated BIC scores BIC(S(1)), · · · ,BIC(S(1000)) and calculate the average.

For making comparisons, we name this method feasible Bayesian model averaging

(FB). Tables S3 and S4 present simulation results of SMA and FB, based on 1,000

realizations with d0 = n/4, for Examples 1–4 in the manuscript. Both tables show

that SMA is mostly superior to FB in terms of all three measures, AOR, SD, and
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WP across all four examples.

Section 3: Average Number of Steps Reached via our Stopping Rule

The aim of this section is to study whether our proposed stopping criterion can

be reached within a very limited number of steps when the number of true relevant

predictors is small. To this end, we examine the average number of steps reached via

our stopping rule for Examples 1–2 with the sample sizes n = 100, 200 and 300. Table

S5 indicates that the resulting average numbers can be considerably larger than their

associated true model sizes d0 = 5 and 3. Hence, in practice, SMA may take more

steps but yields better results. In addition, we have conducted simulation studies for

Examples S1 and S2 with d0 = 10 and d0 = 20, respectively. The results yield similar

findings in Table S6.

To assess whether our proposed stopping rule is sufficient for good prediction, we

consider a simple simulation example below. Let K = 50 be the maximal number of

steps during the sequential process of SMA, and define SMAk be the k-th sequential

step for k = 1, · · · , K. We then evaluate the averaged out-of-sample R2 values (AOR)

for SMAk with k = 1, · · · , K. For the sake of illustration, we only consider Example

S1 with n = 100 and p = 100. Figure S1 shows that AOR can increase very quickly

when k is small, and it tends to be flat when k is larger than 25. Since the average

stopping step is 24 for n = 100 and p = 100 (see Table S5), we conclude that the

updates for up to 24 of SMA are sufficient for this example.

To see whether βkj quickly become ignorable as k grows large. We also include the

plot of maxj |β̂kj| (we name it beta) against the number of steps k for k = 1, · · · , K.

Figure S2 indicates that maxj |β̂kj| deceases to 0 quite slowly after k > 1. Hence, β̂kj

is unlikely to become ignorable within a very limited number of sequential steps.
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Section 4: Useful Lemmas

Before providing the theoretical proofs of Theorems 1–5, we present the following

four useful lemmas. Lemma 1 can be shown in a manner similar to Proposition 1 of

Jiang (2013). Lemma 2 can be verified by using the Bonferroni inequality; see, for

example, Lemma A.3 in Bickel and Levina (2008). Lemma 3 is slightly modified from

Lemma 1 of Wang (2009) and its proof is quite similar to that of Wang. Accordingly,

we only present the detailed proof of Lemma 4.

Lemma 1. Under Conditions (C2) and (C3), we have that, for any 0 < ξ < 2 and

j ∈ {1, · · · , p},

max
j

P
(
|ρ̂j − ρj| > ξ

)
≤ d5 exp

(
− d6nξ

2
)
,

where d5 and d6 are finite constants and they are a function of C1, C2, and d1 only,

C1 and C2 are defined in Condition (C2), and d1 is defined in Condition (C3).

Lemma 2. Under Conditions (C1)–(C3), we have that max
1≤j≤p

|X⊤
j Xj/n−1| →p 0 and

(log p)−1/2 max
1≤j≤p

|n−1/2ε⊤Xj| = Op(1) as n → ∞.

Lemma 3. Under conditions (C2), (C5) and (C6), as n → ∞, we have

2τmin < min
|M|≤|Mn|

λmin{n−1X⊤
(M)X(M)} ≤ max

|M|≤|Mn|
λmax{n−1X⊤

(M)X(M)} < τmax/2.

Lemma 4. Assume that Conditions (C1)–(C4) and the assumption in Theorem 1

hold. We then have that, for any finite k < ∞, (i.)
√
n(ρ̂kj − ρkj) = Op(1) (j =

1, · · · , p); (ii.) maxj |ρ̂2kj − ρ2kj| → 0, where ρkj is the population version of ρ̂kj and it

is defined in Remark 1.

Proof of Lemma 4. The result of k = 1 can be directly obtained from Lemma 1

and the Bonferroni inequality. By induction, we can show that it holds for general k.

For the sake of simplicity, we only demonstrate that the result is valid for k = 2 by
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assuming that it holds when k = 1. Recall that β(1) = (w11β11, · · · , w1pβ1p)
⊤ ∈ Rp,

β̂(1) = (ŵ11β̂11, · · · , ŵ1pβ̂1p)
⊤ ∈ Rp, and Ỹ2 = Y1 − Xβ(1), where w1j and ŵ1j are

defined in Section 2.3. Then, for any j = 1, · · · , p, we have that

ρ̂2j =
∥∥Y2

∥∥−1∥∥Xj

∥∥−1
Y⊤

2 Xj

=
∥∥Ỹ2 +X(β(1) − β̂(1))

∥∥−1∥∥Xj

∥∥−1
{
Ỹ⊤

2 Xj +
(
β(1) − β̂(1)

)⊤
X⊤Xj

}
.

By Conditions (C1)–(C3) and Lemmas 1–2, one can easily verify that, for every fixed

j, ∥Ỹ2∥−1∥Xj∥−1(Ỹ ⊤
2 Xj) is

√
n-consistent of ρ2j and it is uniformly consistent of ρ2j

over j, where ρ2j = corr(Ỹ2,Xj) is defined in Remark 1. Hence, to prove Lemma 4,

it suffices to demonstrate the following two results:

∥∥X(β(1) − β̂(1))
∥∥ = Op(1) (0.1)

and max
j

∣∣n−1/2(β(1) − β̂(1))⊤X⊤Xj

∣∣ = Op(1). (0.2)

We next prove them via the following two separate steps, respectively.

STEP I. Let ω1(1) ≥ · · · ≥ ω1(p) be the ordered statistics of {ω1j : 1 ≤ j ≤ p} and

let ω̂1(j) be their corresponding estimators for j = 1, · · · , p. By the assumption of

Theorem 1 that ρ1(1) − ρ1(2) > d2 for some positive constant d2 > 0, the techniques

used in the proof of Theorem 1 and the result that maxj |ρ̂21j −ρ21j| → 0, we have that

there exists some constant ζ < 1 such that

ω̂1(1) → 1, ω̂1(j) ≤ ζn, ω1(1) → 1, and ω1(j) ≤ ζn.

Define σ̂j1j2 = ∥Xj1∥−1∥Xj2∥−1X⊤
j1
Xj2 as the sample counterpart of σj1j2 . Then, we

have

max
j

∣∣n−1/2(β(1) − β̂(1))⊤X⊤Xj

∣∣ ≤ max
j1,j2

|σ̂j1j2 |n1/2|β(1) − β̂(1)|1,
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where |β(1) − β̂(1)|1 =
∑

j |β
(1)
j − β̂

(1)
j |. After algebraic simplification, we obtain

n1/2|β(1) − β̂(1)|1 ≤ n1/2|β(1)
(1) − β̂

(1)
(1) | + n1/2(p − 1)ζn. In addition, Condition (C1)

implies that n1/2(p− 1)ζn → 0. Hence, n1/2|β(1) − β̂(1)|1 = Op(1). Moreover, Condi-

tions (C1)–(C3), together with the Bonferroni inequality and Lemma 1, lead to, for

any arbitrary positive constant γ > 0,

P
(
max
j1,j2

|σ̂j1j2 − σj1j2 | > γ
)
≤
∑
j1,j2

P
(
|σ̂j1j2 − σj1j2 | > γ

)

≤ p2d5 exp
(
− d6nγ

2
)
≤ d5 exp

(
νnα − d6nγ

2
}
,

where d5 and d6 are defined in Lemma 1 and α < 1 is assumed in Condition (C1).

Since d6nγ
2 dominates νnα, we obtain that maxj1,j2 |σ̂j1j2 − σj1j2 | → 0. Accordingly,

maxj1,j2 |σ̂j1j2| = Op(1). This, in conjunction with n1/2|β(1) − β̂(1)|1 = Op(1), yields

maxj
∣∣n−1/2(β(1) − β̂(1))⊤X⊤Xj

∣∣ = Op(1), which completes the proof of (0.2).

STEP II. Note that

∥∥X(β(1) − β̂(1))
∥∥2 = (β(1) − β̂(1))⊤X⊤X(β(1) − β̂(1))

= n
∑
j1,j2

σ̂j1j2(β
(1)
j1

− β̂
(1)
j1

)(β
(1)
j2

− β̂
(1)
j2

) ≤ max
j1,j2

|σ̂j1j2 | × n|(β(1) − β̂(1))|21.

Then, using the results
∣∣(β(1)−β̂(1))

∣∣2
1
= Op(n

−1) and maxj1,j2 |σ̂j1j2 | = Op(1) obtained

in STEP I, we have that
∥∥X(β(1) − β̂(1))

∥∥2 = Op(1), which completes the proof of

(0.1).

Section 5: Proofs of Theorems 1–5

Proof of Theorem 1: By theorem’s assumption, we know that ρ2(1) − ρ2(2) > d2. We
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then examine the difference between the corresponding estimates. That is,

ρ̂2(1) − ρ̂2(2) = ρ̂2(1) − ρ2(1) + ρ2(1) − ρ2(2) + ρ2(2) − ρ̂2(2)

≥ ρ2(1) − ρ2(2) − |ρ2(1) − ρ̂2(1)| − |ρ2(2) − ρ̂2(2)|

≥ ρ2(1) − ρ2(2) − 2max
j

|ρ2j − ρ̂2j |

≥ d2 − 2max
j

|ρ2j − ρ̂2j |, (0.3)

where the last inequality is due to fact that ρ2(1)−ρ2(2) > d2. Furthermore, by Condition

(C1), Bonferroni’s inequality and Lemma 1, we have that

P
(
max

j
|ρ̂2j − ρ2j | > ξ

)
≤
∑
j

P
(
|ρ̂2j − ρ2j | > ξ

)
≤
∑
j

P
(
|ρ̂j − ρj| > ξ/2

)

≤ pd5 exp
(
− d6nξ

2/4
)
≤ d5 exp

(
log p− d6nξ

2/4
)
→ 0.

This, together with (0.3), leads to, with probability tending to one, ρ̂2(1)− ρ̂2(2) > d2/2.

Next, by definition, BICM = n log ∥Y −X(M)β̂(M)∥2 + |M| × (log n + 2 log p) =

n log{Y⊤(I −HM)Y}+ |M|(log n+ 2 log p), where

HM = X(M)(X
⊤
(M)X(M))

−1X⊤
(M).

For the sake of convenience, let BIC(1) represent the BIC score associated with ρ̂2(1).
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We then have

wU
max = exp

(
− 1

2
BIC(1)

) ∑
|M∗|≤1

exp
(
− 1

2
BICM∗

)−1

=
(
1− ρ̂2(1)

)−n/2
{

p∑
k=1

(
1− ρ̂2(k)

)−n/2

+
√
np

}−1

=

{∑
k ̸=1

(
1− ρ̂2(1)

)n/2(
1− ρ̂2(k)

)−n/2

+
√
np
(
1− ρ̂2(1)

)n/2
+ 1

}−1

. (0.4)

It is noteworthy that
∑

k ̸=1(1− ρ̂2(1))
n/2(1− ρ̂2(k))

−n/2 ≤ p(1− ρ̂2(1))
n/2(1− ρ̂2(2))

−n/2 =

exp
[
log p + n/2{log(1 − ρ̂2(1)) − log(1 − ρ̂2(2))}

]
. This, in conjunction with the result

proved earlier that ρ̂2(1) − ρ̂2(2) > d2/2 with probability tending to 1 and Condition

(C3), implies that the right-hand side of the above inequality can be further bounded

above by the following quantity

exp

{
log p+ 2−1n

[
log(1− ρ̂2(1))− log(1− ρ̂2(1) + d2/2)

]}
= exp

{
log p+ 2−1n log

(
1− ρ̂2(1)

1− ρ̂2(1) + d2/2

)}

= exp

{
log p+ 2−1n log

(
1− d2/2

1− ρ̂2(1) + d2/2

)}

< exp

{
log p+ 2−1n log

(
1− d2/2

1− d1 + d2/2

)}
.

By Condition (C1), we know immediately that the right-hand side of the above in-

equality is op(1). Analogously, we can prove that
√
np(1− ρ̂2(1))

n/2 →p 0. As a result,

we have wU
max →p 1, which completes the proof.

Proof of Theorem 2: By the definitions of Yk, ŵkj, and Hj, we know that Yk+1 =

(I −
p∑

j=1

ŵkjHj)Yk. Then, define X̃j = Xj/∥Xj∥, which immediately leads to Hj =
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X̃jX̃
⊤
j . After algebraic simplification, we obtain that

∥Yk+1∥2 = ∥Yk∥2 − 2

p∑
j=1

ŵkjY
⊤
k HjYk + ∥

p∑
j=1

ŵkjHjYk∥2

= ∥Yk∥2 − 2∥Yk∥2
p∑

j=1

ŵkj ρ̂
2
kj + ∥

p∑
j=1

ŵkjX̃j(X̃
⊤
j Yk)∥2

= ∥Yk∥2
(
1− 2

p∑
j=1

ŵkj ρ̂
2
kj + ∥

p∑
j=1

ŵkjX̃j ρ̂kj∥2
)

= ∥Yk∥2
(
1− 2

p∑
j=1

ŵkj ρ̂
2
kj +

∑
1≤j1,j2≤p

ŵkj1ŵkj2 ρ̂kj1 ρ̂kj2σ̃j1j2

)
, (0.5)

where σ̃j1,j2 = X̃⊤
j1
X̃j2 . Note that |σ̃j1j2 | ≤ 1 for any 1 ≤ j1, j2 ≤ p since ∥X̃j∥ = 1.

Thus, the right-hand side of equation (0.5) can be bounded above by

∥Yk∥2
{
1− 2

p∑
j=1

ŵkj ρ̂
2
kj +

∑
1≤j1,j2≤p

ŵkj1ŵkj2 |ρ̂kj1 ρ̂kj2 |

}

= ∥Yk∥2
{
1− 2

p∑
j=1

ŵkj ρ̂
2
kj +

( p∑
j=1

ŵkj|ρ̂kj|
)2}

.

This suggests that

∥Yk∥2 − ∥Yk+1∥2 ≥ ∥Yk∥2
{
2

p∑
j=1

ŵkj ρ̂
2
kj −

( p∑
j=1

ŵkj|ρ̂kj|
)2}

. (0.6)

By Cauchy’s Inequality, we have (
p∑

j=1

ŵkj)(
p∑

j=1

ŵkj ρ̂
2
kj) ≥ (

p∑
j=1

ŵkj|ρ̂kj|)2, which implies

that
p∑

j=1

ŵkj ρ̂
2
kj ≥ (

p∑
j=1

ŵkj|ρ̂kj|)2. This, together with (0.6), yields ∥Yk∥2−∥Yk+1∥2 ≥

∥Yk∥2
p∑

j=1

ŵkj ρ̂
2
kj. This completes the proof.

Proof of Theorem 3: Using the result of Theorem 2, we have that ∥Yk∥2 −

∥Yk+1∥2 ≥ ∥Yk∥2ŵk(1)ρ̂
2
k(1). Hence, to prove this theorem, it suffices to show that
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ŵk(1) = 1 + op(1). By definition,

ŵk(1) = (1− ρ̂2k(1))
−n/2

{
p∑

j=1

(1− ρ̂2kj)
−n/2 +

√
np

}−1

=

∑
j ̸=(1)

(1− ρ̂2k(1))
n/2(1− ρ̂2kj)

−n/2 +
√
np(1− ρ̂2k(1))

n/2 + 1


−1

. (0.7)

It is noteworthy that the first term on the right-hand side of (0.7) satisfies

p∑
j ̸=(1)

(
1− ρ̂2k(1)
1− ρ̂2kj

)n/2

≤ p

(
1− ρ̂2k(1)
1− ρ̂2k(2)

)n/2

. (0.8)

In addition, the right-hand side of the above inequality equals

exp

[
2−1

{
2 log p+ n log (1− ρ̂2k(1))− n log (1− ρ̂2k(2))

}]
. (0.9)

Moreover, by Lemma 4 and using similar arguments for obtaining (0.2), we have

that |ρ̂2k(1) − ρ̂2k(2)| ≥ d4 − 2maxj |ρ̂2kj − ρ2kj| ≥ d4/2 with probability approaching

1. Subsequently, by Conditions (C1) and (C4), (0.9) can be further asymptotically

bounded by

exp

{
log p+ 2−1n

[
log(1− ρ̂2k(1))− log(1− ρ̂2k(1) + d4/2)

]}
= exp

{
log p+ 2−1n log

(
1− ρ̂2(1)

1− ρ̂2(1) + d4/2

)}

= exp

{
log p+ 2−1n log

(
1− d4/2

1− ρ̂2(1) + d4/2

)}

< exp

{
log p+ 2−1n log

(
1− d4/2

1− d3 + d4/2

)}
→ 0.

As a result, the right-hand side in (0.8) goes to 0. Similarly, by Condition (C4), we can
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prove that the second term in (0.7) is of order op(1). Consequently, ŵk(1) = 1+ op(1),

which completes the proof.

Proof of Theorem 4: By the definitions of Yk, ŵkj, and ρ̂2kj, and the equation (0.5)

in the proof of Theorem 2, we obtain the following relationship:

∥Yk∥2 − ∥Yk+1∥2 = 2∥Yk∥2
(

p∑
j=1

ŵkj ρ̂
2
kj

)
− ∥Yk∥2 ·

∥∥∥∥∥
p∑

j=1

ŵkjX̃j ρ̂kj

∥∥∥∥∥
2

≤ 2∥Yk∥2
(

p∑
j=1

ŵkj ρ̂
2
kj

)
. (0.10)

Since ρ̂2kj ≤ ρ̂2k(1) for j = 1, · · · , p and
∑p

j=1 ŵkj = 1 − ŵk0, the right-hand side of

(0.10) is bounded by 2(1− ŵk0)∥Yk∥2ρ̂2k(1). It is noteworthy that

ŵk0 =
√
np

{
p∑

j=1

(1− ρ̂2kj)
−n/2 +

√
np

}−1

=

{
p∑

j=1

(1− ρ̂2kj)
−n/2(

√
np)−1 + 1

}−1

.

In addition, by theorem’s assumption that ρ2k(1) = O(n−1) and using the results of

Lemma 4, we have (1 − ρ̂2kj)
−n/2 = Op(1) for any j. As a result, n−1/2p−1

∑p
j=1(1 −

ρ̂2kj)
−n/2 →p 0, which implies that ŵk0 = 1+ op(1). Consequently, we can obtain that

(∥Yk∥2 − ∥Yk+1∥2)/∥Yk∥2 = op(ρ̂
2
k(1)), which completes the proof.

Proof of Theorem 5: To prove the theorem, we consider two steps: (i.) demonstrate

that ρ̂K(1) →p 0 as min{K,n} → ∞; (ii.) use the result from (i) to show that

∥β̂K − β0∥ →p 0 as min{K,n} → ∞.

STEP I. We prove this step by the contradiction approach. Suppose there exists a

sequence of Kn → ∞ and a positive constant c ∈ (0, 1) such that ρ̂2Kn(1)
> c for any

Kn > 0. Accordingly,

ω̂Kn0/ω̂Kn(1) =
√
np{1− ρ̂2Kn(1)}

n/2 ≤
√
np(1− c)n/2.

11



Since ω̂Kn(1) ≤ 1, we further have ω̂Kn0 ≤
√
np(1− c)n/2. This leads to

p∑
j=1

ω̂Knj ≥ 1−
√
np(1− c)n/2. (0.11)

Next, let j∗n = min
{
j : ρ̂2Kn(1)

− ρ̂2Kn(j)
> c/2

}
. Then, for any j ≥ j∗n, we have

ω̂Kn(j)/ω̂Kn(1) = {1− ρ̂2Kn(1)}
n/2{1− ρ̂2Kn(j)}

−n/2

=
(1− ρ̂2Kn(1)

1− ρ̂2Kn(j)

)n/2
≤ (1− c/2)n/2.

As a result,
∑p

j=j∗n
ω̂Kn(j) ≤ p(1 − c/2)n/2. This, together with (0.11), leads to∑j∗n−1

j=1 ω̂Kn(j) ≥ 1 −
√
np(1 − c)n/2 − p(1 − c/2)n/2. In addition, by Theorem 2

and the assumption of var(Yi) = 1, we have that n−1∥YK∥2 > n−1∥YK+1∥2 and

n−1∥Y1∥2 < ∞, respectively, as K → ∞. This indicates that n−1∥YK∥2 is a

bounded decreasing sequence. Hence, there exists a positive constant c∗ such that

n−1∥YK∥2 →p c∗, which implies that n−1∥YK∥2 − n−1∥YK+1∥2 → 0 as K goes to

infinity. Subsequently, by Theorem 2, we further have
∑p

j=1 ω̂Knj ρ̂
2
Knj

→ 0. Since∑p
j=1 ω̂Knj ρ̂

2
Knj

≥
∑j∗n−1

j=1 ω̂Kn(j)ρ̂
2
Kn(j)

, we finally obtain that

j∗n−1∑
j=1

ω̂Kn(j)ρ̂
2
Kn(j) →p 0. (0.12)

On the other hand, by the definition of j∗n, we have ρ̂2Kn(j)
≥ ρ̂2Kn(1)

− c/2 ≥ c/2,

for any 1 ≤ j ≤ j∗n − 1. Accordingly,
∑j∗n−1

j=1 ω̂Kn(j)ρ̂
2
Kn(j)

≥ c/2
∑j∗n−1

j=1 ω̂Kn(j) ≥

c
{
1−

√
np(1− c)n/2 − p(1− c/2)n/2

}
/2. Using Condition (C1), one can easily verify

that

1−
√
np(1− c)n/2 − p(1− c/2)n/2 → 1

12



as n → ∞. Consequently, we obtain that

j∗n−1∑
j=1

ω̂Kn(j)ρ̂
2
Kn(j) ≥ c

{
1−

√
np(1− c)n/2 − p(1− c/2)n/2

}
/2 → c/2 ̸= 0,

which contradicts (0.12). Thus, we have shown that ρ̂K(1) →p 0 as min{K,n} → ∞.

STEP II. By the definition of ρ̂2K(1), we have

ρ̂2K(1) = max
1≤j≤p

(X⊤
j YK)

2∥Xj∥−2∥YK∥−2

≥ max
1≤j≤p

(n−1X⊤
j YK)

2
{
max
1≤j≤p

n−1∥Xj∥2
}−1{

n−1∥YK∥2
}−1

≥ max
1≤j≤p

(n−1X⊤
j YK)

2
{
max
1≤j≤p

n−1∥Xj∥2
}−1{

n−1∥Y∥2
}−1

, (0.13)

where the last inequality is due to the fact that ∥YK∥2 ≤ ∥Y∥2 for any K ≥ 1; see

Theorem 2. Using the assumptions of var(Xij) = var(Yi) = 1 for 1 ≤ j ≤ p and

Lemma 2, we obtain that n−1∥Y∥2 ≤ 2 and maxj n
−1∥Xj∥2 ≤ 2 with probability

tending to 1. As a result, the right-hand side of (0.13) can be further bounded away

from 0; i.e.,

ρ̂2K(1) ≥ 4−1 max
1≤j≤p

(n−1X⊤
j YK)

2 (0.14)

with probability approaching 1, and it is uniform for any K.

Next, define ∆ = β0− β̂K , which leads to YK = Y−Xβ̂K = X∆+ ε. By triangle

inequality, we obtain

|Mn|1/2 max
1≤j≤p

n−1|X⊤
j X∆| ≤ |Mn|1/2 max

1≤j≤p
n−1|X⊤

j YK |

+|Mn|1/2 max
1≤j≤p

n−1|X⊤
j ε|.

Using equation (0.14) and the result, ρ̂K(1) →p 0 as min{K,n} → ∞, proved in Step

I, we have |Mn|1/2max1≤j≤p n
−1|X⊤

j YK | →p 0. In addition, Lemma 2 implies that

13



|Mn|1/2 max1≤j≤p n
−1|X⊤

j ε| →p 0. Accordingly,

|Mn|1/2 max
1≤j≤p

n−1|X⊤
j X∆| →p 0. (0.15)

Moreover, employing Cauchy-Schwarz inequality and the stated assumption, together

with the fact that ∥Yk∥2 ≤ ∥Y ∥2 < 2 and ρ̂2kj ≤ 1 uniformly for any k = 1, · · · , K,

we have

|Mc
n|∥β̂K

Mc
n
∥2 = |Mc

n|
∑
j∈Mc

n

( K∑
k=1

ω̂kjβ̂kj

)2 ≤ |Mc
n|K

∑
j∈Mc

n

K∑
k=1

ω̂2
kjβ̂

2
kj

= |Mc
n|K

∑
j∈Mc

n

K∑
k=1

ω̂2
kj∥Yk∥2∥Xj∥−2ρ̂2kj

≤
{
min
j

∥Xj∥
}−2∥Y∥2|Mc

n|K2 sup
k>1

∑
j∈Mc

n

ω̂2
kj → 0, (0.16)

with probability approaching to 1. As a result, we can have λmax(X
⊤
(Mc

n)
X(Mc

n))∥β̂
K
Mc

n
∥2 ≤

tr(X⊤
(Mc

n)
X(Mc

n))∥β̂
K
Mc

n
∥2 = O(|Mc

n|∥β̂K
Mc

n
∥2) → 0. This, together with Condition

(C5.2), further implies that λmax(X
⊤
(Mc

n)
X(Mc

n))∥∆(Mc
n)∥

2 → 0. Subsequently, by the

Cauchy-Schwarz inequality again, Lemma 2, and Condition (C5.2), we obtain that

|Mn|
{
n−1 max

1≤j≤p
|X⊤

j X(Mc
n)∆(Mc

n)|
}2 ≤ |Mn|

{
n−1 max

1≤j≤p
∥Xj∥2

}{
n−1∥X(Mc

n)∆(Mc
n)∥

2
}

≤ 2|Mn|λmax

{
n−1X⊤

(Mc
n)
X(Mc

n)

}
∥∆(Mc

n)∥
2 →p 0.

This, in conjunction with (0.15), implies that

|Mn|1/2 max
1≤j≤p

n−1|X⊤
j X(Mn)∆(Mn)| = op(1). (0.17)

For an arbitrary vector q = (q1, · · · , qd)⊤ ∈ Rd, define ∥q∥1 =
∑

|qj| to be its L1

14



norm. Then, by Condition (C6) and Lemma 3, we have that

∥∆(Mn)∥2 ≤ τ−1
min∆

⊤
(Mn)

{
n−1X⊤

(Mn)X(Mn)

}
∆(Mn)

≤ τ−1
min∥∆(Mn)∥1max

j

{
n−1|X⊤

j X(Mn)∆(Mn)|
}

≤ τ−1
min|Mn|1/2∥∆(Mn)∥max

j

{
n−1|X⊤

j X(Mn)∆(Mn)|
}
.

This, in conjunction with (0.17), leads to

∥∆(Mn)∥ ≤ τ−1
min|Mn|1/2max

j
{n−1|X⊤

j X(Mn)∆(Mn)|} →p 0.

Furthermore, by the result λmax(X
⊤
(Mc

n)
X(Mc

n))∥∆(Mc
n)∥

2 → 0, we have that ∥∆∥ =

∥β̂K − β0∥ →p 0, which completes the proof.
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Table S3: Simulation results for comparing SMA with FB in Examples 1 and 2.
AOR (%) SD (%) WP(%)

Example n p FB SMA FB SMA FB

1 100 100 3.42 6.17 3.77 3.72 89.40
1000 1.77 2.43 3.68 3.73 86.60

10000 0.04 0.57 2.56 2.74 88.90

200 100 7.98 10.96 3.08 3.29 85.40
1000 5.21 7.12 3.45 3.92 82.60

10000 2.10 4.23 3.56 3.96 87.10

300 100 10.45 13.48 2.43 2.72 78.40
1000 7.43 10.41 3.07 3.49 76.00

10000 5.28 7.63 4.02 3.96 80.30

2 100 100 7.22 9.96 4.20 4.30 82.80
1000 4.21 6.13 4.33 4.93 77.50

10000 1.08 3.08 4.43 4.62 78.00

200 100 11.22 14.55 3.04 2.83 78.20
1000 8.69 12.24 3.75 3.65 75.10

10000 6.77 10.29 4.53 4.50 78.90

300 100 13.29 16.29 1.89 2.20 81.80
1000 10.12 14.63 2.43 2.31 80.40

10000 9.24 13.22 2.66 2.72 77.30
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Table S4: Simulation results for comparing SMA with FB in Examples 3 and 4.
AOR (%) SD (%) WP(%)

Example n p FB SMA FB SMA FB

3 100 100 10.45 12.33 4.30 4.20 76.30
1000 9.77 11.81 3.89 4.05 75.10

10000 10.23 11.96 4.05 4.00 68.60

200 100 12.48 13.79 3.23 3.19 65.40
1000 11.27 12.71 3.45 3.30 70.60

10000 10.70 12.25 3.02 3.25 66.00

300 100 12.89 14.68 2.85 2.88 75.40
1000 10.56 13.46 3.17 3.30 78.20

10000 10.44 12.61 3.21 3.33 67.10

4 100 100 8.67 9.05 2.78 2.86 65.20
1000 6.54 7.52 2.32 2.41 63.60

10000 5.88 7.04 2.09 2.13 58.40

200 100 9.56 10.78 2.76 2.78 60.60
1000 10.05 9.13 2.25 2.30 46.80

10000 9.16 8.10 1.77 1.88 45.90

300 100 11.65 12.46 2.67 2.88 65.80
1000 9.78 10.27 2.56 2.61 56.70

10000 8.12 9.14 2.05 2.16 58.30

Table S5: Simulation results for the average number of steps reached via our
stopping rule in Examples 1 and 2 with d0 = 5 and d0 = 3, respectively.

n p Example 1 Example 2
100 100 24.2 22.0

1000 20.4 18.2
10000 17.8 16.4

200 100 22.1 20.1
1000 18.3 17.5
10000 14.4 13.9

300 100 20.6 18.9
1000 15.3 17.0
10000 12.8 11.7
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Table S6: Simulation results for the average number of steps reached via our
stopping rule in Examples S1 and S2 with d0 = 10 and d0 = 20, respectively.

Example S1 Example S2
n p d0 = 10 d0 = 20 d0 = 10 d0 = 20
100 100 26.0 33.5 32.0 37.0

1000 22.0 29.0 28.3 31.6
10000 18.9 26.5 26.2 28.8

200 100 24.6 30.1 29.7 32.5
1000 19.5 27.5 28.4 30.6
10000 16.8 27.5 25.8 27.1

300 100 25.3 20.9 14.7 13.0
1000 18.2 26.5 27.8 29.1
10000 15.4 27.2 24.0 27.2

Figure S1. AOR of SMAk versus the number of sequential steps k in Example S1.
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Figure S2. maxj |β̂kj | of SMAk versus the number of sequential steps k in Example S1.
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