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This is a supplementary document to the corresponding paper submitted to the
Statistica Sinica. It contains the definition of the complete data penalized log-
likelihood, the monotonicity property of EM-algorithm, some additional simulation
results, R code for sample size calculation, further analysis of the second real data,
regularity conditions, and proofs of Theorems 1-3.
1. Complete data penalized log-likelihood and monotonicity prop-
erty of EM-algorithm

Recall that based on the two sample data {x11,..., 21,5221, .., T2},

the log-likelihood function for the unknown parameters (A, u1, p2, 01, 09) is

ln(>\7 M1, H2,071, 02)

ni n2
= Zlog [z pa, 01) + Zlog{(l = M f (@235 pa; 01) + Af (2235 pia, 02) }-
i=1 i=1
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The penalized log-likelihood function is defined as

Pl(A, pi1, pi2, 01,02) = (X, p, pia, 01, 02) + p(A) + pr(02). (1)

To explicitly establish the EM-test, we define the complete data pe-
nalized log-likelihood function as follows. Let z; = 1 if x9; comes from
f(x; po, 09), and z; = 0 if x9; comes from f(x;p1,01), 1 =1,...,n9. Hence,
the complete data consists of {xy;,7 = 1,...,n1} and {(z;, z2),1,...,n2}.

The complete data log-likelihood function is

L (A, g, p2, 01, 09) zzlog f(@1i; pa, 1) + Z [(1 = 2zi) log {(1 — A) f(wa2i; 1, 01) }]
i=1 i=1

+ Z [zi log { A\ f (2i; p2, 02) }] -

=1

Further, the complete data penalized log-likelihood function is defined as

ply (N, p, po, 01, 09) = 15 (X, pa, pi2, 01, 02) + p(A) + pn(o9).

Built upon pl, (A, g1, iz, 01, 02) and ply; (A, pa, pra, 01, 02), the EM-test

statistics are defined through the following iteration process.

Step 1. Let k =1. Foreach j =1,2,...,J, let )\5-1) = A, and compute

(uﬁ),ug),aﬁ%aﬁ))Zarg max pln(kﬁ-l),m,uz,al,az)-
{p1,p2,01,02}

Step 2. For ¢ = 1,...,n9 and the current k, we use an E-step to
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compute

k k k
(k) A; )f(xmu Mg])7 Uéj)>

Wij~ = % PERON
(1 - >\§ ))f(a:Z“/Jg])a 01] ) + )\ f(aj?u Méj)v Oéj))

Update A and other parameters by a M-step such that

)\ngrl — arg max { <n2 wa ) log(1 —\) + ngﬁ“) log A +p(/\)}
i=1

and

{p1,01}

(™, oty ™) = arg max {ilog filws) + f(l —wi)’) log f1<x2i>},
; i=1
(g™, o) = arg. max {Z wit log fo(w;) + pn(o—a)}
’ 1
The E-step and M-step are iterated K — 1 times.
Step 3. For each k and j, we define

M(k)( ) = 2{pl ( j 7”53)7ng)70§])70§] ) _pln(17ﬂ07ﬂ07607&0)}7

where (fig, 69) = argmaxy, o} pln(1, it, 1, 0,0). The EM-test statistic

is then defined as

EM) = max{MS(\;):j=1,...,J}.

In the study of the asymptotic properties of the EM-test statistics, the
monotonicity property of the EM algorithm plays an important role. We

summarize it in the following proposition.
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Proposition 1. For k > 1,

k+1 k+1 k+1 k+1 k+1
pln <>\( - )a,u( '+ )augj+ )’0‘( '+ )70-53'—’_ )> > l </\] )7M5j)7ﬂgj)70'§])7oéj)>

J 1j 1j
(2)

Proof. Let

lm ,u1,01 Zlogf $1Z,M1701)

and

no
Lna(A, i1, p2, 01, 02) = Zlog{(l = M (@235 p1, 01) + Af (@235 pia, 02) }-

Define the Q-function as

QA pu, pi2, 01, 02) <n2 Zw )108; (1- )+ng‘g)10g)\+l)()\)
+Zlogf T145 M1, 01 +Z 1_ lng(QTgl,,lLl,O'l)

+ Z wE? log f(wai; p12, 02) + pul02).

=1

It can be easily verified that

k+1)  (k+1)  (k+1) _(k+1) _(k+1
(A§' ), ng )u Méj )u Ogj ), Uéj )) = arg /\#11223;(1’02 Q(A, p, p2, 01, 02).
(3)
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Next, we argue that

pln ()‘7 M1, 2,01, 02) - pln <)‘(k)7 /’Llj)7 N(2];)7 0-5])’ O-g;))
k) k k k
ZQO\,M;M%UL@) _Q (A( 7/111])7/1’&)7 (3)70-5]’)) ) (4>

which together with (3) implies (2).

Note that

k k k k
ln?()‘7 K1, 42,01, 02) - l </\§ )7 /”ng)7 /”Léj)7 0-53)7 Uéj)>

:Zlog (1 =) f (@i p,01) + A f (2245 o, 02)
i=1 (1 - AE“) f (ﬂizzalﬁglj)#f%] ) + A;”f <x217/1’g;)70-§]))

1 - A & ) A i )
( ) f (w25 411 01) —i—w(k) I (@255 12, 09)

= Z log ¢ (1— ng’.“)
i=1 ( ( ) f (%mﬂlj 0 )

o (K k
>\§ )f <x217 /,l/éj), 0'5]))

n2 i )\ i‘
= Z (1 N wg;)) log L (k e 7M1’ 01) +w (k) log (k) L ’M(Qk’)@)(k) )
i=1 ( )\ ) f ( zalhj 7‘71; ) >\j f ($2i;M2j 1 02; )

(5)
where in the last step, we have applied the Jensen’s inequality.

Note that

Pl (N, 1, po, 01, 09) = lpa(pr, 01) 2 (A, po, fo, 01, 02) +p(X) +pn(02). (6)

After some algebra work, it can be verified that (5) and (6) together imply

(4). This finishes the proof. 0.

2. Additional simulation results
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Table 1 and Tables 2-4 respectively show the type I error and the
power comparison of the MLRT and EM-test under the logistic kernel. The

conclusions are similar to those for the normal kernel case.

Table 1: Type I error comparison with f; = fo = Logistic(0,1).

a=0.05 a=0.01

MLRT EMY EMP MLRT EMP  EMP
n1=50,m9 =50 0.0548 0.0538 0.0546 0.0115 0.0113 0.0115
ni =50,m5 =100 0.0495 0.0556 0.0564 0.0099 0.0118 0.0121

ny; = 100,n2 =50  0.0514 0.05640 0.0541 0.0107 0.0098  0.0100

ny; = 100,72 =100 0.0534 0.0534 0.0540 0.0112 0.0106 0.0107

Results in column (3,6) used {A1,...,A;} ={0.1,0.4,0.7,1.0}. Results in column (4, 7) used

{A1,...,As}={0.1,0.2,...,1.0}.

In Figures 1 and 2, we further present the quantile-quantile plots of
EMP with {A,..., A} ={0.1,0.4,0.7,1.0} under the normal kernel and
logistic kernel cases, respectively. It shows that the limiting distribution of
EM-test provides an accurate approximation to its finite sample distribution
in cases.

Next, we present the power comparison of the t-test with unequal vari-
ance (denoted as T), Wilcoxon rank sum test (denoted as Wilc) and the
EM-test (denoted as EMT(L?’)) under the normal kernel in Table 5, the logistic

kernel in Table 6 and the extreme value type I kernel in Table 7.
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Table 2: Power comparison with fi; = Logistic(0,1), fo = Logistic(1,1).

a=0.05 a=0.01

A=0.9 MLRT EM EMP MLRT EM® EBEMP
np =50,my =50  0.708  0.604 0.602 0464 0.384  0.379
ny =50,y =100 0861  0.776  0.775  0.673  0.559  0.554
ny =100,y =50 0.825  0.745  0.742  0.631  0.536  0.536

ny; = 100,ne =100  0.944 0.901 0.899 0.846 0.772 0.774

a=0.05 a=0.01

A=0.7 MLRT EMY EMP MLRT EMP  EMP
ni=50,n =50 0501 0404 0399  0.259  0.199  0.199
ny =50,m5 =100  0.637 0551 0552 0414 0315 0.314

ny; = 100,ne =50  0.627 0.511 0.510 0.377 0.301 0.301

ny = 100,72 =100  0.776 0.697 0.696 0.575 0.468 0.470

Results in column (3,6) used {A1,...,A;} = {0.1,0.4,0.7,1.0}. Results in column (4, 7) used

{A\,...,As}={0.1,0.2,...,1.0}.

In Tables 56, it can be seen that if the two samples only differ in
location, T and Wilc are better than the EM-test. In contrast, when f;
and f, have different scales, the EM-test always possesses more power than
T and Wilc. Especially for the case that f; and f; have the same location
but different scales, the power of the EM-test is much bigger than that of
T and Wilc, and T and Wilc have almost no power.

For the extreme value distribution case, we choose a; = 1 and ay = 2
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Table 3: Power comparison with f; = Logistic(0,1), fo = Logistic(0.5,1.5).

a=0.05 a=0.01

A=0.9 MLRT EM EMP MLRT EM® EBEMP
np=50,my =50 0253 0592 0592 0.114 0335  0.330
ny =50,ny =100 0287 0735  0.732 0128  0.494  0.492
ny=100,ns =50 0.383 0719  0.716  0.211  0.522  0.522

ny = 100,72 =100  0.442 0.889 0.890 0.272 0.724 0.727

a=0.05 a=0.01

A=0.7 MLRT EMY EMP MLRT EMP  EMP
ni =50,np =50 0166 0422 0422  0.076  0.228  0.228
ny =50,m5 =100  0.153 0516 0516  0.056  0.279  0.276

n1 = 100, ng = 50 0.243 0.552 0.555 0.122 0.345 0.344

ny = 100,70 =100  0.272 0.708 0.709 0.138 0.489 0.489

Results in column (3,6) used {A1,...,A;} = {0.1,0.4,0.7,1.0}. Results in column (4, 7) used

{A\,...,As}={0.1,0.2,...,1.0}.

for EM-test in order to obtain accurate type I errors and reasonable power.
The simulation results are provided in Table 7. It can be seen that when
f1 and f; have different locations and same scale, the EM-test has greater
power than T and Wilc. In contrast, when f; and f; have the same location
and different scales, the performance of the EM-test is much better than T,
and slightly better than Wilc. When f; and f, differ in both location and

scale, the EM-test is again more powerful than T and Wilc. In summary,
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Table 4: Power comparison with fi; = Logistic(0, 1), fo = Logistic(0,1.5).

a=0.05 a=0.01

A=0.9 MLRT EM EMP MLRT EM® EBEMP
np =50,my =50  0.102 0481 0480 0.038 0262  0.262
ny =50,y =100 0077  0.615 0617  0.020 0.363  0.363
ny =100,ns =50  0.157  0.646  0.643  0.067  0.426  0.425

ny; = 100,72 =100  0.142 0.807 0.806 0.063 0.614 0.615

a=0.05 a=0.01

A=0.7 MLRT EMY EMP MLRT EMP  EMP
ni =50,n =50 0076  0.367 0.366 0.017  0.169  0.166
ny =50,m5 =100  0.050 0439 0442 0011 0218  0.219

n1 = 100, ng = 50 0.111 0.448 0.450 0.044 0.262 0.261

ny = 100,72 =100  0.108 0.605 0.604 0.042 0.385 0.386

Results in column (3,6) used {A1,...,A;} = {0.1,0.4,0.7,1.0}. Results in column (4, 7) used

{A\,...,As}={0.1,0.2,...,1.0}.

under the asymmetric distribution case, when there is no mixture in the
second sample, the performance of EM-test is always superior to T and

Wile.
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Table 5: Power comparison with A = 1 under the normal kernel.

fi=N(0,1), fo = N(0.5,1)
o =0.05 a = 0.01
T Wil EMP EMP T  wie BEMP BEMP
ny=50,m =50 0.680 0.661 0579 0574 0443 0404 0.346  0.348
ny =50,mp =100 0.814 0804 0.731 0.730 0.608 0.567 0.472  0.473
ny =100,np =50 0.808 0.792 0.731  0.731 0598 0.571 0.485  0.485
ny =100,np =100 0.931 0924 0.881 0.881 0.818 0.799 0.723  0.725
fi=N(0,1), fo = N(0,1.5%)
o =0.05 a = 0.01
T Wil EMP EMP T  wie EMP BEMP
ny=50,m =50 0.047 0.049 0724 0716 0.010 0.006 0.485  0.485
ny =50,mp =100 0.049 0044 0815 0813 0.007 0.007 0.609  0.608
ny =100,np =50 0.052 0.066 0.852 0.852 0.009 0.016 0.671  0.671
ny =100,np =100 0.052 0.049 0.959  0.959 0.009 0.013 0.877  0.875
fi=N(0,1), f2=N(0.5,1.5)
o =0.05 a =0.01
T wie EMP EMP T Wi EMP EMP
ny=50,m =50 0459 0450 0.879 0.877 0257 0.217 0.697  0.697
ny =50,mp =100 0.631 0576 0.957 00955 0410 0.339 0.829  0.829
ny =100,np =50 0.586 0572 0944 0944 0321 0.346 0851  0.851
ny =100,np =100 0.813 0.794 0.993 0993 0.576 0.554 0.982  0.982
Results in column (4,8) used {A1,...,As} = {0.1,0.4,0.7,1.0}. Results in column (5,9) used {\1,...,A;} =

{0.1,0.2,...,1.0}.
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Table 6: Power comparison with A = 1 under the logistic kernel.

11

f1 = Logistic(0,1), fo = Logistic(1,1)

o =0.05 a = 0.01

T Wil EMP EMP T  wie BEMP BEMP

ni=50,n =50 0779 0811 0.733 0.732 0571 0.587 0.496  0.494

ny =50,y =100 0.869 0.898 0.851  0.852 0.702 0.730 0.652  0.649

ny =100,n, =50 0.889 0.909 0.846  0.843 0.744 0.760 0.699  0.699

ny =100,n, =100 0.971 0979 00954 0955 0.903 0.927 0.880  0.880
f1 = Logistic(0,1), fo = Logistic(0,1.5)

o =0.05 a = 0.01

T Wil EMP EMP T  wie EMP BEMP

ni=50,ny =50 0.052 0.048 0586 058 0.012 0.007 0.337  0.334

ny =50,n, =100 0.051 0.036 0.692 0.691 0.008 0.010 0.446  0.444

ny =100,n, =50 0.049 0.066 0.671  0.669 0.008 0.021 0447  0.445

ny =100,n, =100 0.047 0.059 0.867 0.866 0.010 0.024 0.699  0.700
f1 = Logistic(0,1), fo = Logistic(0.5,1.5)

o =0.05 a = 0.01

T wie EMP EMP T Wi EMP EMP

ny=50,n =50 0.185 0.205 0.641  0.640 0.067 0.075 0.403  0.399

ny =50,mp =100 0.261 0.260 0.800 0.800 0.111 0.090 0.544  0.543

ny =100,n, =50 0226 0.261 0.799  0.798 0.063 0.105 0.589  0.586

ny =100,n, =100 0.339 0.366 0927  0.927 0.141 0.159 0.805  0.805

Results in column (3,6) used {A1, ..., As} = {0.1,0.4,0.7,1.0}. Results in column (4, 7) used {\1,...,A;} =

{0.1,0.2,...,1.0}.
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Table 7: Power comparison with A = 1 under the extreme value type I kernel.

fi = Eatreme(0,1), f = Extreme(log(2),1)

a=0.05 a =0.01
T Wil EMP EMP T  wie BEMP BEMP
ni=50,np =50 02838 0.135 0990 00989 0.096 0.035 0.943  0.942
ny=50,ny =100 0250 0.170 0.999  0.999 0.097 0.065 0.993  0.994
ny =100,n, =50 0431 0135 0999 0999 0222 0.040 0.987  0.987
ny =100,n, =100 0.518 0.223 1.000  1.000 0.277 0.083 1.000  1.000
f1 = Extreme(0,1), fo = Extreme(0,1/1.75)

a=0.05 a =0.01
T Wil EMP EMP T  wie EMP BEMP
ni=50,ny =50 0.597 0.685 0.695 0.694 0.366 0.433 0.447  0.447
ny =50,n, =100 0.689 0.800 0.806 0.807 0458 0.571 0.580  0.579
ny =100,ny =50 0.701 0.797 0.824  0.824 0494 0.559 0.652  0.652
ny =100,n, =100 0.866 0.929 0943 0943 0.702 0.794 0.822  0.821

f1 = Extreme(0,1), fo = Extreme(log(1.5),1/1.25)

a=0.05 a =0.01
T wie EMP EMP T Wi EMP EMP
ni=50,n =50 0475 0360 0583 0584 0237 0.165 0.352  0.352
ny =50,ny =100 0541 0456 0.792  0.791 0.266 0.236 0.574  0.572
ny =100,n, =50 0.660 0451 0.709  0.709 0.392 0219 0487  0.488
ny =100,n, =100 0.740 0.619 0.906  0.906 0.532 0.378 0.749  0.749

Results in column (4,8) used {A1,...,As} = {0.1,0.4,0.7,1.0}. Results in column (5,9) used {\1,...,A;} =

{0.1,0.2,...,1.0}.
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Figure 2: Quantile-quantile plots of FM,

the logistic kernel
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3. R code for sample size calculation

Given the density function f(x; puq,07) for the first sample, the mixture
density (1 — o) f(z; p1,01) + Aof (x5 2, 09) for the second sample, and py,
the following R functions sizenorm() and sizelogis() calculate the required
sample sizes (nj,ny) to reject the null hypothesis with the target power
1 — (B at the significance level « for the normal kernel and logistic kernel,
respectively.

For example, suppose \g = 0.5, (p1,01) = (0,1), (p2,02) = (1,1.5),
and p; = 1/3. If the target power is 80% at the 5% significance level, the
required sample sizes are found to be (ny,ny) = (39, 78) under the normal
kernel and (nq,ny) = (84, 168) under the logistic kernel by using R functions

sizenorm() and sizelogis().

sizenorm=function(lamO,rhol,mul,sigmal,mu2,sigma2,alpha,target_power)
{

n2=2

powerO=target_power; diff_power=1

while(diff_power>0.001){

Deltal=sqrt(n2)*(mu2-mul); Delta2=sqrt(n2)*(sigma2-sigmal)
c0_squ=1lam0~2*rhol/(sigmal~2)*(Deltal~2+2*Delta2"2)

powerl=pchisq(qchisq(1-alpha,2),2,ncp=cO_squ,lower.tail = F)



HOMOGENEITY TEST IN A TWO-SAMPLE PROBLEM 15
diff_power=powerO-powerl
n2=n2+1
+
nl=round(rhol*n2/(1-rhol),0)
data.frame(nl=nl1,n2=n2,row.names="sample size")

}

sizelogis=function(lam0O,rhol,mul,sigmal,mu2,sigma2,alpha,target_power)
{
n2=2
powerO=target_power; diff_power=1
while(diff_power>0.001){
Deltal=sqrt(n2)*(mu2-mul); Delta2=sqrt(n2)*(sigma2-sigmal)
cO0_squ=1lam0~2*rhol/(sigmal~2)*(Deltal”2/3+Delta2"2*(3+pi~2)/9)
powerl=pchisq(qchisq(1l-alpha,2),2,ncp=cO_squ,lower.tail = F)
diff_power=powerO-powerl
n2=n2+1
}
nl=round(rhol*n2/(1-rhol),0)

data.frame(nl=n1,n2=n2,row.names="sample size")
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> sizenorm(0.5,1/3,0,1,1,1.5,0.05,0.8)
nl n2

sample size 39 78

> sizelogis(0.5,1/3,0,1,1,1.5,0.05,0.8)
nl n2

sample size 84 168

4. Further analysis of the second real data

For the second real data of the main paper, 16 CpG sites are chosen
as further analysis. The box plots of the control groups and case groups in
each site are given in Figure 3. The box plots show that the control group
and case group in each CpG site may have different variances, while some
of them may have the same mean. The K-S normality testing p-values for
the 16 control groups in 16 CpG sites are displayed in Table 8, which shows
that the control groups should be taken as normal data. The p-values of
three tests are given in Table 9. We can see that the p-values of EM-test
are much smaller than the t-test and MLRT since only EM-test takes into

the consideration of differential variabilities in addition to the location shift
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in order to detect heterogeneity in the two samples.
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Figure 3: The parallel box plots for control groups and case groups of CpG sites 1-16.

Con: Control group; Case: Case group.

Table 8: K-S normality testing p-values for the 16 control groups in 16 CpG

sites.

CpGl CpG2 CpG3 CpG4 CpGs CpG6 CpG7  CpG8

0.835  0.633 0.704 0.993 0.831 0.651 0.641 0.677

CpG9 CpGl0 CpGll CpGl2 CpGl3 CpGl4 CpGls CpGl6

0.896  0.715 0.645 0.587 0.669 0.784 0.735 0.933

5. Proofs of Theorems 1-3 in the main paper

Recall that the asymptotic properties of the EM-test rely on some

regularity conditions on the kernel function f(z;u, o), and penalty func-
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Table 9: The p-values of each test method for 16 CpG sites.

Methods CpGl CpG2 CpG3 CpG4 CpGs CpG6 CpG7  CpGS8
t-test 0.183 0.497 0.499 0.189 0.180 0.145 0.285 0.369
MLRT 0.177 0.492 0.494 0.184 0.174 0.142 0.286 0.304

EMY 0.035  0.039 0.006 0.040 0.040 0.033 0.024 0.021

Methods CpG9 CpGl10 CpGll CpGl2 CpGl3 CpGl4 CpGls CpGle
t-test 0.110  0.670 0.955 0.998 0.574 0.950 0.254 0.423
MLRT  0.108 0.678 0.956 1.000 0.567 0.952 0.253 0.421

EMY 0028 0.044 0044  0.005 0.028  0.004 0.031  0.029

Results for the EM.® used {\1,...,\;} = {0.1,0.4,0.7,1.0}.

tions p(A) and p,(co). For completeness, we repeat the regularity condi-
tions here. We start listing the following mild regularity conditions on
f(x; p, o) in which the expectations are taken under the true null distribu-

tion f(x; po, 09)-

B1. (Wald’s integrability conditions) (i) E{|log f(x; po, 00)|} < oo; (ii)
for sufficiently small p and sufficiently large r, E{log{1+f(z; u, 0, p)}] <
oo for (u,0) € © and Ellog{1 + ¢(x;7)}] < oo, where © is parame-
ter space of (u,0) , f(x;p,0,p) = SUD_yp2q0—op<, [ 1, 07), and
¢(x;71) = sup,2 2, f(2;p,0); (ili) f(250,0) — 0 in probability as

p? + o — oo.
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B2. (Smoothness) The kernel f(x;u, o) has common support and is

three times continuously differentiable with respect to u and o.

B3. (Identifiability) For any two mixing distribution functions ¥
and W, with two supporting points such that [ f(z;u, o) d¥(p,0) =

[ f(z;p,0) dVs(p, o) for all x, we must have ¥y = U,.

B4. (Uniform boundedness) There exists a function g with finite ex-

pectation such that

0" f (w; o, 00) /O 9ot |3
f(z; po, 00)

< g(z), for h+1<2,

where h and [ are two nonnegative integers. Moreover, there exists a

positive € such that

) f(w; p, 0) /Ol Do |3
sup

|u—pol2+|o—o0l2<e f(xa Ho, 00)

<g(x), for h+1=3.

B5. (Positive definiteness) The covariance matrix of (U, V) is positive

definite, where

_ Of (11; po, 00) /O

U= and V = 3f(x11;u0,ao)/ag‘

f (@115 po, 00) f(@11; po, 00)

B6. (Tail condition) There exists positive constants vy, v; and 3y with

Bo > 1 such that f(z;0,1) < miH{Uo7U1|$|_ﬁO}~

B7. (Upper bound function) There exist a nonnegative function s(z; i, o)

which satisfies Condition Bl and is continuous in (u,0), a positive
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number a with 1/5, < a < 1, a positive number b, and a positive num-
ber ¢* with €* < 1 such that for o € (0, €*0y), s(z;p, o) is uniformly

bounded, [ s(z;p,0)dr <1, and

o ts(xyp, o), if |z —p| <ol

flasp, o) <

a

o*s(x;p,0), if v —pl>ol”

Next, we list regularity conditions on p(\) and p, (o).

C1. p()) is a continuous function such that it is maximized at A = 1

and goes to negative infinity as A — 0.
C2. sup,,max{p,(c),0} = o(n) and p, (o) = o(n) for any o.

C3. pl(0) = 0,(n'/?), for all ¢ > 0, where p/ () is the derivative

function with respect to o.

C4. p,(0) < 4(lognsy)*log(o), when 0 < o < (neMp) ™! and ny is large.

Here My = max{sup, f(z; o, 00),8}.
C5 pn(bla, b1X1 + bo, ceey b1Xn + b()) = pn<0', Xl, ,Xn)
Some useful lemmas

Before proving Theorems 1-3 provided in the main paper, we present three
lemmas, which summarize some useful properties of the point estimators.

Lemma 1 indicates that any estimator with A bounded away from 0 and
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with a large likelihood value, is consistent for p, and o, h = 1,2, un-
der the null model. Lemma 2 strengthens Lemma 1 by providing spe-
cific convergence rates. Lemma 3 makes Lemmas 1 and 2 applicable to
(/\gk),ugj),uéj), 0'%?7 0'2] ') by showing that the EM-iteration keeps )\(
small neighbourhood of A; , and therefore away from 0. Theorems 1-3 in
the main paper then follow easily.

Since the EM-test is location-scale invariant, we assume (g, o) = (0, 1)

for the convenience of presentation.

Lemma 1. (Consistency with non-zero mixing proportion) Assume the
same conditions in Theorem 1. Let (5\,/11,/12,51,62) be any estimator of

(A, 1, pi2, 01, 02) such that
pln(j\7ﬂ17/j2a61762) _pln(]-)ana ]-a ]-) >Cc>—00

and X € [5,1] for some 6 € (0,1). Then under the null model f(x;0,1),

f1 = 0p(1), fia = 0,(1), 31 — 1 =0,(1) and 62 — 1 = 0,(1).

A critical step of the proof for Lemma 1 is to show that there exists a

positive constant 7y such that

lim P(&l > Tg, 09 > To) =1. (7)

n—oo

First, we establish a technical lemma, labelled by Lemma A.1, which

gives the uniform upper bound for the number of observations in the o'~
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neighbourhood of u. Let d,(0) = Myo'™® + 1/n, where a and M, are re-
spectively the constants defined in Conditions B7 and C4. Throughout the
proof, all the expectations are taken under f(z;0,1), unless stated other-

wise.

Lemma A.1. Suppose ti,...,t, are iid randoms sample from the proba-
bility density function f(x;0,1) and f(x;0,1) is a continuous function of
x. PFxcept for a zero-probability event not depending on o, as n — oo and
almost surely, we have:

1. for each given o between exp(—2) and 8/(nMj),

sup Y I(|t; — p| < 017 < 8nd,(0);
moi=1

2. uniformly for o between 0 and 8/(nMy),

sup 3" I(|t; — 1] < o) < 4(logn)’;

Hoi=1
Lemma A.1 can be proved in similar fashion to the proof of Lemmas 1
and 2 in Chen, Tan and Zhang (2008). Hence we omit it.
Next, we move back to the proof of (7). In the following discussion we
concentrate on the case that o; < og5. The proof for the case that o1 > o9

is similar. Let

Fl = {()\711’617”270-170-2) 01 S g9 S 60}
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and
Iy = {()‘7/“L17/vb270-170-2) 101 < T9,02 2 60}.

The choice of ¢y will be discussed later and the choice of 7y will be given in

Lemma A.3. We prove in Lemmas A.2 and A.3 that

lim P((?\,m,ﬁg,ffl,&?) € F1> =0

n—oo

and

lim P((S\,ﬂl,ﬂg,&l,&g) € F2> = O,

n—00
respectively. Then (7) follows.
We now define the choice of €. Let Ky = E{log f(X;0,1)}. Condition

B1 ensures that | K| < co. We require that the positive constant €, satisfies

1. € < min {e*, e™2,(32My) V1= [y, (vo/vy) 1/ (@P0) vfl/(aﬁo_l)}, where

€* is given in Condition B7;
2. —8p1 Myes *log eg + 16p2 Myey “(log vg — log €g) < po;
3. log vy + log el < 2K, — 4.
Lemma A.2. Assume the same conditions in Lemma 1. Then

sup pln()\vulvﬂ%alaa—Q) _pln(170707171) — —O0
(M\p1,12,01,02)€El

almost surely when n — 0.
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Proof. Let Ap = {i : |op — pa| < 077 %i = 1,...,n} and Apy = {j :
\zpi — po| < 037 % i = 1,...,n4}, h = 1,2. Further, let l,;(j1,0,) and
Lna(A, 1, f2, 01, 02) be the log-likelihood functions based on the first and

second samples, respectively.

For any index set, say .5, define

ln1(/£1701; S) = Zf(%’u;,uhfﬁ) and
ies

ln2(A, p, pr2, 01,023 S) = Zlog{(l = M (@255 1, 01) + Af (2i5 p2, 02) } -

i€S

Let np(S) = #{xp : i € S} be the number of observations in the hth
sample such that their indexes belongs to S, h =1, 2.
We first find an upper bound for l,,; (i1, 01) —1,1(0, 1). Using Condition

B7, we have that for o; < €,

Ina (111,015 ASy) = 1na (0,1 AS)) = D log f (2153 10, 01) — Y log f (1550, 1)

i€AS, i€AS,

< Z log{o?s(x1i; 1, 01)} — Z log f(215;0,1)
i€ A, i€AS,
(143 1, 01)

s
<bny (A7) logoy + Z log Fnr0.1)

i€ AS,



HOMOGENEITY TEST IN A TWO-SAMPLE PROBLEM 25
and

lnl(ul,Ul;An) - lnl(O, 1;A11) = Z log f (-Tli§ula01) - Z log f(xli;oa 1)

i€A11 1€A11

5($11;M1701)
< —n1(Ayp)logoy + log —————=.
i;l f(xu;()’ 1)

(9)
Combining (8) and (9), we have

5(951@'; M1, 01)
f(-xli; Oa 1) .
(10)

Lt (i1, 01) = 1 (0, 1) < {bny (AS)) — na(An)}Hog oy + ) log

=1

Lemma A.1 implies that

—4(].Og n1)2 10g o1, 01 € (0’ 77,1?\40]’
—ny(Ap)logo; <

—810g01 —8n1Moa%_alog01, o1 € <%]\/Io’60>
and nq(AS;) > (3/4)n; for large enough n;. Hence when o1 < ¢y and ny is
large enough,

1 3b
2 zfl' log o1 — 1 (A1) log oy < —8ny Myey *logeg + 9logny. (11)

Combining (10)-(11) and the fact that ni(A$;) > (3/4)n;, for large enough
ny gives

13bn
lna(p1,01) — 1,1(0, 1) <§ L

y1uu1701)
+ E | . 12
o8 ylz70 1) ( )

log oy — 8n1M06(1)_“ log €y + 9log ny
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By the strong law of large numbers, Jensen Inequality, and Condition
B7, for any given (i1, 01) with oy < e,

xlzulfllval) 8($11;N1,U1)} {8(x11;u1,01)}
— log — Fllog————"——"—— 3 <log S ———————= > <0
nlz f(x150,1) { s f(r11;0,1) | — & f(x11;0,1)

almost surely when n; — oo. Consequently, we can easily show, as in Wald

(1949), that

sup _Zl xllmulvo_l) <0 (13)

{(p1,01): o1<eo} T 1‘1170 1)

almost surely when n; is large enough. Combining (12) and (13), we get

that for o1 < ¢y and large nq,

1 3bn1
4

1 (pa,01) = 11(0,1) < log o1 — 8ny Moey “logeg + 9logny.  (14)

DO |

Next we find an upper bound for l,2(\, p1, pe, 01, 02) — l,2(1,0,0,1, 1).

From Condition B6, we get that for (A, uy, po, 01, 02) € I'y,

an()v M1, 2,01, 025 A21)

< ny(As)(logvy — logay), (15)
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and
ln2(/\a,ula,u2,01,02; A§1A22)
1—A i — A P —
= D, 1og{ f(“ “1;0,1)+—f<u;0,1)}
1€AS, Ao o1 o1 92 02
Boa—1 )‘UO
< Z log { (1 — XNvy0} +—
. 092
i€AG; A2

< ng(Age)(logvy — log og).
Using Lemma A.1 and (15), we get that

4(logng)*log 22, a1 € (0, %Mo]’

Ln2(A, 1, po, 01, 093 Agy) <
8108;2_(1) + 8n2M00—}_a lOg 2_(1), o1 € (ﬁﬁo),

which implies that for large n

1 3bn1
2 4

v

log 01 —f-lng()\, M1, H2,01,02; Agl) S 8n2M06(1)_“ 10g 6_0 +9 10g No. (16)
0

By Condition C4, we similarly have that for large enough ns,

_a (%

Lz (N, pa, po, 01, 05 AS Aso) 4 pn(02) < 8naMoey * log 6—0 + 9logng + o(n).
0

(17)

For l,o(\, p, o, 01, 025 AS AS,), by using Condition B6, we get

Ln2(A, pa, pia, 01, 025 A1 ASy) < Z log{(1 — )\)Ulaigoa_1 + )\Ulagoa_l}

1€ AG, AS,

<ny(A3;A%,) IOg(Ulegoa_l)-
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From Lemma A.1, it can be checked that when n, is large enough, no(A$; AS,) >

ng — {n2(Aa1) + no(Az)} > ne/2. Hence we get
L2 (A, i1, pia, 01, 095 A5y Ay) < (n2/2)(log vy + log Egoail)- (18)

Combining (16)—(18), it follows that for large n,

1 3bn1
2

log o1 + lp2(A, i1, 2, 01, 02) + p(02)
<16myMye, “ log L 181log 1y + (n2/2)(log vy + log € ') + o(n). (19)
€o

By strong law of large numbers, we have that [,5(1,0,0,1,1) = no{ Ky +

o(1)}. Combining (1), (14), (19) and using Conditions C1-C2, we get

Plu(A; pa, o, 01, 02) — pla(1,0,0,1,1)
< — 8n1]\/[oeé’“ log €y + 16n2M06(1)’“ logZ—E

+ %(logvl + logegoa_l) + 27logn — 1,2(1,0,0,1,1) — p,(1) + o(n)
<nps + %(ZKO —4) — npy Ko + o(n)
= —npz + o(n).

Therefore

sup pln(A, p, pio, 01, 02) — ply(1,0,0,1,1) — —o0
(Ap1,p2,01,02) €T
almost surely when n — oo. This finishes the proof. O

To establish a similar result in I'y, we define

9(x; A, iy, pro, 01, 02) = ay(1 — N)s(x; pa, 01) + ax A f(x; po, 02),
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where a1 = I(07 # 0, g # £00), ay = I(us # £00). It is easy to show that
the function g(x; A, p1, o, 01, 02) has the following properties:

1. g(x; A, 1, p2, 01, 09) is continuous in (A, puq, fi2, 01, 02) almost surely
with respect to f(z;0,1);

2. Ellog{g(X; A, p1, pro, 01,02)/ f(X;0,1)}] < 0for any (A, p1, p2, 01, 09)
in 'y (Jensen Inequality);

3. g(x; A\, pa, o, 01, 02) is uniformly bounded for (\, iy, o, 01, 02) € Ta.

We choose 1y < €y, which is smaller than 1. Hence oy is smaller than

the true value og. Consequently, we can easily show, as in Wald (1949),

that
1 & 9($2i; )\,N1,M2,01,02)
sup — ) log — —d(710) <0
(\1,p2,01,02)€02 102 ZZI f(xZi; 0, 1)

almost surely as ny — 00. Note that d(79) is a decreasing function of 7.

Then 0(eg) < §(70).

Lemma A.3. Assume the same conditions as in Lemma A.2. Then

sup pla(\, p, o, 01, 02) — ply(1,0,0,1,1) — —o0
(A\,p1,12,01,02)E

almost surely when n — 0.
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Proof. Using Condition B7, we have that for (A, uy, pio, 01, 02) € I's.

ln2()\7/i1,u2,01702) :ln2(/\7M17M2701;02;A21) + ln2(>\aM17M2,01702; A§1)

= Z log [(1 — A\) f (z2:; 1, 01) + Af (2255 o, 02)]

1€A2

+ Z log [(1 — A\) f (z2:; 11, 01) + Af (w255 i, 02)]

i€AS,

< —ny(Ag)logoy + Z log g(9i; A, 11, fi2, 01, 02)
1€Ag

+ > log gl(wais A, i, pi2, 01, )

iEAS,
n2
= —ny(Ag ) logoy + Z log g(22i; A, p11, f12, 01, 02).
i=1

By Conditions C1-C3, we further have

an()‘nul?/vL% 01, 02) - ln2(17 07 07 17 1) +p(/\) - p(1> +pn(02) - pn(l)

Toi; N, b1, b2, 01, 02)

f(22:0,1)

< —ny(Ag)log oy +Zlog 9 + pul(o2) — pu(1)
i=1

< —ny(Ag) log oy — n2d (1) + o(n). (20)

Similar to (14), we get

3bn1
4

log oy — 8n1 My7y “log 7o + 9logni. (21)

N | —

Lni(p1,01) — 1,1(0,1) <

Note that when ny; and n, are large enough and o, < 7, it can be verified
that

1 3bn1
2 4

log 01 — np(Ag) log oy < —8nyMyr; ~*log 79 + 9log ns.
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Hence, from (1), (20) and (21), we have
pla(\, p, o, 01, 02)—ply(1,0,0,1,1) < —16nM07'01_“ log To—np2d(79)+18log n+o(n).

We select 1o such that —16My7y “log 7o < 0.5p20(€p) < 0.5p28(79). Then

we get
Pla(A, pa, p2, 01, 09) — pla(1,0,0,1,1) < —0.51020(70) + 18logn + o(n).
Therefore

sup pla(\, p, o, 01, 02) — pl,(1,0,0,1,1) — —o0
(A,p1,p2,01,02)E

almost surely when n — oo, as required. O

Combining the condition pl, (), fi1, fig, &1, 72) — pl,(1,0,0,1,1) > ¢ >
—o0 in Lemma 1, and Lemmas A.2-A.3, we know that there exists a con-

stant 75 > 0 such that

lim P(&l > Tp, 09 > To) =1.
n—00

Further, by Conditions B1 and B3, the consistency of (fy,dy) for h =
1,2 is covered by Kiefer and Wolfowitz (1956). More arguments can be
found in the proof of Theorem 3 in Chen, Tan and Zhang (2008). This
finishes the proof of Lemma 1.

In the next lemma, we strengthen the conclusion of Lemma 1 by pro-

viding an order assessment.
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Lemma 2. (Convergence rate with non-zero mizing proportion) Assume
the same conditions as in Lemma 1. If X — X\g = 0,(1) for some X\ € (0, 1],

then fip, = Op(n~Y%) and 5, — 1 = O,(n"1/?), h =1, 2.

Proof. Recall that

n1
lna (1, 01) = Zlog [z g, 01)
i=1

and

n2
Ln2(As pin, pia, 01, 09) = Zlog{(l = M) f (@255 pa, 01) + Af (@235 p12, 02) -
i=1

Further let

Rui(pr, 01) = lpa (1, 01) = 11 (0, 1)
and
Rpa (A, p, pr2, 01, 02) = Lo (A, pa, pia, 01, 02) — 1n2(1,0,0,1,1).
Then,
Pla(\, [ir, iz, 51, 52) — pln(1,0,0,1,1) =R (i, 51) + Rua(\, i, fiz, 51, 52)
+pa(@2) = pa(1) + p(A) = p(1).

Next we derive an upper bound for pl,(\, fi1, fia, 51, 52) — pl,(1,0,0,1,1).
Together with the lower bound ¢, we get the order assessment of fi;, and 7y,

h=1,2.
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We first find an approximation for R, (fi1,71). From Lemma 1, we have
the consistency results fi, = 0,(1) and 7, — 1 = 0,(1), h = 1,2. Applying
the second Taylor expansion to R, (fi1, 1) around (0, 1), and the weak law

of large numbers with Conditions B2 and B4, we get that

Ry (fin,01) =lpa(fin, 01) — 1,1(0,1)
0l,1(0,1) _ 0l,1(0,1)
- 1
o pi1 + 90, (61— 1)
1 82ln1(0, 1) 9 9%, (0, 1)

1921,,(0,1)

- i(61— 1) + = 51— 1)°
> o8 M oo, MO VT g 7Y
+op(m){ii + (01 = 1)°}. (22)
Let
v 0o 0fwi0 /00

f(mhi’ 0, 1) f(l’hi, 0, 1)

Then we can verify that

Oha(0,1)  Olu(01)
a'ul /Jq 8 o1 0'1 1 Z{MI)/IZ 0'1 ].)le} i (23)

Further,

o F(21::0,1) f(215;0,1)

i=1

9L (0,1) m[w mMHM@h_{W@m&DMM}j

3 Vi) (24)

where in the last step, we have used the definition of Y;; and the weak law
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of large numbers. Similarly to (24), we have that

0? 11 (0, 1)
Opy 00y

0? ln 0 1)
ZYthLop() pg Lm0 sztop . (25)

By Condition B5 and the weak law of large numbers, we get that

0p(1) = op(n){ji; + fir (61 — 1) + (51 — 1)°}.

(26)

Z {mYy + (61 — 1) Z:}°
i—1

Combining (22)—(26), we obtain that
Ry ,Uh J1 Z {/hyu 01 - 1)Zli}

2 [Z {mYi + (01 = 1) 20} | {1 +0,(1)}. (27)

We next study p,(d2) — p,(1). By Condition C3, we have
Pu(02) = pa(1) = 0p(0/2) (@2 — 1) < 0y(1) + 0p(m)(@z — 1% (28)

We now find an upper bound for R,,o(\, fi1, fiz, 51, 02). Write Ryo(\, i1, fiz, 1, 02) =

f: log(1 + 0;) with

=1

5 = (1 = M {f (@ai; fir, 01) = f(26;0,1)} + M f (@23 fia, 02) — f(225;0,1)}
Z f(@2:;0,1) '

By the inequality log(1 + z) < z — z?/2 + 23 /3, we have

B ng ng na
Rpa(A, fu, fiz, 61, 02) < 251‘ - 253/2 - 25?/3

i=1 i=1 i=1

Let my = (1 — N)jig + Mg, mo = (1 — A)(61 — 1) + A(62 — 1). By the
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consistency fi, = 0,(1) and 7, — 1 = 0,(1), h = 1,2, we have that

Applying the first order Taylor expansion to f(xs;; fin, 1), we find that

0i = M1 Yo; + Moy + €pi

and the remainder term ¢,, = ?:21 €ni Satisfies
2
1/22 O'h—l } O nl/2 Z{Nh O'h—l }
h=1

From Condition B4 and the weak law of large numbers, after some straight-

forward algebra, we get

n2

Rua(\, fin, fia, 01, 02) < Z{mIYQi+m222i}
i1
n2

—(1/2) Z {1 Yai + Mo Z0; ¥ {1 4 0,(1)}

+(1/3) Z {1 Ya; + M2 Zoi}> + Op(cn).
=1
For the cubic term in the upper bound of R,5(\, i1, fiz, 71, 02), we have that

n2

Z(legZ + Mg Zo;)° Z{m?YQf + 3M3my Yo, Zoi + 33 Yo, Za; + s Za; }
i=1 i=1
n2
(1) | S (VS + V2 + 32, + i3}

=1

=o0p(n)(m] + ms3),

where in the second step, we have used the fact that m; = o,(1) and

mg = 0p(1), and in the third step we have used Condition B4.
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Hence,
~ no no
Roo(A, fir, fi2, 01,02) < Zmﬂ@ri-zmzzm
i=1 i=1

—1/2 i (m1Ya; + MaZa;)” {1+ 0,(1)}

i=1

+Oy(en) (29)
Combining (27)—(29) and Condition C1, we get

pln(j\u lab ﬁQ; 5-17 62) - pln<]~7 07 07 17 ]-)

ni n2
< Z{ﬂlYu + (o1 —1)Zu}t + Z(mlym + Mo Za;)
i=1

=1
—1/2 ) {mYai+ (01— DZu} + D (maYai +maZoi)’ | {1+ 0,(1)}
=1 =1
+0,(en) + 0,(1).

Condition A — \g = 0,(1) with A € (0, 1] implies that
Oplen) = Op(n'?) {1} + (01 = 1)* + m} +m3} = o, (n) {3} + (01 — 1)* + 7} + 13
Hence, by the weak law of large numbers with Condition B5,

c S plTL(;\J lah laQJ 5-17 52) - pln(]-a 07 07 17 ]-)

ni na
< Z{ﬂlylz‘ + (01— 1)Z1i} + Z(ﬁhY% + Mg Za;)
i=1

=1

172 [+ (o~ D2+ D0V 4 | 11+ 0y (1)) o)

i=1

< 1/2(Uf,, W Uy, + Uz, W™ 'Usy,) + 0,(1), (30)
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[{3)]

where “7”7 denotes the transpose of a vector or matrix,

_ 71/2 n n " _

Unn =1y, (Zz:hl Yhis D icy Zhi) , W=

with 0 = Var(Y11), 03 = Var(Zy1) and oy.z = Cov(Y11, Z11). Therefore,
jin = Op(n™'?), 51 = 1= 0,(n7"?), my = Oy(n™"?), my = Op(n™"7?).

Any values of (fi1, 1 —1,m1,m2) out of this range will violate the inequality.

With the condition that A — A\g = 0,(1) for some )\, € (0, 1], we have
fir = 0,(n™Y?), 51 — 1= 0,(n""?), fig = 0,(n"Y?), 55— 1 =0,(n"/?).
[

Let (M, fi1, iz, 01,72) be some estimators of (A, ju1, o, 01, 09) as before,

and let
o = _ ;\f($2i§ﬂ275_2)
' (1= N) f(xas; i, 01) + Nf (@i iz, 2)

We define
ng n2
Hy(N) = (ny = @) log(1— ) + Y @ilog(A) +p().
=1 =1
The EM-test updates A by searching \* = arg maxy H,()).

Lemma 3. (Consistency of mizing proportion after iteration) Under the
same conditions as in Lemma A.1, and if \—Xo = 0,(1) for some Ao € (0, 1],

then X* — Xg = 0,(1).
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For the proof of Lemma 3 is similar to that of Lemma A3 of Li, Chen

and Marriott (2009) and hence is omitted.
Proof of Theorem 1

Proof. For any k < K, due to the monotonicity property of the EM-
algorithm that the penalized likelihood increases after each iteration (see

Proposition 1), we have

k k) 1 1
Pl 1 18 05 o) > pl, (WY, 1) iy ot 08) > pla(2,0,0,1,1).

That is,
N i) 1 ol o)) = pla(1,0,0,1,1) > p(A;) = p(1) > —oc.
Then by Lemmas 1-3, Theorem 1 holds. O]

Proof of Theorem 2

Proof. Under Conditions B2, B4 and B5, applying some of the classic results

about regular models, we have (Serfling, 1980)

Suppln(17 Hy s 0, J) - pln(la 07 07 17 1)
o

=1/2(v/p1U7, + /p2U3 )W = (/01U + /p2Uzn) + 0,(1). (31)

Due to the properties established in Theorem 1, ()\g-K), uﬁf), Méj ), ag()) sat-
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isfies the conditions of Lemma 2 and hence from (30), we have
pln()‘§K)7 :ug()7 :ug()7 O-g()7 Uéf)) - pln(L 07 07 17 1)
< 1/2(Uf,W Uy, + U, W 'Us,) + 0,(1). (32)
From (31) and (32), we find that

K K K K K
M<K)(>\]> :2{pln()‘§ )7 lu“g_] )7:ugj )7 o-gj )7 o-éj )) _pln(]-a 07 07 17 1)}

n

- 2{Suppln(17 K, [, 0, O-) - pln(la 07 07 17 1)}

o

<(vpaU7,, — 01Uz )W = H(\/paUrp, — +/p1Uan) + 0,(1).

Since the upper bound does not depend on \;, we further have

EM) < (V3UF, — iUz W (yaUsn — V5iUsa) + 0,(1).  (33)
Next, we show the upper bound for EMéK) is achievable. Recall that
A1 = 1. Let
(fin,5n — 1) = n, "W U, h=1,2.
Since the EM-iteration always increases the penalized likelihood and A\; = 1,

we have that

EM7(LK) > M,SK)(M) > Mr(zl)()\l) > 2{pl, (M1, i, fiz, 61, G2) — sup pl, (1, g, p,0,0)}.

(34)

Note that it is easy to verify that

fin=0,(n"Y?) and &, —1=0,(n""?), h=1,2.
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With this order assessment and applying the second order Taylor expansion,

we have that

2{pln<)\17 /117 /]’27 5-17 6-2) - Suppln(lv My Ly T, U)}
1,0
(AU~ AUL)W M (U — ViUan) + 0,(1). (35)
Combining (33)—(35), we get

EMY) = (Vp2UT, = ViU )W = (y/paUsn — v/p1Uzn) + 0p(1).

By central limit theorem, W=/2U,,, for h = 1,2 converges to N(0,1) in
distribution. Note that Uy,, and Us,, are independent. Consequently, the

null limiting distribution of EMI s X3 O
Proof of Theorem 3

Proof. Without loss of generality, we assume that the null model is f(z;0,1).

Then
E(U?) =o0y%0y, E(V?) =o0,%0y, EUV)=0,%0yz. (36)
Further the local alternative H” in (2.2) of the main paper becomes
H!: X=Xy, (t1,01) = (0,1), (p2,02) = (n;1/2A1/00, 1+ nz_l/QAg/ao).

Let

A =fjlo (1= M) f (2650,1) + Nof (w2315 > A Jo0, 1 + 5/ Ag f o)
n - & f(22:;0,1)
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Under Conditions B2 and B4, applying second order approximation, we can

verify that under the null model,

ne Al
An = Aoaaln;1/2 Z (Alifm + AQZZZ)_O5)‘3062 (Al, AQ) W +Op(1>

i=1 JAD

Hence under the null model, A, % N(—0.5¢2, 2), where
= Noy2(Aloy + 2A1 Aoy 4 + AS07).

Therefore, the local alternative H)' is contiguous to the null distribution
(Le Cam and Yang, 1990 and Example 6.5 of van der Vaart, 2000). By Le
Cam’s contiguity theory, the limiting distribution of EMY) under H? is
determined by the joint limiting distribution of W_l/z(\/EUln —/P1Uzn)
and A,, under the null model.

By central limit theorem and Slutsky’s theorem, the joint limiting dis-
tribution of W—1/ 2(y/p2U1n — /p1Ua2y,) and A, under the null model is

multivariate normal
0 I —/P1rooy ‘W2 (A, Ay)T
N3 ,
—0.5¢2 —/P1ho0y (AL, Ag) W2 c?

By Le Camrs third lemma (van der Vaart, 2000), we have under H?,

WY2(/p2Urn — /P1Uz2n) — N (_\/E)‘0001W1/2<A1’ Ay)7, I> :

Since EMY) = (/paUTn —/P1U3, )W =1 (/p2U1n — /P1Uzn) +0,(1) holds
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K
under the null, by Le Cam’s first lemma (van der Vaart, 2000), EM®E) =

(V/P2UT = /1UZ )W = (/53U1n — /P1Uzn) +0,(1) still holds under H?.

Therefore, the limiting distribution of EM under the local alternative

H" is x3(c%), where

o= pi1c® = Aop10g 2 (A2as + 20 Agoy 5 + ASoy).
With (36), we further have

g = Aop1 {ATE(U?) + 201 A, E(UV) + ASE(V?)}.

This finishes the proof. O

References

Chen, J., Tan, X. and Zhang, R. (2008). Inference for normal mixtures in mean and variance.

Statist. Sinica 18, 443—-465.

Kiefer, J. and Wolfowitz, J. (1956). Consistency of the maximum likelihood estimates in the

presence of infinitely many incidental parameters. Ann. Math. Statist. 27, 887-906.

Le Cam, L. and Yang, G. L. (1990). Asymptotics in Statistics: Some Basic Concepts. Springer-

Verlag, New York.

Li, P., Chen, J. and Marriott, P. (2009). Non-finite Fisher information and homogeneity: The

EM approach. Biometrika 96, 411-426.

Serfling, R. J. (1980). Approzimation Theorem of Mathematical Statistics. Wiley, New York.



REFERENCES43

van der Vaart, A.W. (2000). Asymptotic Statistics. Cambridge University Press, New York.

Wald, A. (1949). Note on the consistency of the maximum likelihood estimate. Ann. Math.

Statist. 20, 595-601.

School of Statistics, East China Normal University, Shanghai 200241, China.

E-mail: liuguanfu07@163.com

Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3, Canada.

E-mail: yuejiao@mathstat.yorku.ca

Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, N2L

3G1, Canada

E-mail: pengfei.liQuwaterloo.ca

School of Statistics, East China Normal University, Shanghai 200241, China.

E-mail: xlpu@stat.ecnu.edu.cn



