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Abstract: We consider modeling non-autonomous dynamical systems for a group of

subjects. The proposed model involves a common baseline gradient function and

a multiplicative time-dependent subject-specific effect that accounts for phase and

amplitude variations in the rate of change across subjects. The baseline gradient

function is represented in a spline basis and the subject-specific effect is modeled

as a polynomial in time with random coefficients. We establish appropriate identi-

fiability conditions and propose an estimator based on the hierarchical likelihood.

We prove consistency and asymptotic normality of the proposed estimator under

a regime of moderate-to-dense observations per subject. Simulation studies and

an application to the Berkeley Growth Data demonstrate the effectiveness of the

proposed methodology.
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1. Introduction

Continuous-time smooth dynamical systems arise in modeling biological,

physical, and chemical processes such as growth of organisms, synthesis of chemi-

cals, disease progression, and dynamics of ecological systems. Many of these pro-

cesses are modeled through systems of ordinary differential equations (ODEs).

Most of the existing approaches assume known functional forms of the dynamical

systems that are determined by a small number of parameters. Due to insuffi-

cient knowledge, sometimes a more flexible approach to modeling the gradient

function of the dynamical system is necessary. Moreover, if observations are on

a group of subjects, it may be beneficial to combine information across subjects.

This can be achieved by including subject-specific effects into the model that

enable estimation of the population level dynamics while also estimating the dy-

namics for each individual. Mixed-effects models for ODEs have been used in

pharmacokinetics (Li et al. (2002)) and in disease dynamics (Huang, Liu and

Wu (2006); Guedj, Thiébaut and Commenges (2007); Huang and Lu (2008)),
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where the ODE is assumed to have a known parametric form. Recently, Wang

et al. (2014) considered a semiparametric mixed-effects ODE model assuming a

parametric ODE where the estimation is performed by imposing a penalty on

the trajectories represented by splines.

In this paper, we model the dynamics for a group of subjects simultaneously

by ordinary differential equations, with a common “baseline” dynamics depend-

ing on the current state and represented in a spline basis, and time-dependent

subject-specific random effects that capture both amplitude and phase variation.

The observed data for the i-th subject is the sample trajectory Xi(·) measured

at a set of time points in a finite time interval with measurement errors. In

many studies, the rate of change X ′i(·) is assumed to be a function of the state

Xi(·) alone, that is, the dynamics follows an autonomous system. However, many

dynamics, especially those arising from biological systems, often display certain

phase-variation in addition to amplitude-variation across subjects. This is promi-

nent in the dynamics of human growth where some individuals start puberty

earlier while for others the growth rate peaks at a later age. Since the defining

feature of an autonomous system is that the rate of change at any given time is

only a function of the state at that time, an autonomous system is inadequate in

describing phase variations.

To model the phase variation in an interpretable way, we propose a system

of nonautonomous ODEs where the gradient function is the product of two parts:

a common time-independent fixed effects part (referred to as the baseline gra-

dient function), and a time-dependent random effects part, capturing the phase

and amplitude variations: X ′i(t) = eZ(t,θi)g(Xi(t)), where θi is a random vector

representing the unobserved subject-specific effects and Z(·,θ) is a function of

time that captures both amplitude and phase variations. We represent the com-

mon gradient function g(·) in a spline basis and model Z(t,θ) as a polynomial

in t. Decoupling of these two components requires an appropriate identifiability

constraint that is discussed in Section 2. Moreover, to avoid singularity in the

solution of the ODE, we also assume that g is either strictly positive or negative

on its domain.

We propose an estimator based on the framework of hierarchical likelihood

(Lee, Nelder and Pawitan (2006)). The model is fitted using the Levenberg-

Marquardt nonlinear optimization procedure. The hierarchical likelihood-based

estimation is computationally a much cheaper alternative to the commonly used

maximum likelihood procedure for nonlinear mixed effects models (cf. Jiang

(2007)) due to nonlinearity in the ODEs and lack of closed form solutions. We
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adopt an asymptotic framework in which the baseline gradient function g is as-

sumed to be exactly represented by a large but fixed number of basis functions,

while for model fitting, we regularize g through adding a roughness penalty to

the objective function. Under an appropriate identifiability constraint, we prove

consistency of the proposed estimator of g when the measurements become dense

within a time interval as the number of subjects n increases. We also prove that,

when the number of measurements per subject grows faster than
√
n, the pro-

posed estimator has an asymptotic normal distribution. The latter result can be

used to determine confidence sets for the baseline gradient function. We applied

the proposed method to the Berkeley growth data and showed that valuable

insights about human growth dynamics can be obtained through modeling the

growth trajectories at a population level. The proposed method also provides an

alternative framework for functional data analysis when such data are character-

ized by monotone sample trajectories.

Among related works, in Paul, Peng and Burman (2011) we considered a

model with Z(t,θi) = θi to capture subject-specific amplitude variations in au-

tonomous ODEs, even though no theoretical analysis was presented. The current

proposal is seen as an extension of that model to nonnautonomous ODEs. Also,

in Paul, Peng and Burman (2016), we considered nonparametric estimation of

g based on a single trajectory. Both the methodology and theoretical analysis

presented in this paper are substantially different from that in Paul, Peng and

Burman (2016).

The rest of the paper is organized as follows. The model is described in

Section 2 and the model fitting procedure in Section 3. The asymptotic theory

is established in Section 4. A simulation study is reported in Section 5 and the

application to Berkeley growth data is described in Section 6. Proofs are given in

the Appendix. Further details and additional numerical and graphical summaries

are available in the Supplementary Material.

2. Model

In this section, we describe the proposed model and then discuss the identi-

fiability constraint. We assume that the true trajectory Xi(·), corresponding to

the i-th subject, follows the ODE:

X ′i(t) = eZ(t,θi)g(Xi(t)), t ∈ [0, 1], Xi(0) = ai, i = 1, . . . , n. (2.1)

For simplicity of exposition, we treat the initial conditions ai := Xi(0), i = 1, . . . ,

n, as known, though they can also be treated as random effects and estimated
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in a similar fashion as the θi’s. We further assume that the baseline gradient

function g in (2.1) is represented by a finite set of spline functions whose combined

support covers the range of the observed trajectories:

g(x) = gβ(x) =

M∑
j=1

βjφj(x), (2.2)

where β = (β1, . . . , βM )T is unknown and Φ(·) = (φ1(·), . . . , φM (·))T is a set of

spline functions. In this paper, we use a cubic B-spline basis with equally spaced

knots and a large fixed M . Larger values of M provides a more accurate approx-

imation to g while leading to higher variability of the estimator. To address this,

we regularize g by adding a ridge-type roughness penalty term to the objective

function (see (3.2)) to achieve bias-variance trade-off.

We model the subject-specific effect as a polynomial in t with random coef-

ficients;

Z(t,θi) = θi1 + θi2t+ · · ·+ θipt
p−1, i = 1, · · · , n, (2.3)

with the working assumption that θi = (θi1, . . . , θip)
T i.i.d.∼ N(µθ,Σθ), µθ =

(µ1, . . . , µp)
T and Σθ = diag(σ2

θ1
, . . . , σ2

θp
) with σ2

θk
> 0 for k = 1, . . . , p. Larger

values of p increase model variability and consequently require a finer grid for

numerically solving of the ODEs to overcome numerical instability. Instead of

monomials in t, an orthogonal polynomial basis may be used to improve com-

putational stability. The key feature of the random effect Z(t,θi) needed for

theoretical derivations is that Z(t,θi) is linear in the parameter θi.

The observed data are modeled as

Yij = Xi(Tij) + εij , j = 1, . . . ,mi, i = 1, . . . , n, (2.4)

with the working assumption that the εij ’s are i.i.d. N(0, σ2
ε) and the Tij ’s

are i.i.d. following a distribution with density fT supported on [0, 1]. We also

assume that the observational errors εij ’s and the random parameters θi’s are

independent.

The model specified by (2.1), (2.2), and (2.3) is not identifiable without

additional constraints, since the following transformation

β 7→ ecβ and (θi1, . . . , θip) 7→ (−c+ θi1, . . . , θip), c ∈ R, (2.5)

leaves the trajectories determined by the model invariant. This also suggests

that a natural way to impose identifiability is to ensure that either the scale of β

or the mean of θi1 is kept fixed at a given value. The constraint µ1 := E(θi1) = 0

is not effective in ensuring the asymptotic identifiability of the system, as can be
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seen from the asymptotic analysis in Section 4. We impose identifiability through

the constraint
M∑
j=1

βj = 1. (2.6)

In Section 4.2, we prove that (2.6), together with some technical conditions on

the sampling design, ensures asymptotic identifiability of the parameters.

3. Model Fitting

A common approach to fitting mixed effects models is to integrate out the

random effects and then maximize the resulting marginal likelihood with re-

spect to the fixed effects. This approach is computationally impractical here as

it involves integrating out a random parameter (i.e {θi}ni=1) in the solution of a

nonlinear ODE that does not have an analytical form and can only be numerically

evaluated. Instead, we adopt a hierarchical likelihood (henceforth, H-likelihood)

approach (Lee, Nelder and Pawitan (2006)), which is a first-order approxima-

tion to the marginal likelihood. The H-likelihood approach involves specifying a

working model for the distribution of random effects and then maximizing the re-

sulting joint likelihood for the fixed and random effects. This can also be viewed

as a penalized maximum likelihood procedure. For dense measurements, the H-

likelihood based estimate of the fixed effects closely approximates the MLE or

its second order approximation through Laplace’s method (Jiang (2007)).

3.1. Penalized loss function

Let Xi(·;θi,β) denote the solution to (2.1) with the gradient function g(·) ≡
gβ(·) specified in (2.2) and Z(·,θi) specified in (2.3). Then the negative joint

log likelihood of the observed data Y := (Yij : 1 ≤ i ≤ mi; 1 ≤ i ≤ n) and the

random effects Θ := (θ1, · · · ,θn) is given by, up to multiplicative and additive

constants,
n∑
i=1

mi∑
j=1

`ij(θi,β),

with, `ij(θi, β) = (Yij −Xi(tij ;θi,β))2 + σ2
ε(θi − µθ)

TΣ−1
θ

(θi − µθ)

mi
. (3.1)

The trajectory Xi(·;θi,β) and its gradients with respect to θi and β can be

numerically computed using the Runge-Kutta method, as described in Paul, Peng

and Burman (2011).
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In order to achieve a bias-variance trade-off and higher computational sta-

bility, we use a fixed large M and impose a roughness penalty on g of the form

λβ
∫ d1

d0
(g′′(x))2dx. Here [d0, d1] is the range covered by the trajectories and λβ ≥ 0

is a penalty parameter. This formulation is related to penalized spline regression

(Ruppert (2002); Yu and Ruppert (2002)). Under (2.2), we have∫ d1

d0

(g′′(x))2dx = βTHβ, with H =

∫ d1

d0

Φ′′(x)(Φ′′(x))Tdx,

where Φ(x) = (φ1(x), . . . , φM (x))T . Then the penalized loss function is

L(θ,β) =

n∑
i=1

mi∑
j=1

`ij(θi,β) + λββ
THβ. (3.2)

The proposed estimator is

(θ̂, β̂) := argmin
(θ,β)

L(θ,β), subject to
∑
k

βk = 1. (3.3)

The estimator of the gradient function g is then ĝ(x) =
∑M

j=1 β̂jφj(x), and

estimated trajectories Xi’s can be evaluated by solving (2.1) with θi’s replaced

by θ̂i’s and g replaced by ĝ.

3.2. Fitting algorithm

We use the Levenberg-Marquardt algorithm for nonlinear regression (No-

cedal and Wright (2006)) to minimize (3.2). It involves iteratively updating θi’s

and β. At each step, we need to evaluate Xi(·;θi,β) and its partial derivatives

with respect to θi and β. Since these are not available in close forms, a 4th order

Runge-Kutta method is used to evaluate these functions on a fine grid. More

details are given in the Supplementary Material.

Let θci and βc denote the current estimates of θi and β at each updating step

of the Levenberg-Marquardt algorithm. Then µk is estimated as the mean of the

θcik’s. The variances σ2
k’s and σ2

ε can be viewed as either unknown parameters

or as tuning parameters. In the former case, they are estimated as the empir-

ical variances of the θcik’s and the current residuals ε̃ij = Yij − Xi(tij ;θ
c
i ,β

c),

respectively. In the latter case, these parameters can be selected, similarly as

the penalty parameter λβ, through cross validation. The penalty parameter λβ
controls the trade-off between fidelity to the data and the complexity of the

model. We use an approximate leave-one-subject-out cross-validation score C̃V

for choosing λβ, described in Section S.6 of the Supplementary Material.
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4. Asymptotic Theory

In this section, we present results on the asymptotic behavior of the proposed

estimator of the baseline gradient function g under the model specified by (2.1)

– (2.4). For simplicity of exposition, let φ1, . . . , φM be the B-spline basis func-

tions of degree ≥ 3, with equally spaced knots, and combined support [d0, d1].

The asymptotic theory remains valid for any well-conditioned basis with twice

continuously differentiable basis functions supported on this interval. In order

to avoid singularity in the solution of the ODE, we assume throughout that g is

either strictly positive or strictly negative on its domain.

Throughout we assume that the initial conditions are randomly distributed

and known. In order to simplify the derivations, we treat µθ = E(θi) as known

and, without loss of generality, equal to zero. If the mean µθ is unknown, ad-

ditional terms in the expression for the Fisher information with respect to β

result, which can be neglected asymptotically under assumptions A1–A4 and

F1 (see Sections 4.1 and 4.2), as indicated in Section S.3.1 of the Supplementary

Material.

We establish consistency and asymptotic normality of the proposed estimator

β̂ of β under the identifiability constraint (2.6). For consistency, we assume that

the mi’s, the numbers of measurements per subject, increase to infinity uniformly

as the sample size n increases. For asymptotic normality, we further assume that

min1≤i≤nmi grows faster than
√
n. The asymptotic theory presented here differs

from the standard theory of nonlinear mixed effects models (cf. Jiang (2007)) due

to the use of H-likelihood estimator rather than marginal likelihood estimator,

and the imposition of the identifiability constraint on β. Proofs of the asymptotic

results make use of the profile H-likelihood with respect to β, where the profiling

is done by substituting θi’s by their local optimizers as a function of β.

4.1. Assumptions

A0 The true parameter β0 satisfies
∑M

k=1 βk,0 = 1, and gβ0
(x) > 0 for all

x ∈ (d0, d1).

A1 The distribution Fθ of the θi’s and the distribution Fa of the ai’s have

bounded support.

A2 The measurement times Tij are randomly distributed on [0, 1] with a density

fT that is bounded above and below (away from zero). Also, the noise εij
are i.i.d. N(0, σ2

ε).

A3 Let m = min1≤i≤nmi and m = max1≤i≤nmi. Then m → ∞ as n → ∞ so
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that m/m remains bounded.

Condition A0 reduces one degree of freedom in the parameter and can always be

achieved through a recentering of θi1. Condition A1 helps to ensure the bound-

edness of the trajectories and their derivatives. Moreover, A0 and a refinement

of conditions A0 and A1 (condition F1 in Section A.1) are needed to prove that

the Fisher information matrix (4.10) associated with the profile H-likelihood with

respect to β is nonsingular (see Section 4.2). The latter ensures asymptotic iden-

tifiability of the model. Conditions A2 and A3 can be replaced by assuming

that the observations are on a regular grid with grid spacings converging to zero

as n → ∞. The assumption on the εij ’s can be relaxed to that they are i.i.d.

sub-Gaussian random variables.

4.2. Asymptotic identifiability

We present a detailed analysis of asymptotic identifiability. The identifiabil-

ity condition (2.6) allows us to reparametrize β as

β = β(γ) := M−11M + Cγ, γ ∈ RM−1, (4.1)

where C is an M × (M − 1) matrix satisfying CT1M = 0 and rank(C) = M − 1.

Due to the reparametrization of β, given by (4.1), we express the likelihood

function and its derivatives as a function of γ. Let γ0 and θ∗i denote the true

parameters, and the ai’s denote the (true) initial conditions. In the following,

we suppress the dependence of the trajectories on the initial conditions ai since

these are treated as known.

Define the negative penalized log H-likelihoood for the i-th subject by

LHi (θi,γ) =
1

2

 mi∑
j=1

(Yij −X(Tij ;θi,β(γ)))2 + θTi Ψ−1θi +
λ

n
β(γ)THβ(γ)

 ,

(4.2)

where Ψ = (1/σ2
ε)Σθ. Here, LHi (θi,γ) = 1/2(

∑mi

j=1 `ij(θi,β(γ)) + λ/nβ(γ)TH

β(γ)), where `ij is as in (3.1) with µθ = 0.

Due to the lack of convexity of LHi (θi,γ) with respect to θi, in general the

value of θi minimizing this function for a given γ is not unique. Therefore,

throughout, we take

θ̂i(γ) = arg min
θi∈B(θ∗

i ,ρn)
LHi (θi,γ), (4.3)

where ρn = O((log n)−2) and B(θ∗i , ρn) = {θi ∈ Rp : ‖θi − θ∗i ‖ ≤ ρn}. Thus,

θ̂i(γ) is a local minimizer of LHi (θi,γ) given γ that is also a global minimizer
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within a radius ρn of the true θ∗i . See Remark 1 for obtaining an initial estimate

of θi that satisfies this. The “estimator” θ̂i(γ) can be shown to be uniformly

close to θ∗i when γ is within a suitably small distance of γ0 (see (A.8) for details).

Define the negative profile log H-likelihoood for γ by

LP (γ) =

n∑
i=1

LPi (γ), where LPi (γ) := LHi (θ̂i(γ),γ), i = 1, · · · , n,

and θ̂i(γ) is as in (4.3). Henceforth, we treat LPi interchangeably as a function

of γ or β.

We now discuss the asymptotic identifiability of the model. Let q(t) := (1,

t, . . . , tp−1) so that Z(t,θ) = θT q(t). Let

Ξ11(a,θ,β) =

∫ 1

0
(Xβ(t; a,θ,β))(Xβ(t; a,θ,β))T fT (t)dt, (4.4)

Ξ12(a,θ,β) =

∫ 1

0
(Xβ(t; a,θ,β))(Xθ(t; a,θ,β))T fT (t)dt, (4.5)

Ξ22(a,θ,β) =

∫ 1

0
(Xθ(t; a,θ,β))(Xθ(t; a,θ,β))T fT (t)dt, (4.6)

where X(t; a,θ,β) denotes the solution to the equation

x′(t) = eθ
T q(t)gβ(x(t)), t ∈ [0, 1], x(0) = a, (4.7)

and Xβ := ∂X/∂β and Xθ = ∂X/∂θ.

We add a (mild) additional assumption.

A4 For all β in a neighborhood B of β0, and all (a,θ) ∈ supp(Fa × Fθ), the

minimum eigenvalue of Ξ22(a,θ,β) is bounded below by some constant

c > 0.

We take

Ξ1|2(a,θ,β) = Ξ11(a,θ,β)− Ξ12(a,θ,β)Ξ22(a,θ,β)−1Ξ12(a,θ,β)T ; (4.8)

G̃(a,θ,γ) = CTΞ1|2(a,θ,β(γ))C. (4.9)

We also make a slight refinement of A0 and A1, stated as condition F1 in Section

A.1, that ensures that if β is in a neighborhood of β0, then the combined support

of the basis functions {φ1, . . . , φM} is covered by trajectories corresponding to

suitably chosen pairs (ai,θi).

Now, we can deduce that (details given in Section A.1) the matrix

G(γ) =

∫
G̃(a,θ,γ)dFa(a)dFθ(θ) (4.10)

is well-conditioned. Since G(γ) is the integrated Fisher information matrix of
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the profile H-likelihood LP (γ) for γ, this is equivalent to the asymptotic identi-

fiability of γ, as closeness in terms of the values of the objective function implies

closeness in terms of the values of γ, due to the well-conditioning of G(γ).

4.3. Consistency and asymptotic normality

We prove consistency of the estimator of β (equivalently, g) by showing

that under the identifiability constraint (2.6), and assuming that the roughness

penalty parameter λ ≡ λβ is sufficiently small, there is a sequence of local min-

imizers of the loss function (3.2) that converges in probability to the true β0 as

n → ∞. We also determine its rate of convergence and prove its asymptotic

normality after appropriate centering and scaling. We introduce the notation Õ

to mean that if Xn = Õ(cn) then given any C > 0, there exists C ′ > 0 such that

|Xn|/cn ≤ C ′ with probability at least 1− n−C for all n.

We make an assumption about the density of measurements.

A5 There is a δ0 > 0 such that lim infn→∞mn
−δ0 > 0 where m = min1≤i≤nmi.

This condition ensures that in a Taylor expansion of the loss function with respect

to the parameters, terms beyond quadratics can be ignored asymptotically.

Remark 1. A good initial estimate for the parameters is helpful for convergence

of the algorithm. We can obtain an initial estimate for each θi by a simple two-

stage method consisting of first obtaining nonparametric smoothers for Xi(·) and

X ′i(·) for each i, then using the expansion

log X̂ ′i(Tij) = q(Tij)
Tθi + log g(X̂i(Tij)) + δij , j = 1, . . . ,mi, (4.11)

where q(t) = (1, t, . . . , tp−1)T and the δij ’s are approximation errors, to estimate

θi through regression, while treating log g as an arbitrary smooth function. It

can be shown that, under the identifiability restriction and conditions A1–A5

and F1, the estimators θ̃i thus obtained satisfy max1≤i≤n ‖θ̃i − θ∗i ‖ = oP (ρn),

where ρn is as in (4.3).

Theorem 1. Suppose that A0–A5 and F1 are satisfied and λ = o(
√
n). Then

there exists a root γ̂ of the equation dLP (γ)/dγ = 0 that is a local minimizer of

LP (γ) and satisfies

‖γ̂ − γ0‖ = OP

(
max{ 1

√
nm

,
1

m
}
)
. (4.12)

Clearly, (4.12) also implies that

‖β̂ − β0‖ = OP

(
max{ 1

√
nm

,
1

m
}
)
. (4.13)
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The basic strategy of the proof is as follows. For a small αn > 0, we compare

the value of LP (γ0 +αnδ), where δ is a unit vector in RM−1, with that of LP (γ0).

Our goal is to show that, for an appropriately chosen sequence αn → 0, we have

P( inf
δ∈RM−1

LP (γ0 + αnδ) > LP (γ0))→ 1. (4.14)

We choose the sequence αn to be a constant multiple of max{(log n)1/2(nm)−1/2,

1/m, λ/n}. This also establishes the existence of a root γ̂ of dLP (γ)/dγ = 0

within a radius of αn around γ0. The result (4.12) is obtained by expanding

dLP (γ̂)/dγ around γ0 in a Taylor series and thereby obtaining an asymptotic

representation of γ̂. The details are given in the Appendix.

We also prove asymptotic normality of the estimator of γ by imposing a

stronger condition on the rate of growth of mi’s.

A5′ m = min1≤i≤nmi � (log n)6n1/2 as n→∞.

Theorem 2. Suppose that A0–A4, A5′ and F1 are satisfied and λ = o(
√
n).

Let Nn =
∑n

i=1mi. Then there exists a root γ̂ of the equation dLP (γ)/dγ = 0

that satisfies√
Nn(γ̂ − γ0 − Γn(γ0)−1bn(γ0)) =⇒ N(0, σ2

εΓ(γ0)−1), (4.15)

where bn(γ0) is a stochastic bias term of the form

bn(γ0) =
1

Nn

n∑
i=1

4∑
`=1

CT f`(ai,θ
∗
i ,γ0), (4.16)

with {f`(ai,θ∗i ,γ0)}4`=1 as given by (S.1)–(S.4) in the Supplementary Material,

and

Γn(γ0) =
1

Nn

n∑
i=1

miG̃(ai,θ
∗
i ,γ0), (4.17)

and Γ(γ0) := limn→∞ Γn(γ0), assuming the limit exists in probability. If this

limit exists in probability only along a subsequence, then the limit in (4.15) holds

along the same subsequence.

The proof of Theorem 2 is in the Appendix.

Remark 2. If the mi’s are i.i.d. following a distribution (indexed by n) sup-

ported on [m,m], independent of (θi, {εij}), and A5’ holds, then Γ(γ0) in (4.17)

exists almost surely and is the integrated Fisher information G(γ0) (see equation

(4.10)).

Remark 3. The term Γn(γ0)−1bn(γ0) is a bias term that is of the orderOP (m−1).

This term results from the nonlinearity of X(t; ai,θi,β) with respect to θi. If the
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measurements per subject are sufficiently dense, then this term can be neglected

in (4.15).

Remark 4. By Theorem 2, the asymptotic variance of γ̂ is σ2
εΓn(γ0)−1. We

estimate σ2
ε by

σ̂2
ε =

1

dfn

n∑
i=1

mi∑
j=1

(Yij − X̂ij(β̂))2, (4.18)

where dfn :=
∑n

i=1(mi− p)−M = Nn−np−M is the degrees of freedom (since

θi is p-dimensional and β is M -dimensional). We can also estimate Γn(γ0) and

bn(γ0) from data, as is shown in Section S.1 of the Supplementary Material.

5. Simulation Study

In this section, we report on the finite sample performance of the proposed

methodology in estimating the gradient functions and the trajectories. We also

examine the implications of mis-specification of the subject-specific effect com-

ponents Z(·;θi).
We refer to the true baseline gradient function g used here as the “two-peak”

function according to its shape. The “two-peak” gradient function g and some

random realizations of the trajectories following model (2.1) are depicted in Fig-

ure S.1 in the Supplementary Material. The chosen g is not exactly representable

by a finite number of cubic B-spline functions with equally spaced knots, though

the accuracy of approximation improves with more knots.

We considered two different sampling rates: (i) sparse: 3–8 measurements

per trajectory/subject; and (ii) dense: 30–50 measurements per trajectory/sub-

ject. For each setting, we generated n = 25 sample trajectories. We set the

subject-specific functions Z(·,θi) as linear functions in t. For the dense case,

the random parameters θi’s were i.i.d. Normal with µθ = (0, 2) and Σθ =

diag(0.12, 0.22). For the sparse case, µθ = (0, 0)T and µθ = (0, 2)T , with the

variance Σθ the same as in the dense case. Measurement errors εij ’s were i.i.d.

N(0, σ2
ε). For the sparse case, we set σε = 0.01. For the dense case, we took

σε = 0.01 and σε = 0.02. For each scenario, 500 independent replicates were

generated.

In the fitting procedure, we used M cubic B-spline basis functions with

equally spaced knots on the combined range of the observed trajectories. We

chose M = 30 to allow a high degree of flexibility in representing g. Twenty

values of the roughness penalty parameter λβ over an appropriate range were

considered and the “optimal” value λβ,opt was selected by the approximate leave-
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one-subject-out cross validation score C̃V . We used ĝ and {X̂i(·)}ni=1 to denote

the estimates of the baseline gradient function and sample trajectories, respec-

tively, corresponding to λβ,opt. We also used the true model with p = 2 for the

subject-specific effect Z(·;θi) and allowed up to 5,000 iterations in the Levenberg-

Marquardt algorithm.

For performance evaluation, we report summary statistics of integrated squared

error (ISE) of gradient functions estimation and trajectories estimation, denoted

by ISE(ĝ) and ISE(X̂), respectively, across the 500 independent replicates. In

order to simultaneously evaluate the estimated gradient functions across all sub-

jects, we define

ISE(ĝ) :=

∫ 1

0
(eµ̂(t)ĝ(X̂(t))− eµ(t)g(X(t)))2dt,

where µ̂(t) =
∑p

k=1 µ̂kt
k−1 is the estimated mean subject-specific effect, X(t) =

n−1
∑n

i=1Xi(t) is the mean of the true sample trajectories, and X̂(t) = n−1∑n
i=1 X̂i(t) is the mean of the estimated sample trajectories. We use the function

eµ(t)g(X(t)) as the benchmark so as to capture the variability in estimation of

g and the θi’s simultaneously. This function also reflects the derivative of Xi(t)

averaged across subjects and thus can be seen as an overall measure of the rate

of growth. Finally, ISE(X̂) is defined as n−1
∑n

i=1

∫ 1
0 (X̂i(t)−Xi(t))

2dt.

Estimation accuracy of the gradient functions and the trajectories, based on

500 independent replicates for each scenario, is summarized in Table 1, where C̃V

was used for selecting the penalty parameter λβ. We report the mean, standard

deviation (SD), median and median absolute deviation (MAD) of ISE(ĝ) and

ISE(X̂). These results show that there is a substantial improvement in perfor-

mance when the sampling rate is increased from the sparse case to the dense

case. Compare these results with those in Table S.1 of the Supplementary Ma-

terial. The latter reports the results based on the minimization of ISE(ĝ). The

median ISE(ĝ) under C̃V is within a factor of two to that under “ideal” model

selection and the difference is smaller in the dense case. In terms of trajectory

estimation, there is little difference in terms of median ISE(X̂) between these

two model selection criteria.

In Figure 1, we depict the estimated gradient functions under the dense case

with σε = 0.01. On the left panel, we plot the point-wise 5% and 95% percentiles

and mean of the function g̃(x) := sβ ĝ(x), along with the true g(x), against x,

across 500 independent replicates. Here, sβ :=
∑M

j=1 β
tr
j and (βtrj )Mj=1 is the set

of basis coefficients of the projected g onto the M = 30 B-spline basis functions
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Table 1. Simulation with “Two-peak” baseline gradient function g and linear (p = 2)

Z(·, θi)’s, with M = 30 cubic B-spline basis functions used in fitting, C̃V used for
selection of λβ.

Sampling rate µ2 σε Mean(ISE) SD(ISE) Median(ISE) MAD(ISE)
ISE(ĝ)

sparse 0 0.01 0.001801 0.001238 0.001558 0.001053
2 0.01 0.004457 0.002762 0.003956 0.002453

dense 2 0.01 0.001500 0.001588 0.001024 0.000810
2 0.02 0.002730 0.002371 0.001935 0.001319

1, 000× ISE(X̂)
sparse 0 0.01 0.053307 0.034124 0.049418 0.014179

2 0.01 0.084852 0.701658 0.050115 0.013050
dense 2 0.01 0.039038 0.700262 0.006779 0.001343

2 0.02 0.022918 0.005040 0.022217 0.004702

with equally spaced knots used in the model fitting procedure. Rescaling by

sβ is to account for the scaling in ĝ due to the constraint
∑M

j=1 βj = 1. On

the right panel, we plot the point-wise 5% and 95% percentiles and mean of

the function eµ̂(t)ĝ(X̂(t)), along with the point-wise mean of eµ(t)g(X(t)), all

treated as a function of the mean of X(t). These plots demonstrate that the

gradient function estimation is quite accurate and captures the shape of the

true gradient functions. The estimation under all the other cases are depicted

in Figures S.2, S.3 and S.4 of the Supplementary Material. The summary for

ISE(g̃) :=
∫

(sβ ĝ(x)− g(x))2dx, treating g̃(x) = sβ ĝ(x) as an estimator of g(x),

is reported in Table S.2 of the Supplementary Material.

We also investigated the impact of misspecification of the subject-specific

effects Z(·;θi)’s on the estimation accuracy. We used ptr to denote the true

order of the Z(·;θi)’s, took ptr = 1 and ptr = 2, and generated data under the

sparse and dense sampling rates for each of the two models. We again used

the “Two-peak” function as the true baseline gradient function, and had n = 25

subjects. The hyperparameters were µθ = 0 and Σθ = 0.12 when ptr = 1, and

µθ = (0, 0)T (for sparse), or µθ = (0, 2)T (for dense) and Σθ = diag(0.12, 0.22)

when ptr = 2. In all settings, the error variance was σ2
ε = 0.012. In the fitting

procedure, we used M = 30 cubic B-spline basis functions with equally spaced

knots and considered p = 1 and p = 2 for both models, ptr = 1 and ptr = 2.

We report ISE(ĝ), using p = ptr and the “ideal” model selection for λβ, and

ISE(ĝ), and using C̃V for the selection of both λβ and p, in Tables S.3 and S.4,

respectively, in the Supplementary Material. C̃V tends to select larger p, as is
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Figure 1. Simulation with “Two-peak” gradient function g and linear Z(·,θi) : dense

case with µθ = (0, 2)T and σε = 0.01. Left panel: X-axis: x; Solid line: true g(x);
Dotted line: point-wise mean of g̃(x) = sβ ĝ(x); Dash-dotted line : point-wise 5% and
95% percentiles of g̃(x). Right panel: X-axis: mean of X(t); Solid line: point-wise

mean of eµ(t)g(X(t)); Dotted line: point-wise mean of eµ̂(t)ĝ(X̂(t)); Dash-dotted line :

point-wise 5% and 95% percentiles of eµ̂(t)ĝ(X̂(t)).

evidenced by the fact that in at least 95% of the cases the larger model (p = 2) is

selected regardless of ptr. However, when ptr = 2, the model with p = 1 produces

significantly biased estimation and inflated ISE (results not reported). When

ptr = 1, using the model with p = 2 results in a reasonably good fit. Specifically,

the median ISE under C̃V is within a factor of three of the median ISE(ĝ) under

the “ideal” case where ptr is used in model fitting. Moreover, the difference in

ISE(ĝ) between C̃V and the “ideal” case decreases as the sampling rate increases.

These results show that when the models are nested, although C̃V tends to select

larger models, the proposed method is still reliable in terms of estimating the

gradient function, especially for relatively dense observations. Additional model

selection results are reported in Section S.8 of the Supplementary Material.

6. Application to Berkeley Growth Data

We applied the proposed method to the Berkeley Growth Data (Tuddenham

and Snyder (1954)). This data set consists of measurements of heights (in cen-

timeters) of 54 female and 39 male subjects, measured at 31 time points (same

for all subjects) from the age of 1 to 18 years. Our aim was to estimate the

population level common growth dynamics as well as individual dynamics using
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the proposed methodology.

Many statistical analyses have been done to describe the features of human

growth. A popular approach is curve alignment based on estimation of time-

warping functions, including landmark registration (Gasser et al. (1991)), contin-

uous monotone registration (Ramsay and Li (1998)), “self-modeling” registration

(Gervini and Gasser (2004)). Many parametric models have been proposed for

describing postnatal growth in humans, for example, Jenss and Bayley (1937)

and Count (1943) for early childhood growth, and Preece and Baines (1978),

Bock et al. (1973), and Hauspie et al. (1980) for adolescent growth by logistic

and the Gompertz functions. Several models have been proposed to fit individ-

ual trajectories at different age intervals (see Hauspie, Cameron and Molinari

(2004) for an overview). Growth velocities, at the level of individual subjects,

for various age groups, have also been analyzed nonparametrically by Gasser et

al. (1984) and Gasser et al. (1985).

One important difference of these works from the proposed method is that

they primarily focus on fitting individual growth trajectories rather than estimat-

ing the common growth dynamics. Our method has the advantage of providing a

description of the dynamics at a population level while isolating subject-specific

phase and amplitude variations. Thus our approach contributes to enhancing

the understanding of common patterns and variations of human growth in a

population.

We first carried out a preliminary study to understand the nature of the

growth dynamics. We plotted the empirical derivatives, denoted by Y ′(t), com-

puted by taking successive divided differences, against the observed heights Y (t),

across all individuals (Figure S.5 in the Supplementary Material). The empirical

gradient shows that the growth rate decreases rapidly at an early age. Around a

mean height of 145cm, the female growth rate peaks again, while the male growth

rate reaches a peak at a mean height of around 160cm, before slowly decreasing

to nearly zero at about 160cm for female and 180cm for male subjects.

We made several small modifications in the fitting procedure to improve its

stability and accuracy. First, to improve the fit at an early age and thereby reduce

the boundary effect, we linearly extrapolated each trajectory for age below one

year. Also, since the rate of growth nearly vanishes beyond a certain height, we

forced the baseline gradient g to be close to zero for large x by adding a tail

penalty of the form

λR

∫ 200

A
g(x)2dx = λRβ

T

[∫ 200

A
φ(x)φ(x)Tdx

]
β,
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Figure 2. Berkeley growth data. Fitted gradient eZ(t,µ̂θ)g(X(t)) against X(t) under
quadratic subject-specific effects (p = 3) for female group (dashed line) and male group
(solid line).

where λR > 0 and 0 < A < 200 were selected by C̃V . To improve convergence

of the algorithm, we fixed µk = E(θik) at zero for k > 1.

We used M = 15 cubic B-splines with equally spaced knots. We consid-

ered three models with constant (p = 1) (autonomous model), linear (p = 2)

and quadratic (p = 3) random effects Z(·,θi). Since the estimates are not very

sensitive to the specification of the variance of the random effects Σθ, after pre-

liminary studies, we set Σθ to be diagonal with diagonal elements (σ2
θk

)pk=1, with

each σθk = 5. We also set the error variance σ2
ε at 0.25. Initial conditions ai’s

were treated as known and equal to the value of each (extrapolated) trajectory

at time zero. We used C̃V to choose various model parameters including λβ, p,

A, λR. The selected models have p = 3 for both genders and have (A, λR) =

(175, 1,000) for the female group, and (A, λR) = (190, 500) for the male group.

Observed and fitted growth trajectories (under the selected model with p =

3) are plotted in Figure S.7 of the Supplementary Material which shows good fits

for the selected models. In addition, the MISEs between the fitted and observed

trajectories with quadratic subject-specific effects (p = 3) improve upon those

with the linear subject-specific effect (p = 2) by 57.55% (female) and 38.69%

(male), respectively, and improve upon those with constant subject-specific effect

(p = 1, autonomous model) by 75.74% (female) and 61.67% (male), respectively.

Residual plots of the trajectory fits against time, under p = 1, 2, 3, given in Figure

S.8 of the Supplementary Material, show improvements in trajectory fitting with
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model larger order (i.e., larger p). We also considered the model with p =

4. Although it tends to have even smaller MISE and slightly less spread out

residuals, since it yields very similar estimate of the gradient function as under

p = 3, we place the detailed results under this setting in Section S.8 of the

Supplementary Material.

Plots of the fitted gradient function eZ(t,µ̂θ)ĝ(X̂(t)) against the mean ob-

served trajectory X(t) for p = 3 are shown in Figure 2. Notably, both females

and males have more prominent growth spurts than suggested by the empirical

growth dynamics in Figure S.5. Moreover, fitted individual growth rates X̂ ′i(t)

versus t and versus the fitted trajectory X̂i(t), respectively, depicted in Figure

S.6 in the Supplementary Material, clearly show both phase and amplitude vari-

ations.

7. Discussion

We propose a flexible approach to modeling a collection of trajectories through

ordinary differential equations with subject-specific effects. Our model has a time

varying multiplicative random effect component capturing phase and amplitude

variations in the trajectories, and a fixed baseline gradient function reflecting pop-

ulation level common dynamics. We implement an estimation procedure through

the hierarchical likelihood framework and provide a detailed asymptotic theory.

The proposed method can be used to extract both phase and amplitude varia-

tions in the dynamics in an interpretable manner, as is shown by the application

to the Berkeley growth data. A nontrivial extension of the theory would be to the

setting where the baseline gradient function is treated nonparametrically. The

method can also be extended to model dynamics of multivariate trajectories and

data involving covariates.

Supplementary Materials

Supplementary Material, referred as such in the manuscript, contains details

of proofs, additional figures, tables, and further simulation and data analysis

results.
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Appendix

A.1. Nonsingularity of observed Fisher information

We make the following assumption that is a slight refinement of A0 and A1.

To state it, we let supp(Φ) be the set
⋃M
j=1 supp(φj).

F1 There exists an integer K ≥ 1 (not depending on n and mi’s), nonoverlapping

intervals A1, . . . , AK ⊂ supp(Fa), and a set Θ0 ⊂ supp(Fθ) such that,

1. P(a ∈ Ak) > 0 for all k, and P(θ ∈ Θ0) > 0;

2. if p > 1, then for all θ ∈ Θ0, θj 6= 0 for some j ∈ {2, . . . , p}, where θj
denotes the j-th coordinate of θ;

3. if (aik ,θik) ∈ Ak ×Θ0 for k = 1, . . . ,K, and β is in a fixed neighborhood of

β0, then the ranges of X(t; aik ,θik ,β) for successive k’s intersect, and one

of the following holds:

(a) ∪Kk=1{X(t; aik ,θik ,β) : t ∈ [0, 1]} ⊇ supp(Φ);

(b) ∪Kk=1{X(t; aik ,θik ,β) : t ∈ [0, 1]} ⊇ BΦ where the interval BΦ ⊆
supp(Φ) is such that

∫
BΦ
φj(x)dx = 1 for all j = 1, . . . ,M .

Condition 3(b) in F1 is easily satisfied through proper choice of BΦ and appro-

priate renormalization of {φj}Mj=1.

We write i ∈ I0 to indicate that the set of indices i = (i1, . . . , iK) is such

that aik ∈ Ak and θik ∈ Θ0 for all k. Define, for a set of indices i ⊂ {1, . . . , n},

G̃i(γ) =

K∑
k=1

G̃(aik ,θik ,γ).

We first show that for any i ∈ I0, the matrix G̃i(γ) is nonsingular, whenever

γ (correspondingly, β) lies in an appropriate fixed neighborhood of γ0 (corre-

spondingly, β0) and satisfies conditions A0, A1, A4, and F1. In the following

we establish that the smallest eigenvalue of G̃i, for i ∈ I0, is a positive-valued

random variable.

The matrix G̃i(γ) is singular if and only if there exists a nonzero vector h,

such that hT G̃i(γ)h = 0. This condition can be expressed as

0 =

K∑
k=1

hTCTG(aik ,θik ,β(γ))Ch

=

K∑
k=1

[∫ 1

0
(hTuk(t))

2fT (t)dt −
(∫ 1

0
hTuk(t)vk(t)fT (t)dt

)
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0
vk(t)vk(t)

T fT (t)dt

)−1(∫ 1

0
hTuk(t)vk(t)fT (t)dt

)T]
,

where uk(t) = CTXβ(t; aik ,θik ,β(γ)) and vk(t) = Xθ(t; aik ,θik ,β(γ)). There-

fore, using a standard argument from multivariate linear regression, by treating

the uk(t) as responses, vk(t) as predictors and using the least squares principle,

we conclude that there exist p× 1 vectors {dik}Kk=1 such that

K∑
k=1

∫ 1

0

[
hTCTXβ

i (t; aik ,θik ,β(γ))− dTikX
θ
i (t; aik ,θik ,β(γ))

]2
fT (t)dt = 0.

(A.1)

This is equivalent to the following condition: for all k = 1, . . . ,K,

hTXγ
i (t; aik ,θik ,β(γ)) = hTCTXβ

i (t; aik ,θik ,β(γ)) = dTikX
θ
i (t; aik ,θik ,β(γ)).

(A.2)

Under the reparametrization (4.1), using (4.7), we have

gβ(γ)(x) = β(γ)TΦ(x) = γTCTΦ(x) +M−11TMΦ(x) =: g̃γ(x),

X ′i(t) = eθ
T
i q(t)g̃γ(Xi(t)) = eθ

T
i q(t)

(
γTCTΦ(Xi(t)) +M−11TMΦ(Xi(t))

)
,

d

dt
(Xθ

i (t)) = eθ
T
i q(t)g̃γ(Xi(t))

∂Xi(t)

∂θ
+ eθ

T
i q(t)g̃γ(Xi(t))q(t), (A.3)

d

dt
(Xγ

i (t)) = eθ
T
i q(t)g̃γ(Xi(t))

∂Xi(t)

∂γ
+ eθ

T
i q(t)CTΦ(Xi(t)). (A.4)

Differentiating (A.2) with respect to t, and combining with (A.3) and (A.4),

hTCTΦ(Xik(t)) = gβ(γ)(Xik(t))d
T
ikq(t), k = 1, . . . ,K, t ∈ [0, 1]. (A.5)

Here q(t) is a vector of monomials of t of dimension p, dik ∈ Rp, and the functions

φj ’s are piecewise polynomials. From this, it can be checked that (A.5) holds

only if dTikq(t) = ck for all k, where the ck’s do not depend on t (see Section

S.2 of the Supplementary Material for detail). By F1, the ck’s must all be

equal since the sets {Xik(t)t ∈ [0, 1]} overlap for successive k. Without loss of

generality, c1 = · · · = cK = 1. Again by F1, we conclude that either, (C(h −
γ) −M−11M )TΦ(x) = 0 for all x ∈ supp(Φ) (under F1.3(a)), or (C(h − γ) −
M−11M )TΦ(x) = 0 for all x ∈ BΦ (under F1.3(b)). Consequently, in either case,

1TMC(h− γ) = M−11TM1M = 1.

The left side of this equation is 0 since 1TMC = 0, and the right side is 1. This

contradiction proves that there does not exist a vector h such that hT G̃i(γ)h = 0,

which implies that G̃i(γ) is non-singular.
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A.2. Proof of Theorem 1

Some of the proof details are deferred to the Supplementary Material. Throu-

ghout, we use θ∗i to denote the true value of θi and drop the reference to the

initial value ai, that is assumed to be known. We use β(γ) to mean β, where

β(γ) = Cγ +M−11M . Also, we use θ̂i(β) and θ̂i(γ) interchangeably.

The basic building block is an asymptotic expansion of the restricted opti-

mizer θ̂i(γ) (see (A.12)). Let ET denote the expectation with respect to T ∼ fT .

Take

L(θ,γ|θ∗i ) = ET (X(T ;θ,β)−X(T ;θ∗i ,β0))2 ,

and θ̄i(β) ≡ θ̄i(γ) = arg min
θ∈B(θ∗

i ,ρn)
L(θ,γ|θ∗i ),

where ρn and B(θ∗i , ρn) are as in the definition (4.3) of θ̂i(γ). Using the fact that

L(θ∗i ,γ0|θ∗i ) = 0 and θ∗i is a global minimum of L(θ,γ0|θ∗i ), it follows, through

a Taylor expansion, that uniformly on B(θ∗i , ρn),

L(θ,γ|θ∗i ) =
1

2
(θ − θ∗i )

T∇θθTL(θ∗i ,γ0|θ∗i )(θ − θ∗i )

+O(‖θ − θ∗i ‖3) +O(‖θ − θ∗i ‖‖γ − γ0‖) +O(‖γ − γ0‖2). (A.6)

From (A.6), we deduce that ‖θ̄i(γ)− θ∗i ‖ = O(‖γ − γ0‖) and that θ̄i(γ) satisfies

∇θL(θ,γ|θ∗i )|θ=θ̄i(γ) = 0. Using standard arguments, we can now show that

under the conditions of Theorem 1, as long as ‖γ − γ0‖ = O(αn), θ̂i(γ) satisfies

∇θLHi (θ̂i(γ),γ) = 0 (A.7)

for all i, with probability tending to 1. Moreover, by the Implicit Function The-

orem, θ̂i(γ) is a smooth function of γ in this neighborhood of γ0. Furthermore,

we can establish that

max
1≤i≤n

sup
γ:‖γ−γ0‖≤αn

‖θ̂i(γ)− θ∗i ‖ = Õ(max{
√

log nm−1/2, αn}). (A.8)

We then proceed to prove (4.14). By a Taylor series expansion of LP (γ),

LP (γ0 + αnδ)− LP (γ0) ≈ αnδT
(
∂β

∂γ

)T dLP (β0)

dβ
+
α2
n

2
δT
(
∂β

∂γ

)T d2LP (β0)

dβdβT
∂β

∂γ
δ

= αnδ
TCT

dLP (β0)

dβ
+
α2
n

2
δTCT d

2LP (β0)

dβdβT
Cδ, (A.9)

where the sign ≈ means that the difference between the expression on the left

and right sides of (A.9) is of a smaller order than the right side of (A.9), and

hence can be ignored asymptotically. The approximation error in the above

expansion can be controlled uniformly in δ. To justify this, and similar approx-
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imations, throughout we use the Hoeffding and Bernstein inequalities, without

explicitly referring to them. The key fact we need is that the expected value of

CT (d2LP (β)/dβdβT )C at β0 is a positive definite matrix and is well-conditioned.

This allows us to prove (4.14) and obtain a rate of convergence for β̂.

Based on the derivations in Section S.3.1 of the Supplementary Material, the

following expressions are valid for i = 1, . . . , n:

d

dβ
LPi (β) = ∇βLHi (θ̂i(β),β); (A.10)

d2

dβdβT
LPi (β) = ∇ββTLHi (θ̂i(β),β)

−∇βθTLHi (θ̂i(β),β)
[
∇θθTLHi (θ̂i(β),β)

]−1
∇θβTLHi (θ̂i(β),β). (A.11)

Based on the derivation in Section S.4.2 of the Supplementary Material, we have

θ̂i(β0)− θ∗i = W ∗i (β0)−1pi,θ −W ∗i (β0)−1Ψ−1θ∗i

+W ∗i (β0)−1Pi,θθTW
∗
i (β0)−1pi,θ + r2,i, (A.12)

where r2,i is negligible and the terms W ∗i (β0), and pi,θ and Pi,θθT are as defined

in Section S.4.5.

Next, from the derivation in Section S.4.3, we have the expansion

d

dβ
LPi (β0) = V

(1)
i (β0) + V

(2)
i (β0) + r4,i, (A.13)

where V
(1)
i and V

(2)
i , defined in (S.44) and (S.45), contribute primarily to the

asymptotic variance and asymptotic bias, respectively, and r4,i is a negligible

remainder term. Further calculations, detailed in Section S.4.5, allow us to con-

clude that

1

mi

d2

dβdβT
LPi (β0) = Ξ1|2(ai,θ

∗
i ,β0) + Õ

(
max

{
λ

n
,

√
log n

m

})
. (A.14)

By the definition of G̃(ai,θi,β) in (4.9), the empirical Fisher information matrix

satisfies

Fn(γ0) :=
1

Nn

n∑
i=1

CT d2

dβdβT
LPi (β0)C =

1

Nn

n∑
i=1

miG̃(ai,θ
∗
i ,γ0)

+ Õ

(
max{λ

n
,

√
log n

m
}

)
. (A.15)

By (A.15), and the fact that G(γ), defined in (4.10), is positive definite at γ0, we

conclude that for a given c > 0, with probability at least 1− n−c, the inverse of
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Fn(γ0) exists and the maximum eigenvalue of the inverse is bounded.

Combining (A.15) with (A.13) and (A.9), and using the fact that λ = o(
√
n),

we obtain (4.14) with αn = cmax{(log n)1/2(nm)−1/2,m−1} for some suitable

positive constant c. This establishes that there exists a root γ̂ of dLP (γ)/dγ = 0

satisfying ‖γ̂ − γ0‖ = OP (αn). Finally, we expand the equation dLP (γ̂)/dγ = 0

around γ0 to obtain

γ̂ − γ0 = −

(
1

Nn

n∑
i=1

CT d2

dβdβT
LPi (γ0)C

)−1(
1

Nn

n∑
i=1

CT d

dβ
LPi (γ0)

)
+OP (α2

n log n). (A.16)

This concludes the proof of Theorem 1 once we isolate the leading terms in

dLPi (γ0)/dβ (namely, (S.44) and (S.45)) and use the fact that (ai,θ
∗
i ) are i.i.d.

A.3. Proof of Theorem 2

The proof follows from a careful treatment of (A.16). We move the con-

tribution of the bias term V
(2)
i (β0) in (S.45) to the side of γ̂ − γ0 in (A.16),

and use the representations (S.37), (S.38), (S.39), and (S.42), taking appropriate

conditional expectations to derive the form of the asymptotic bias bn(γ0). Next

we use the representation (A.13) of dLPi (β0)/dβ, and the expression of the vari-

ance term V
(1)
i (β0) in (S.44), and a version of martingale central limit theorem,

through the independence of (ai,θ
∗
i , (εij)

mi

j=1) across i, to conclude that V
(1)
i (β0)

has an asymptotic Gaussian limit. The condition A5’ ensures that the remainder

terms are oP (1). The nonsingularity of G(γ0) combined with (A.15) concludes

the derivation.
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