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Abstract: With the increasing deployment of affordable and sophisticated sensors,

multivariate time-series data are increasingly collected. These multivariate time

series are often of long memory, the inference of which can be rather complex. We

consider the problem of modeling long-memory bivariate time series that are ag-

gregates from an underlying long-memory continuous-time process. We show that,

with increasing aggregation, the resulting discrete-time process is approximately

a linear transformation of two independent fractional Gaussian noises with the

corresponding Hurst parameters equal to those of the underlying continuous-time

processes. We use simulations to confirm the good approximation of the limit-

ing model to aggregate data from a continuous-time process. The theoretical and

numerical results justify modeling long-memory bivariate aggregate time series by

this limiting model. The model parametrization does change drastically in the case

of identical Hurst parameters. We derive the likelihood ratio test for testing the

equality of the two Hurst parameters, within the framework of Whittle likelihood,

and the corresponding maximum likelihood estimators. The limiting properties of

the proposed test statistic and of the Whittle likelihood estimation are derived,

and their finite sample properties are studied by simulation. The efficacy of the

proposed approach is demonstrated with a 2-dimensional robotic positional error

time series, which shows that the proposed parsimonious model substantially out-

performs a VAR(19) model.

Key words and phrases: Aggregation, asymptotic normality, fractional Gaussian

noise, spectral maximum likelihood estimator, Whittle likelihood.

1. Introduction

Continuous-time long-memory models have found diverse applications in

such fields as option pricing (Comte and Renault (1998)), volatility modeling

(Casas and Gao (2008)), environmental study (Tsai and Chan (2005a)), and an-

nual tree-ring measurements (Tsai and Chan (2005b)), among many others. For

further developments of univariate continuous-time long-memory models, see,

for example, Chambers (1996), Comte (1996), Comte and Renault (1996), and

Brockwell and Marquardt (2005). To study interactions and comovements among
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a group of time series variables, one needs to consider multivariate time series

models, and several long memory models have been proposed. Marquardt (2007)

introduced a class of multivariate fractionally integrated continuous-time au-

toregressive moving-average (CARMA) processes and studied their probabilistic

properties, but not their inference. Barndorff-Nielsen and Stelzer (2011) proposed

the multivariate supOU (superpositions of Ornstein-Uhlenbeck-type) processes

and proposed moment-based estimation methods for estimating the parameters;

the finite- and large-sample properties of the estimator are unknown. Asai and

McAleer (2013) proposed a fractionally integrated Wishart stochastic volatility

model with a common long memory for multivariate stochastic volatility model-

ing. The case of more than one long memory parameter has, however, not been

considered.

There are two ways to sample a continuous-time process over discrete epochs

((Harvey, 1990, P. 309)): Stock variables are instantaneous measurements of a

continuous-time process, for example, as are instantaneous river-flows measured

at a certain time in each week. Flow variables, on the other hand, are ag-

gregates which integrate the process over the sampling intervals, for example,

annual tree ring growth. There is an extensive literature on temporal aggrega-

tion of univariate discrete-time long memory processes, see (Beran et al., 2013,

Sec. 2.2.1) and the references therein. For analogous results in the context of

univariate continuous-time processes, see Chambers (1996, 1998), and Tsai and

Chan (2005c).

Here, we are interested in modeling bivariate long-memory aggregate time se-

ries for at least two reasons. First, many data are aggregates, e.g., incidence rates

of diseases, sales of products, industrial production, tree-ring widths, riverflows,

and rainfall can only be obtained through aggregation over a certain time inter-

val. Second, aggregation can simplify the model, e.g., we might be uninterested in

the high-frequency variation that would require modeling the micro-noise struc-

ture. For a short-memory process, aggregate time-series data approach white

noise with increasing aggregation due to the Central Limit Theorem. For a long-

memory process, Tsai and Chan (2005c) show that the aggregates of a station-

ary univariate Continuous-time Auto-Regressive Fractionally Integrated Moving-

Average (CARFIMA) process (Brockwell and Marquardt (2005) and Tsai and

Chan (2005a,b)) converges to a fractional Gaussian noise with increasing aggre-

gation. The results of Tsai and Chan (2005c) can be readily extended to the case

of stationary bivariate Continuous-time Auto-Regressive Fractionally Integrated

(CARFI) processes driven by two independent standard fractional Brownian mo-
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tions with two Hurst parameters: the approximation model of the aggregates is

an instantaneous linear transformation of two independent fractional Gaussian

noises that preserves the Hurst parameters. This approximation model provides

a new framework for a simple yet general approach to analyzing bivariate aggre-

gate long-memory time series. While the probabilistic properties of the limiting

aggregate model are relatively well understood, its statistical inference can be

complex in the parametric boundary where the two Hurst parameters agree,

thereby requiring a careful study. We focus on the bivariate case even though

the limiting result holds for multivariate data, the inference of which will be

pursued elsewhere.

The rest of the paper is organized as follows. The limiting behaviour of

aggregates of bivariate continuous-time fractionally integrated AR processes are

described in Section 2. The spectral maximum likelihood estimator (SMLE) and

its large sample properties are discussed in Section 3. In Section 4, we derive

the likelihood ratio test for testing the equality of two Hurst parameters within

the framework of Whittle likelihood. In Section 5, we report some empirical per-

formance of the fitting of the approximation model to aggregate data generated

from a bivariate CARFI process, the SMLE, the test, and the effect of ignor-

ing the equality of the two Hurst parameters on their estimation. We illustrate

the use of the limiting aggregate model with application in Section 6. Section 7

concludes.

2. Limiting Behaviour of Aggregates of Bivariate Continuous-Time

Fractionally Integrated AR Processes

For simplicity, we consider an AR(1) process in this section; the limiting

results remain the same for a general AR(p) process. A bivariate continuous-time

autoregressive fractionally integrated process of order one (CARFI(1, H1, H2))

{Yt} is the solution of a first order stochastic differential equation with suitable

initial condition and driven by two independent standard fractional Brownian

motions with Hurst parameters H1 and H2. For definitions and discussions of

fractional Brownian motion, see, e.g., Mandelbrot and Van Ness (1968). The

(CARFI(1, H1, H2)) process is also termed fractional Ornstein-Uhlenbeck process

(see e.g. Cheridito, Kawaguchi and Maejima (2003)). Specifically, for t ≥ 0,

dYt = ΦYtdt+ ΣdB̄
(H1,H2)
t , (2.1)

where B̄
(H1,H2)
t = [BH1

t , BH2

t ]′, the superscript ′ denotes transpose, {BH1

t , t ≥ 0}
and {BH2

t , t ≥ 0} are independent stochastic processes, {BHk

t , t ≥ 0} is a standard
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fractional Brownian motion with Hurst parameter 0 < Hk < 1, where k = 1, 2,

Φ and Σ are 2 × 2 matrices. Similar to Equation (5) of Tsai and Chan (2005a)

in the univariate case, the solution of (2.1) can be written as

Yt = eΦtY0 +

∫ t

0
eΦ(t−u)ΣdB̄

(H1,H2)
t , (2.2)

where eΦt = I2 +
∑∞

n=1{(Φt)n(n!)−1}, and I2 is the 2× 2 identity matrix. Under

the condition that all eigenvalues of Φ have strictly negative real parts, {Yt, t ≥ 0}
is asymptotically stationary. The initial condition Y0 is assumed to be normally

distributed with zero mean and finite variance or, possibly, non-random. The

estimation of the multivariate CARFI model, to our knowledge, has not been

considered in the literature. To circumvent the identification and estimation

problem of the highly-parameterized model, we simplify the model by aggrega-

tion.

Consider the case that the continuous-time process {Yt} defined by (2.1) is

digitalized by aggregation over interval ∆,

Y ∆
n =

∫ n∆

(n−1)∆
Yudu, n = 1, 2, ... (2.3)

Due to the central limit effect, the short-memory structure of the CARFI(1, H)

process can be expected to vanish with increasing aggregation, ∆→∞. Indeed,

it can be shown that, as ∆→∞,

−

[
∆−H1 0

0 ∆−H2

]
Σ−1ΦY ∆

n
d→

[
BH1
n −B

H1

n−1

BH2
n −BH2

n−1

]
, (2.4)

two independent fractional Gaussian noises with Hurst parameters Hi, i = 1, 2.

See the online supplementary material for a proof of (2.4), and (Beran, 1994,

P. 53) for further discussions of fractional Gaussian noise. Therefore, for large

∆, Y ∆
n can be approximated by

Yn = CXn

for some non-singular 2 × 2 matrix C, where Xn is a vector of two indepen-

dent fractional Gaussian noises with Hurst parameters Hi, i = 1, 2, and C =

−Φ−1Σdiag(∆H1 ,∆H2), where diag(∆H1 ,∆H2) is a diagonal matrix with the

∆Hi , i = 1, 2, as its diagonal elements. This motivates us to consider the use

of an instantaneous linear transformation of two independent fractional Gaus-

sian noises to model bivariate long-memory aggregate time series.

The spectral density matrix of {Yn} is

f(ω;H1, H2, A) = 2(1− cosω)AG(ω;H1, H2)A′, (2.5)
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where A = Cdiag(e(H1), e(H2)), e(H) = {Γ(2H+1) sin(πH)/(2π)}1/2, G(ω; H1,

H2) = diag(R0(ω; H1), R0(ω; H2)), R0(ω; Hi) =
∑∞

v=−∞ |ω + 2vπ|−2Hi−1, for

i = 1, 2. Let fjk be the (j, k)-th element of the spectral density matrix f , then

fjk(ω) = O(|ω|1−2H1), for all j and k. It can be verified that the auto-covariance

function corresponding to the spectral density function defined by (2.5) is

γ(h) = AP (h;H1, H2)A′,

where P (h;H1, H2) = diag(P (h;H1), P (h;H2)), and for each integer j,

P (h;Hj) =
πΓ(2− 2Hj)

2HjΓ(1.5−Hj)Γ(Hj + 0.5)
{|h+ 1|2Hj − 2|h|2Hj + |h− 1|2Hj}.

(2.6)

In (2.5), the computation of f(ω;H1, H2, A) requires the evaluation of in-

finite sums. Here, we adopt the method of Chambers (1996) to approximate

f(ω;H1, H2, A) by

f̃(ω;H1, H2, A) = 2(1− cosω)AG̃(ω;H1, H2)A′, (2.7)

where G̃(ω;H1, H2) = diag(R̃0(ω;H1), R̃0(ω; H2)) and, for each integer j, R̃0(ω;

Hj) = (4πHj)
−1{(2πM − ω)−2Hj + (2πM + ω)−2Hj}+

∑M
k=−M |ω + 2kπ|−2Hj−1

for some large integer M , with the approximation error of order O(M−2Hj ); see

Chambers (1996).

3. Spectral Maximum Likelihood Estimator and its Large Sample

Properties

In this section, we consider the application of the limiting aggregate model

described in Section 2 for modeling bivariate aggregated long-memory data. Let

{Yt}Nt=1 be a stationary bivariate time series with its spectral density matrix given

by (2.5). For model identification, we assume 0 < H2 ≤ H1 < 1, and the first

non-zero element in each column of the matrix A is positive. Because we are

interested in applying model (2.5) for bivariate long memory time series analysis,

we further assume 1/2 < H1 < 1.

The inference of the model depends on whether or not the parameter falls

on the parametric boundary with identical Hurst parameters.

3.1. The case when H1 > H2

Let IY (ω) = JY (ω)JY (ω)∗/(2πN), where JY (ω) =
∑N

t=1 Yte
itω, J(ω)∗ de-

notes the conjugate transpose of J(ω). Let tr(A) and detA be the trace and

the determinant of the matrix A, respectively, ωj := 2πj/N ∈ (0, π) the Fourier
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frequencies, and T be the largest integer ≤ (N − 1)/2. Then the (negative) log-

likelihood function of {Yi} can be approximated, up to a multiplicative constant,

by the (negative) Whittle log-likelihood function (see Hosoya (1996))

−l̃(H1, H2, A) =

T∑
i=1

[
log det f̃(ωi;H1, H2, A) + tr{f̃(ωi;H1, H2, A)−1IY (ωi)}

]
=

T∑
i=1

{
2 log |detA|+ log |2(1− cosωi)G̃(ωi;H1, H2)|

}
+

T∑
i=1

tr
[
(A′−1{2(1− cosωi)G̃(ωi;H1, H2)}−1A−1IY (ωi)

]
.

(3.1)

The objective function (3.1) is minimized with respect to H1, H2, and A to get

the spectral maximum likelihood estimators (SMLEs) Ĥ1, Ĥ2, and Â.

3.2. The case when H1 = H2 = H

If H1 = H2 = H, then the spectral density matrix given at (2.5) can be

re-written as

f(ω;H,B) = 2(1− cosω)R0(ω;H)B, (3.2)

where B = [bij ] = AA′, and the auto-covariance function is γ(h) = P (h;H)B,

where P (h;H) is defined at (2.6). Under the condition that H1 = H2, we cannot

identify the aij ’s, we can only identify b11 = a2
11+a2

12, b12 = b21 = a11a21+a12a22,

and b22 = a2
21 + a2

22.

Taking the partial derivative of the log-likelihood function in (3.1) with re-

spect to aij and equating the result to zero, we obtain

2T (A−1)′ = (A−1)′
T∑
i=1

{2(1− cosωi)}−1G̃(ωi;H1, H2)−1

A−1{IY (ωi)+IY (ωi)
′−1}′. (3.3)

Under the condition that H1 = H2 = H, (3.3) becomes

2T (A−1)′−1)′−1
T∑
i=1

{2(1− cosωi)R̃0(ωi;H)}−1{IY (ωi) + IY (ωi)
′−1)′. (3.4)

As B = AA′, pre-multiplying both sides of (3.4) by B and post-multiplying by

A′, we get
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B =
1

2T

T∑
i=1

[
{2(1− cosωi)R̃0(ωi;H)}−1{IN (ωi) + IN (ωi)

′}
]
. (3.5)

Substituting (3.5) into (3.1) yields the (profile) objective function

−l̃0(H) = 2T +

T∑
i=1

log |2(1− cosωi)R̃0(ωi;H)B|

= 2T − 2T log(2T ) + 2

T∑
i=1

log |(1− cosωi)R̃0(ωi;H)|

+ T log

∣∣∣∣∣
T∑
i=1

[
{(1− cosωi)R̃0(ωi;H)}−1{IN (ωi) + IN (ωi)

′}
]∣∣∣∣∣ . (3.6)

The objective function (3.6) is minimized with respect to H to get the spectral

maximum likelihood estimator (SMLE) Ĥ; the estimator of B is then calculated

by (3.5).

For simplicity, if H1 > H2, let θ = (θ1, · · · , θ6) = (H1, H2, a11, a12, a21, a22),

and if H1 = H2 = H, let θ = (θ1, · · · , θ4) = (H, b11, b12, b22), and θ̂ be the

spectral maximum likelihood estimator of θ. Proofs of our results are deferred to

the Appendix with some further details provided in the Supplementary Material.

Theorem 1. Assume the data Y = {Yi}Ni=1 are sampled from a stationary Gaus-

sian long-memory process with the spectral density given by (2.5) or (3.2), and

that the spectral maximum likelihood estimator θ̂ ∈ Θ, a compact parameter space,

with the true parameter θ0 in the interior of Θ. If the truncation parameter M

increases with the sample size so that M →∞, and if
√
NM−1 → 0 as N →∞,

then
√
N(θ̂− θ0) converges in distribution to a normal random vector with mean

0 and covariance matrix Γ(θ0)−1, where the (i, j)-th element of Γ(θ) is given by

Γij(θ) =
1

4π

∫ π

−π
tr

[
f(ω; θ)−1∂f(ω; θ)

∂θi
f(ω; θ)−1∂f(ω; θ)

∂θj

]
dω,

and f(ω; θ) is the spectral density function defined by (2.5) or (3.2), respectively.

4. Testing the Equality of the Hurst Parameters

Given that in the boundary case of identical Hurst parameters, A is no longer

identifiable and the model requires a different parametrization, it is pertinent to

assess whether the boundary case occurs. Hence, we are interested in testing the

hypotheses
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H0 : H1 = H2 = H,

HA : H1 > H2.

If Ĥ0 is the SMLE of H under H0, and Ĥ1, Ĥ2, and Â are the SMLEs of

H1, H2, and A under HA, then minus twice of the log-likelihood ratio is given

by ` = 2{l̃(Ĥ1, Ĥ2, Â) − l̃0(Ĥ0)}, where l̃ and l̃0 are defined at (3.1) and (3.6),

respectively, and one rejects H0 if ` is too large. Under H0, there are four

parameters, whereas there are six parameters under HA.

Theorem 2. (a) If the conditions of Theorem 1 hold, under H0, the asymp-

totic distribution of ` is an equal probabilistic mixture of an atom at zero and a

χ2 random variable with two degrees of freedom, and (b) under HA, the test is

consistent.

Thus, for a test of size α we can simply use the 2α rather than the α signifi-

cance point of a χ2 distribution with two degrees of freedom. The non-standard

asymptotic behavior of the log-likelihood-ratio statistic in Theorem 2 is due to the

non-identifiability of the nuisance matrix A. Under the constraint that H1 = H2,

the matrix A is not identifiable but rather it is the symmetric matrix B = AA′

that is identifiable. There is an extensive literature on hypothesis testing when

some of the standard regularity conditions fail to hold; see, for example, Andrews

(1998, 2001) and references therein. However, our problem is different from the

existing ones in the literature. In our setting, the nuisance parameters under the

null are functions of the nuisance parameters under the alternative, with the num-

ber of identifiable nuisance parameters reduced from four under the alternative

to three under the null. The proof technique relies on the Karush-Kuhn-Tucker

(KKT) optimality condition for constrained optimization and exploits the man-

ifold structure of the nuisance parameters; this is quite different than existing

techniques used in the literature.

5. Simulation

In this section, we report some finite sample performance of the spectral

maximum likelihood estimator and the test. For the performance of the pro-

posed estimation method, we consider two data generating processes (DGP). In

Subsection 5.2, the spectral density of the DGP takes the form (2.5) or (3.2).

Given that aggregation is finite, fitting the limiting model (2.5) to aggregate

data may result in bias, even though the bias vanishes with increasing aggre-

gation. So, it is pertinent to study the empirical performance of the estimator
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of the long-memory parameter by fitting the proposed limiting model to aggre-

gate data generated by (2.1) and (2.3). We report some simulation results for

clarification in Subsection 5.1. The size and the power of the test are studied in

Subsections 5.3 and 5.4, respectively. To demonstrate the importance of the test,

we report on a simulation study in Subsection 5.5 that investigated the efficiency

loss of ignoring the equality of the Hurst parameters when they are indeed equal.

All computations in this section were performed using Fortran code with IMSL

subroutines with the minimization performed by the NCONF subroutine.

5.1. Fitting the limiting model to aggregate data

To assess the use of the limiting models established in Section 2 for estimating

the Hurst parameters with aggregate data generated from a CARFI process, we

conducted the following experiment. Consider the two data generating processes

Model 1: [
dY1t

dY2t

]
=

[
−2 0

0 −1

][
Y1t

Y2t

]
dt+

[
2∆−0.7 0

0 2∆−0.6

][
dB0.7

t

dB0.6
t

]
,

Model 2: [
dY1t

dY2t

]
=

[
−2 0.5

0.5 −1

][
Y1t

Y2t

]
dt+

[
2∆−0.7 ∆−0.6

∆−0.7 2∆−0.6

][
dB0.7

t

dB0.6
t

]
,

where {B0.7
t } and {B0.6

t } are independent fractional Brownian motions with Hurst

parameters 0.7 and 0.6, respectively. Model 1 is a vector of two independent

univariate CARFI(1, Hi), i = 1, 2, processes with (H1, H2) = (0.70, 0.60). For

positive integers m, N , and ∆, let T = N∆. We used the method of Cham-

bers (1995) to simulate observations {Yk/m}mTk=1 from these models. Based on

{Yk/m}mTk=1, we computed {Y ∆
n } (defined by (2.3)) by Euler approximation. Thus,

for n = 1, . . . , N , we approximated Y ∆
n by

1

m

mn∆∑
k=m(n−1)∆+1

Yk/m, (5.1)

Then, we fit {Y ∆
n }Nn=1 by (2.5), and found the estimates of H1, H2, and A

by maximizing the Whittle likelihood (3.1). For the values of (m,∆, N), we

considered four cases: (20, 10, 125), (40, 10, 125), (20, 20, 125), and (20, 10, 250).

The averages and standard errors of the estimates over 1,000 replications are

summarized in Table 1.

From Table 1, it is clear that the biases of the estimates of the parameters
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Table 1. Averages and standard deviations (in parentheses) [asymptotic standard devia-
tions] of 1,000 replications of the spectral maximum likelihood estimators of the param-
eters H1, H2, and A = [aij ]

2,2
i,j=1 when the approximation model is applied to aggregates

from the CARFI processes of Models 1 and 2.

(m,∆, N) Parameter
True
value

Model 1
True
value

Model 2

H1 0.70 0.7196(0.0609)[0.0585] 0.70 0.7247(0.0580)[0.0585]
H2 0.60 0.6038(0.0608)[0.0573] 0.60 0.5984(0.0610)[0.0573]

(20, 10, 125) a11 0.3999 0.3527(0.0856)[0.0262] 0.5713 0.5198(0.2336)[0.2005]
a12 0.0 0.0875(0.1166)[0.1590] 0.4667 0.3415(0.2461)[0.2292]
a21 0.0 −0.1823(0.2563)[0.3447] 0.6856 0.6493(0.4975)[0.4454]
a22 0.8168 0.6981(0.1703)[0.0541] 1.0501 0.8133(0.2993)[0.2813]

H1 0.70 0.7226(0.0604)[0.0585] 0.70 0.7290(0.0596)[0.0585]
H2 0.60 0.6043(0.0625)[0.0573] 0.60 0.5963(0.0612)[0.0573]

(40, 10, 125) a11 0.3999 0.3571(0.0838)[0.0262] 0.5713 0.5104(0.2360)[0.2005]
a12 0.0 0.0832(0.1154)[0.1590] 0.4667 0.3511(0.2414)[0.2292]
a21 0.0 −0.1725(0.2544)[0.3447] 0.6856 0.6260(0.4987)[0.4454]
a22 0.8168 0.6993(0.1618)[0.0541] 1.0501 0.8247(0.2908)[0.2813]

H1 0.70 0.7148(0.0609)[0.0585] 0.70 0.7217(0.0601)[0.0585]
H2 0.60 0.5896(0.0628)[0.0573] 0.60 0.5805(0.0614)[0.0573]

(20, 20, 125) a11 0.3999 0.3645(0.0768)[0.0262] 0.5713 0.5046(0.2289)[0.2005]
a12 0.0 0.0772(0.1094)[0.1590] 0.4667 0.3957(0.2307)[0.2292]
a21 0.0 −0.1618(0.2456)[0.3447] 0.6856 0.6020(0.4824)[0.4454]
a22 0.8168 0.7230(0.1511)[0.0541] 1.0501 0.8939(0.2829)[0.2813]

H1 0.70 0.7170(0.0411)[0.0414] 0.70 0.7217(0.0393)[0.0414]
H2 0.60 0.6170(0.0419)[0.0405] 0.60 0.6122(0.0405)[0.0405]

(20, 10, 250) a11 0.3999 0.3734(0.0620)[0.0185] 0.5713 0.5574(0.1768)[0.1418]
a12 0.0 0.0618(0.0981)[0.1124] 0.4667 0.3478(0.2067)[0.1621]
a21 0.0 −0.1261(0.2130)[0.2437] 0.6856 0.7056(0.3843)[0.3150]
a22 0.8168 0.7373(0.1228)[0.0382] 1.0501 0.8472(0.2587)[0.1989]

are small, indicating the good approximation of the limiting aggregate model for

the aggregate data generated from a CARFI process. The biases decrease, in

general, with m, ∆, and N .

5.2. Spectral maximum likelihood estimation

In this subsection, we report some finite sample performance of the spec-

tral maximum likelihood estimator for data simulated from stationary bivariate

Gaussian processes with spectral density defined by (2.5) or (3.2). We considered

two cases: (I) the two Hurst parameters are unequal so that A is identifiable,

and (II) the two Hurst parameters are identical so only B = AA′ is identifiable.

For case (I), we set

A =

(
2 1

−3 1

)
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with three pairs of increasingly separated Hurst parameters (H1 = 0.75, H2 =

0.70), (H1 = 0.85, H2 = 0.40) and (H1 = 0.95, H2 = 0.10). When the Hurst

parameters are close to each other, the A matrix is close to being non-identifiable.

Thus, the elements of A are harder to estimate in this case. For case (II), data

from three models were simulated,

H = 0.55, B =

(
26 −13

−13 13

)
; H = 0.75, B =

(
13 −11

−11 17

)
;

H = 0.95, B =

(
13 5

5 17

)
.

Thus, the simulated models were of increasing long-memory whereas the two

component time series were negatively contemporaneously correlated in the first

case, then very strong negatively contemporaneously correlated in the second

case and finally mildly positively contemporaneously correlated. The sample

sizes considered were N = 512 and N = 1,024. The value of M used in the

computation of R̃0(ω;H), defined below (2.7), was 100. We also used M = 1,000

in the simulations, but the results were essentially the same.

The averages and the standard errors of 1,000 replicates of the estimators

for the case of H1 > H2 are reported in Table 2, whereas those for the case of

H1 = H2 are summarized in Table 3. In Tables 2 and 3, we also report the

asymptotic standard errors of the estimators. The true values of the parameters

are given in the tables. Tables 2 and 3 show that the sample standard deviations

of the estimates are generally close to the asymptotic standard errors for sample

sizes 512 and 1,024, and the biases and the standard deviations decrease with

increasing sample size. Also, the estimates of the elements in A have higher

variances when the Hurst parameters are closer to each other. Quantile-quantile

normal score plots (unreported) confirm that the estimates are close to normality.

The proposed method works well even when A, respectively B, is almost singular.

Corresponding simulation results are available upon request.

5.3. Empirical size of the test

To study the empirical size of the proposed likelihood ratio test for the equal-

ity of the two Hurst parameters, we simulated data from a stationary bivariate

Gaussian process with its spectral density defined by (2.5), and (a11, a12, a21, a22)

= (1, 1,−1, 2). The common Hurst parameter H ranged from 0.55 to 0.95 with

increment 0.1. Sample sizes were N = 512 and N = 1, 024. From Table 4, we ob-

serve that the empirical sizes are generally close to their corresponding nominal
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Table 2. Averages (standard deviations) [asymptotic standard deviations] of 1,000 sim-
ulations of the spectral maximum likelihood estimators of the parameters H1, H2, and
A = [aij ]

2,2
i,j=1.

Parameter True value N = 512 N = 1,024
H1 0.75 0.7571(0.0273)[0.0292] 0.7535(0.0203)[0.0206]
H2 0.70 0.6923(0.0296)[0.0289] 0.6962(0.0209)[0.0204]
a11 2.0 1.8481(0.4200)[0.4253] 1.8955(0.3259)[0.3007]
a12 1.0 1.0162(0.5980)[0.8185] 1.0008(0.5295)[0.5787]
a21 −3.0 −2.8768(0.3200)[0.4313] −2.9054(0.2874)[0.3050]
a22 1.0 0.8231(0.9753)[1.2271] 0.8840(0.8241)[0.8677]
H1 0.85 0.8508(0.0295)[0.0295] 0.8508(0.0212)[0.0209]
H2 0.40 0.3992(0.0278)[0.0262] 0.3994(0.0194)[0.0185]
a11 2.0 1.9961(0.0795)[0.0742] 1.9979(0.0548)[0.0524]
a12 1.0 0.9968(0.0885)[0.0832] 1.0007(0.0612)[0.0589]
a21 −3.0 −3.0006(0.1061)[0.1031] −2.9993(0.0729)[0.0729]
a22 1.0 0.9928(0.1229)[0.1187] 0.9931(0.0869)[0.0840]
H1 0.95 0.9513(0.0283)[0.0298] 0.9518(0.0214)[0.0211]
H2 0.10 0.1036(0.0181)[0.0199] 0.1022(0.0123)[0.0141]
a11 2.0 2.0044(0.0667)[0.0642] 2.0022(0.0467)[0.0454]
a12 1.0 1.0069(0.0794)[0.0631] 1.0065(0.0533)[0.0446]
a21 −3.0 −3.0067(0.0989)[0.0960] −3.0034(0.0689)[0.0679]
a22 1.0 1.0074(0.0846)[0.0731] 1.0041(0.0584)[0.0517]

sizes, with better agreement as sample size increases.

5.4. Empirical power of the likelihood ratio test

Next, we study the empirical power of the likelihood ratio test. Data were

simulated from stationary bivariate Gaussian processes with the spectral den-

sity defined by (2.5), with various pairs of H1 and H2 and (a11, a12, a21, a22) =

(1, 1,−1, 2). The results are summarized in Table 5. Table 5 confirms that the

power increases with the distance between H1 and H2, which corresponds to the

deviation from the null hypothesis, H1 = H2. The dominating divergent com-

ponent in the test is proportional to H1 − H2 as can be seen in the proof of

Theorem 2(b). Further, for a constant difference between the memory parame-

ters, the power decreases very slightly with H1.

5.5. The effect of ignoring the equality of the two Hurst parameters

on their estimations

In this subsection, we report on a study on investigating the efficiency loss of

ignoring the fact that H1 = H2 = H. We took the data to be generated from (3.2)

with vecA = [1,−3, 5,−2]′. For each data set, the constrained and unconstrained
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Table 3. Averages (standard deviations) [asymptotic standard deviations] of 1,000
simulations of the spectral maximum likelihood estimators of the parameters H, and
B = [bij ]

22
i,j=1.

Parameter True value N = 512 N = 1,024
H 0.55 0.5503(0.0197)[0.0197] 0.5500(0.0146)[0.0140]
b11 26.0 25.96(1.7183)[1.6703] 25.96(1.1606)[1.1810]
b12 −13.0 −13.00(0.9960)[1.0137] −12.97(0.7030)[0.7168]
b22 13.0 13.00(0.8102)[0.8351] 12.97(0.5664)[0.5905]
H 0.75 0.7512(0.0209)[0.0206] 0.7507(0.0153)[0.0146]
b11 13.0 13.03(0.8166)[0.8253] 12.99(0.5685)[0.5836]
b12 −11.0 −11.04(0.7993)[0.8264] −10.99(0.5616)[0.5844]
b22 17.0 17.04(1.0596)[1.0792] 16.99(0.7453)[0.7631]
H 0.95 0.9541(0.0219)[0.0211] 0.9528(0.0159)[0.0149]
b11 13.0 13.10(0.8600)[0.8215] 13.07(0.5923)[0.5809]
b12 5.0 5.015(0.7335)[0.6947] 5.037(0.4899)[0.4912]
b22 17.0 17.15(1.1299)[1.0743] 17.08(0.7685)[0.7596]

Table 4. The empirical size of the likelihood ratio test for identical Hurst parameters.
The results are based on 1,000 replications, with nominal sizes 0.01, 0.05, and 0.1.

Nominal level Nominal level
H N 0.100 0.050 0.010 H N 0.100 0.050 0.010

0.55 512 0.130 0.070 0.013 0.55 1024 0.126 0.057 0.010
0.65 512 0.132 0.063 0.012 0.65 1024 0.114 0.049 0.011
0.75 512 0.134 0.066 0.013 0.75 1024 0.124 0.053 0.010
0.85 512 0.134 0.069 0.014 0.85 1024 0.120 0.053 0.010
0.95 512 0.109 0.051 0.012 0.95 1024 0.107 0.050 0.008

estimators were computed with the constraint being that H1 = H2 = H. The

root mean square errors (RMSE’s) of the unconstrained estimators Ĥi, i = 1, 2,

over the constrained estimator Ĥ are summarized in Table 6 for the cases that the

true values of H was 0.55, 0.65, 0.75, 0.85, and 0.95. The results are summarized

in Table 6. From the table, we see that the efficiency losses of ignoring the

equality of the Hurst parameters are between 10% and 45%. These losses are

substantial and illustrate the usefulness of the proposed methodology.

6. Application

We illustrate the proposed method with an equally-spaced trivariate time

series of the positioning errors (in inches) in the “x”, “y”, and “z” direction,

respectively, of an industrial robot named Stu. (Data were kindly supplied by

Bill Fulkerson, Deere and Company, Technical Center, 3300 River Drive, Moline,
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Table 5. The empirical power of the likelihood ratio test for identical Hurst parameters.
The results are based on 1,000 replications and critical values of the nominal size 0.05.

H1 0.55 0.65 0.75 0.80 0.85 0.85 0.90 0.95 0.95
H2 0.50 0.60 0.70 0.70 0.70 0.80 0.70 0.10 0.90
N = 512 0.257 0.247 0.242 0.627 0.921 0.246 0.997 1.000 0.238
N = 1,024 0.441 0.419 0.404 0.903 0.996 0.403 0.999 1.000 0.379

Table 6. Ratio of the root mean square errors (RMSE’s) of the estimators Ĥi, i = 1, 2,

over Ĥ when the true model is H1 = H2 = H.

True value of H 0.55 0.65 0.75 0.85 0.95

Ratio for Ĥ1 over Ĥ N = 512 1.368 1.360 1.443 1.426 1.106
N = 1,024 1.332 1.331 1.381 1.352 1.213

Ratio for Ĥ2 over Ĥ N = 512 1.365 1.390 1.385 1.387 1.235
N = 1,024 1.313 1.338 1.323 1.332 1.226
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Figure 1. Time series plots of the positioning errors in the three directions.

IL, U.S.A.) Sample size were N = 2,703.

The time series plots (Figure 1) and the sample ACFs (Figure 2) suggest

that the time series of the positioning errors in the “x” and “y” directions have
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Figure 3. Cross-correlations between X & Y , after pre-whitening; cut-off for 5% family
error rate is 0.0811.

long memory, while that of the “z” direction appears to be nonstationary. For

illustration, we restricted our analysis to the bivariate time series {(Xt, Yt), t =

1, 2, . . . , N} consisting of the positioning errors in the “x” and “y” directions,

respectively. As it is known that spurious cross correlations may occur because of

the autocorrelation in each sequence, it is pivotal to study the correlation pattern
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Figure 4. First two figures: black solid line – observations, red dotted line – forecasts
from proposed model, blue dashed line – VAR model; last figure: circles – observations,
black lines: prediction ellipsoids from proposed model, gray lines: VAR model.

after pre-whitening the time series, see, e.g., (Cryer and Chan, 2008, Sec. 11.3).

Fig. 3 displays the sample cross-correlations between the pre-whitened X and

Y when a cross-correlation is individually significant at 5% significance level if

it exceeds the threshold ±1.96/
√
N = ±0.0377 in magnitude (the blue dashed

lines in the figure). To avoid the problem of multiple testing, the threshold was

adjusted by Bonferroni correction to be 0.0811 for achieving 5% family error rate.

Consequently, Figure 3 shows that X and Y are contemporaneously correlated

but not cross-correlated at any non-zero lag examined.

In order to check the forecasting performance of the bivariate limiting ag-

gregate long memory model, we saved the last 100 data point from fitting the
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Figure 5. Cross correlations between the transformed X and Y , after prewhitening;
cut-off for 5% family error rate is 0.0811.

model with which we compared the long-run forecast for these 100 observations:

we computed the k-step ahead predictor to forecast the k-th saved observation,

for k = 1, 2, . . . , 100. We also compared the forecasting performance of our model

with a VAR(19) model, with the VAR order determined by AIC, both in terms

of the 95% prediction ellipsoids and the point predictors. It can be seen from

the plots in Figure 4 that the predicted values (conditional means) of the pro-

posed model track the positioning errors better than the VAR model; indeed,

over the 100 observations, the root mean squared prediction error (mean abso-

lute prediction error) of the proposed model was 1.84 × 10−4 (1.51 × 10−4) as

compared to the 3.41×10−4 (2.82×10−4) of the VAR model. The prediction gain

is substantial, especially in view of the fact that the proposed model has only

six parameters and much more parsimonious than the VAR(19) model. When

compared to VAR(p) models with p < 19 the prediction gains of the proposed

method were even larger. The confidence bands of the proposed method were, as

expected, slightly wider than those of the VAR model, and the individual 95%

confidence ellipsoids from both models missed 3% of the 100 “future” values.

The p-value of the test for equality of the Hurst parameters using the first

N = 2,603 data points turned out to be 0.0000. Therefore, we conclude that

H1 > H2. The estimated Hurst parameters were Ĥ1 = 0.8697, Ĥ2 = 0.6904, and

Â = 10−5 ×

[
5.7851 4.9164

−1.1850 9.3053

]
.
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Therefore,

Â−1 = 103 ×

[
15.60 −8.241

1.986 9.697

]
.

Our fitted model implies that A−1(Y1t, Y2t)
′ are uncorrelated series, which

provides us with one way to do model diagnostics. Figure 5 displays the cross

correlations between the transformed X and Y, after prewhitening. Based on the

Bonferroni correction, a sample correlation is significant at a 5% family error rate,

if it exceeds 0.0811 in magnitude. Consequently, none of the cross correlations is

significant, suggesting that the model is correctly specified.

7. Conclusion

In this paper, we consider the problem of modeling long-memory bivariate

time series that are aggregates from an underlying long-memory continuous-time

process by an instantaneous linear transformation of two independent fractional

Gaussian noises. We provide theoretical and numerical justifications for our

approach, and derive the Whittle likelihood estimator of the limiting model and

the likelihood ratio test for testing the equality of the two underlying Hurst

parameters within the framework of Whittle likelihood. An application illustrates

that the proposed model can provide a parsimonious model that outperforms

the VAR model in terms of forecasting. A systematic study of extending the

proposed approach to multivariate long-memory aggregate time series of arbitrary

dimension is an interesting research problem.

Supplementary Materials

The online Supplement file contains the proofs of (2.4) and Claim 2, and

further details of proofs of Theorem 1.
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Appendix

Proof of Theorem 1 We prove Theorem 1 for the case that H1 > H2, and

θ = (θ1, · · · , θ6) = (H1, H2, a11, a12, a21, a22). The case that H1 = H2 = H, and

θ = (θ1, · · · , θ4) = (H, b11, b12, b22) can be proved similarly, and is omitted.

As in Chan and Tsai (2012), the approximation of the Whittle likelihood (2.5)

by its truncated counterpart (2.7) preserves the asymptotic distribution of the

estimator, under the stated growth rate of M . In particular, from adapting Tsai

(2006), the approximation (2.5) by (2.7) is then asymptotically negligible. Fur-

ther, due to compactness of the parameter space, the partial derivatives of the

approximate Whittle likelihood differ from the ones of the true one by an error

of order op(1), uniformly over the parameter space. Finally, from Theorem 1

and Lemma 1 in Hosoya (1996), and from the approximation error of the partial

derivatives of the approximate Whittle likelihood of order Op(M
−2H), the asymp-

totic distribution of the QMLE from the approximated Whittle corresponds to

the one of the true Whittle likelihood. Hence, with no loss of generality, we

assume that the estimator is the exact QMLE, with which we can apply results

in Hosoya (1996) to derive its large-sample distribution.

Theorem 1 follows from Theorem 2 of Hosoya (1996) if we can verify Con-

ditions A, C, and D listed there. In the Supplemental Materials, we verify these

conditions.

Proof of Theorem 2

Part (a)

The parameter space Θ for θ = (H1, H2, a11, a12, a21, a22)′ admits the re-

strictions that 0 < H2 ≤ H1 < 1, 1/2 < H1 < 1, and A is invertible. Under the

constraint H1 = H2, the matrix A is not identifiable but B = AA′ is. Here the

entries are

b11 = a2
11 + a2

12,

b12 = a11a21 + a12a22,

b22 = a2
21 + a2

22.

Under the null hypothesis, let the true values of the b’s be denoted by b = b0
where b = (b11, b12, b22)′, where b is a function of a = (a11, a12, a21, a22)′. We

claim that the parameter space Θ with H1 6= H2 is a manifold with an atlas

consisting of charts where b is always part of the co-ordinate system. To see this,
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consider the first derivative of b w.r.t. a = (a11, a12, a21, a22)′:

Db =

2a11 2a12 0 0

a21 a22 a11 a12

0 0 2a21 2a22

 .

The invertibility of A implies that Db is of full-rank. Let a0 be the vectorized

form of an arbitrary but fixed, invertible A, some of whose elements are non-

zero. With no loss of generality, suppose a11,0 6= 0, where a11,0 is the value

of a11 under the null. Then the first derivative matrix of the function (b′, a12)′

is Db augmented by the row vector (0, 1, 0, 0), and its determinant is 4a11|A|
which is clearly non-zero when it is evaluated at a0. Hence there exists a locally

1-1 C1 transformation ψ such that a = ψ(b′, akl) over a neighbourhood of a0

(where we can take k = 1 and l = 2 if a11,0 6= 0). We augment this function

to form a chart as (H,h, b′, akl)
′ → (H1 = H + h,H2 = H − h, a = ψ(b′, akl))

′,

and hence the claim on the manifold structure. (Clearly, H = (H1 +H2)/2 and

h = (H1−H2)/2.) Moreover, this shows that we can always re-parameterize the

model locally in terms of H,h, b and one of the ai,j ’s. Since there are at most four

such co-ordinate systems, for simplicity, we assume that the compact parameter

space is such that it can be covered by the co-ordinate system where k = 1 and

l = 2 and that a11 6= 0 over the parameter space (for a technical reason that will

be clear later on). The following arguments can be readily modified to handle

the general case. Under the null hypothesis, H = H0, the true Hurst parameter,

h = 0 and b = b0 for some b0, but the “extra” a11 co-ordinate is irrelevant. We

can remove the arbitrariness of a11 under the null hypothesis by considering the

local co-ordinate ϑ = (h, k,H, b′)′, where k = ha11. It is clear that, for h > 0, ϑ

bears a smooth, one-to-one relationship with the co-ordinate (h, a11, H, b
′)′ but

with k = 0 under the null hypothesis, thereby removing the arbitrariness of a11

under the null hypothesis. Let Ξ be the parameter space of ϑ which is then a

compact set. Let SN (θ) be the partial derivative of the objective function (3.1)

w.r.t. θ. Then it follows from the chain rule that the partial derivative of the

objective function (3.1) w.r.t. ϑ equals SN (ϑ) = {J ′(ϑ)}−1SN (θ) where

J(ϑ) =
∂ϑ

∂θ
=



1/2 −1/2 0 0 0 0

a11/2 −a11/2 h 0 0 0

1/2 1/2 0 0 0 0

0 0 2a11 2a12 0 0

0 0 a21 a22 a11 a12

0 0 0 0 2a21 2a22


.
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Let SN (ϑ) be partitioned into Si,N (ϑ), i = 1, 2, 3 according to the partition of

ϑ into h, k, ϑ∗ = (H, b11, b12, b22)′. The true model parameter lies on the 1-

dimensional manifold defined by H = H0, h = 0, k = 0, b = b0, where a11 is the

free parameter. By adapting the proof of Theorem 2.1 of Hosoya (1997), the

following claim can be readily verified.

Claim 1: Suppose that there exists a sequence of estimators ϑ̃N such that

S3,N (ϑ̃N ) = 0, so H̃N and b(ϑ̃N ) converge to H0 and b0 in probability.

The spectral estimator under the general hypothesis, ϑ̂N converges to the

set {ϑ ∈ Ξ : b = b0, H = H0}, in probability. On the other hand, it can be shown

that the constrained estimator ϑ̂N,0 under the null hypothesis is also consistent.

Here ϑ̂N = ϑ̂N,0 is equivalent to the log-likelihood ratio test statistic being equal

to 0, which obtains if the partial derivative of the objective function w.r.t. h,

denoted by S1,N (ϑN ), is positive when evaluated at ϑ̂N,0; the test statistic is

positive if S1,N (ϑN ) < 0 when evaluated at ϑ̂N,0, by the Karush-Kuhn-Tucker

(KKT) optimality condition for constrained optimization.

Because Ξ is a compact set, formula (3.15) of Hosoya (1997) can be extended

to show that
√
NSN (ϑ̂N,0)−

√
NSN (ϑ0)−

√
NV (ϑ̂N,0)(1 + op(1)) = op(1),

where V (ϑ) is a vector consisting of the partial derivatives

Vj(ϑ) = Hj(ϑ) +

∫ π

−π
tr{hj(ω, ϑ)f(ω)}dω, (7.1)

where f(ω) is the true spectral density function, hj(ω, ϑ) = ∂f−1(ω, ϑ)/∂ϑj , and

Hj(ϑ) = ∂
∫ π
−π log det f(ω;ϑ)dω/∂ϑj .

The following claim is proved in the Supplementary Material.

Claim 2: V (ϑ) is differentiable in a neighbourhood of ϑ0, with its first

derivative matrix denoted by ∂V (ϑ)/∂ϑ whose value at ϑ0 is denoted by W .

Moreover, as ϑ→ ϑ0, ∂V (ϑ)/∂ϑ→W . Let W be partitioned into a 3× 3 block

matrix according to h, k, ϑ∗ = (H, b11, b12, b22)′ whose (i, j)-th block is denoted

by Wi,j . (The true value of ϑ∗ is denoted by ϑ∗0.) Then, W33 is positive definite.

From a Taylor expansion,
√
NS1,N (ϑ̂N,0) =

√
NS1,N (ϑ0) +

√
NW1,1:3(ϑ̂N,0 − ϑ0) + op(1), (7.2)

where W1,1:3 = [W1,1,W1,2,W1,3] is the first row of blocks of W . Because the

first two components of ϑ̂N,0 are 0, it follows that
√
N(ϑ̂∗N,0 − ϑ∗0) = −

√
NW−1

3,3 S3,N (ϑ0) + op(1),

upon noting that S3,N (ϑ̂N,0) = 0. Consequently,
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√
NS1,N (ϑ̂N,0) =

√
NS1,N (ϑ0)−

√
NW1,3W

−1
3,3 S3,N (ϑ0) + op(1).

The right side here converges weakly to a non-degenerate normal distribution of

zero mean, hence, as N → ∞, P (S1,N (ϑ̂N,0) > 0) → 1/2 and P (S1,N (ϑ̂N,0) ≤
0) → 1/2, proving that the log-likelihood ratio test statistic is asymptotically 0

with probability 1/2. Conditional on ĥ > 0 so that SN (ϑ̂N ) = 0, it can be shown

by adapting the arguments in the proof of Theorem 2.4 of Hosoya (1997) that

the likelihood ratio test is asymptotically χ2 with two degrees of freedom under

the null hypothesis. This completes the proof of Part (a).

Part (b)

Under the general alternative hypothesis HA : H1 > H2, it follows from

Theorem 1 that the first two elements of
√
N(ϑ̂N,0−ϑ0) equal (−

√
N(H1 −H2)/2,

−
√
N(H1 −H2)/2a11)′ + Op(1), where the parameters are evaluated at their

true values; hence they diverge to −∞. In (7.2), the first two terms in the

second summand dominate as −
√
N(H1 −H2)/2W1,1−

√
N(H1 −H2)/2a11W1,2

which, noting that W1,2 = W1,1/a11, equals
√
N (H1 −H2)W1,1, and, thus, (7.2)

diverges to −∞. Since, then, P (S1,N (ϑ̂N,0) ≤ 0)→ 1, the test statistic becomes

arbitrarily large, establishing the consistency of the test under HA.
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