MULTIPLE HYPOTHESIS TESTS CONTROLLING GENERALIZED ERROR RATES FOR SEQUENTIAL DATA

University of Southern California

Supplementary Material

This document contains proofs and auxiliary results for the paper "Multiple Hypothesis Tests Controlling Generalized Error Rates for Sequential Data".

S1 Proofs and Auxiliary Results

The proofs of the error-control properties of both the stepup and stepdown procedures utilize the following, as well as Lemma 1 that follows. Let

$$
\begin{align*}
W(j, b) & =\left\{\widetilde{\Lambda}^{(j)}(n) \geq b \text { for some } n, \widetilde{\Lambda}^{(j)}\left(n^{\prime}\right)>a_{1} \text { for all } n^{\prime}<n\right\}, \tag{S1.1}\\
V_{\theta}(t, b) & =\bigcup_{j_{1}, \ldots, j_{t} \in \mathcal{T}(\theta)} \bigcap_{\ell=1}^{t} W\left(j_{\ell}, b\right), \tag{S1.2}\\
p^{(j)}(b) & =\sup _{\theta^{(j)} \in H^{(j)}} P_{\theta^{(j)}}(W(j, b)), \tag{S1.3}\\
M_{\theta}(b) & =\sum_{j \in \mathcal{T}(\theta)} \mathbf{1}_{W(j, b)} . \tag{S1.4}
\end{align*}
$$

The union in $\left(\mathrm{S1.2}\right.$) is over all distinct t-tuples $j_{1}, \ldots, j_{t} \in \mathcal{T}(\theta)$. The event $W(j, b)$ is that the standardized test statistic associated with the j th
null hypothesis crosses b from below before crossing a_{1} from above, and $V_{\theta}(t, b)$ is the event that there are at least t true null hypotheses for which this occurs. The function $p^{(j)}(b)$ is the "worst-case" (with respect to the null) probability of $W(j, b)$ happening, and the random variable $M_{\theta}(b)$ is the number of true null hypotheses for which this occurs. Note that any test statistic satisfying the assumptions in Section 2.2, in particular (2.12), satisfies $p^{(j)}\left(b_{w}\right) \leq \alpha_{w}$ for all $j, w \in[J]$. Note also that the events $W(j, \cdot)$ are non-increasing in the sense that, for any $j \in[J]$,

$$
b \leq b^{\prime} \quad \text { implies } \quad W\left(j, b^{\prime}\right) \subseteq W(j, b)
$$

It follows from this property that the events $V_{\theta}(t, \cdot)$ are non-increasing, and that $M_{\theta}(\cdot)$ is non-increasing with probability 1 . It can also be easily verified that $V_{\theta}(\cdot, b)$ are non-increasing. In what follows we will frequently drop the θ from V_{θ}, M_{θ}, and other quantities when it causes no confusion.

The following lemma is an extension to the sequential domain of Lehmann and Romano (2005, Lemma 3.1).

Lemma 1. In the testing situation above, fix $\theta \in \Theta$ such that $\mathcal{T}(\theta)$ is nonempty, let $t=|\mathcal{T}(\theta)| \in[J], t_{0} \in[t]$, and let $0=\zeta_{0} \leq \ldots \leq \zeta_{t_{0}} \leq 1$ and $b_{1}^{\prime} \geq b_{2}^{\prime} \geq \ldots \geq b_{t_{0}}^{\prime}$ be any sequences. With $p^{(j)}(b)$ defined by S1.3), if the test statistics $\left\{\Lambda^{(j)}(n)\right\}$ satisfy $p^{(j)}\left(b_{s}^{\prime}\right) \leq \zeta_{s}$ for all $j \in \mathcal{T}(\theta), s \in\left[t_{0}\right]$, then
with $V_{\theta}(t, b)$ defined by (S1.2), we have

$$
\begin{equation*}
P_{\theta}\left(\bigcup_{s=1}^{t_{0}} V_{\theta}\left(s, b_{s}^{\prime}\right)\right) \leq t \sum_{s=1}^{t_{0}} \frac{\zeta_{s}-\zeta_{s-1}}{s} \tag{S1.5}
\end{equation*}
$$

Proof of Lemma 1. Omit θ from the notation. With $M(b)$ as in (S1.4),

$$
\begin{equation*}
E\left(M\left(b_{s}^{\prime}\right)\right)=\sum_{j \in \mathcal{T}} P\left(W\left(j, b_{s}^{\prime}\right)\right) \leq \sum_{j \in \mathcal{T}} p^{(j)}\left(b_{s}^{\prime}\right) \leq t \zeta_{s} . \tag{S1.6}
\end{equation*}
$$

Define the random variable

$$
\tau= \begin{cases}\min \left\{s \in\left[t_{0}\right]: \mathbf{1}_{V\left(s, b_{s}^{\prime}\right)}=1\right\}, & \text { if } \mathbf{1}_{V\left(s, b_{s}^{\prime}\right)}=1 \text { for some } s \in\left[t_{0}\right] \\ t+1, & \text { otherwise }\end{cases}
$$

and let $\pi_{s}=P(\tau=s)$. Then the left-hand side of (S1.5) is

$$
P\left(\bigcup_{s=1}^{t_{0}}\{\tau=s\}\right)=\sum_{s=1}^{t_{0}} \pi_{s}
$$

by disjointness. For any $t_{1} \in\left[t_{0}\right]$ we have $\sum_{s=1}^{t_{1}} \tau \mathbf{1}_{\{\tau=s\}}=\tau \mathbf{1}_{\left\{\tau \leq t_{1}\right\}} \leq M\left(b_{t_{1}}^{\prime}\right)$ by definition of V and W. Taking expectations and using (S1.6) gives $\sum_{s=1}^{t_{1}} s \pi_{s} \leq t \zeta_{t_{1}}$. Dividing both sides of this last by $t_{1}\left(t_{1}+1\right)$ (resp. $\left.t_{1}\right)$ for $t_{1}=1, \ldots, t_{0}-1$ (resp. $t_{0}=t_{1}$) and summing over t_{1} gives

$$
\begin{equation*}
\sum_{t_{1}=1}^{t_{0}-1} \frac{1}{t_{1}\left(t_{1}+1\right)} \sum_{s=1}^{t_{1}} s \pi_{s}+\frac{1}{t_{0}} \sum_{s=1}^{t_{0}} s \pi_{s} \leq \sum_{t_{1}=1}^{t_{0}-1} \frac{t \zeta_{t_{1}}}{t_{1}\left(t_{1}+1\right)}+\frac{t \zeta_{t_{0}}}{t_{0}} \tag{S1.7}
\end{equation*}
$$

The right-hand side of (S1.7) is easily seen to be the right-hand side of (S1.5), while the left-hand side of (S1.7) simplifies to $\sum_{s=1}^{t_{0}} \pi_{s}$ after reversing the order of summation in the first term.

S2 Proofs of Results for Stepup Procedures in Sec-

tion 3.2

The proofs of both Theorems 3 and 4 utilize the following lemma.

Lemma 2. For the generic sequential stepup procedure in Section 3.2.1, under $\theta \in \Theta$, for any $s \in[J]$ we have

$$
\begin{equation*}
\{\text { exactly s null hypotheses rejected }\} \subseteq V_{\theta}\left(t^{*}, b_{s}\right), \tag{S2.1}
\end{equation*}
$$

the latter defined as

$$
\begin{equation*}
V_{\theta}\left(t^{*}, b_{s}\right)=\bigcup_{t}\left(V_{\theta}\left(t, b_{s}\right) \cap\left\{t^{*}=t\right\}\right) \tag{S2.2}
\end{equation*}
$$

where $V_{\theta}(t, b)$ is as in (S1.2) and t^{*} is the number of true null hypotheses rejected.

Proof. Let $R(s)$ denote the event on the left-hand side of (S2.1). On outcomes in $R(s)$ define the following random variables: Let i^{*} be the stage at which the s th rejection occurs, let j^{*} be such that $H^{\left(j^{*}\right)}$ is the s th rejected null hypothesis, and recall that t^{*} is the number of true hypotheses rejected. By definition of $H^{\left(j^{*}\right)}$ and by step 2(a) of the procedure we have $j^{*}=j\left(n_{i^{*}},\left|\mathcal{J}_{i^{*}}\right|-m_{i^{*}}+1\right), s=r_{i^{*}}+m_{i^{*}}$, and $\widetilde{\Lambda}^{\left(j^{*}\right)}\left(n_{i^{*}}\right) \geq b_{r_{i^{*}}+m_{i^{*}}}$. If a true hypothesis $H^{\left(j^{\prime}\right)}, j^{\prime} \in \mathcal{T}$, is rejected then it is rejected at some stage $i^{\prime} \leq i^{*}$, and $j^{\prime}=j\left(n_{i^{\prime}}, \ell\right)$ for some $\ell \geq\left|\mathcal{J}_{i^{\prime}}\right|-m_{i^{\prime}}+1$. Note that $r_{i^{\prime}}+m_{i^{\prime}} \leq s$
because if $i^{\prime}=i^{*}$ then $r_{i^{\prime}}+m_{i^{\prime}}=r_{i^{*}}+m_{i^{*}}=s$, and otherwise $i^{\prime} \leq i^{*}-1$ so $r_{i^{\prime}}+m_{i^{\prime}}=r_{i^{\prime}+1} \leq r_{i^{*}} \leq s$. Then

$$
\widetilde{\Lambda}^{\left(j^{\prime}\right)}\left(n_{i^{\prime}}\right)=\widetilde{\Lambda}^{\left(j\left(n_{i^{\prime}}, \ell\right)\right)}\left(n_{i^{\prime}}\right) \geq \widetilde{\Lambda}^{\left(j\left(n_{i^{\prime}},\left|\mathcal{J}_{i^{\prime}}\right|-m_{i^{\prime}}+1\right)\right)}\left(n_{i^{\prime}}\right) \geq b_{r_{i^{\prime}}+m_{i^{\prime}}} \geq b_{s}
$$

using (3.23) for the second-to-last inequality. This holds for any rejected true hypothesis, hence there are distinct $j_{1}, \ldots, j_{t^{*}} \in \mathcal{T}$ such that, for each $\ell \in\left[t^{*}\right], H^{\left(j_{\ell}\right)}$ is rejected and

$$
\begin{equation*}
\widetilde{\Lambda}^{\left(j_{\ell}\right)}(n) \geq b_{s} \quad \text { for some } n \tag{S2.3}
\end{equation*}
$$

If it were that $\widetilde{\Lambda}_{n^{\prime}}^{\left(j_{e}\right)} \leq a_{1}$ for some n^{\prime} less than the corresponding n in S2.3), then $H^{\left(j_{\ell}\right)}$ would not have been rejected but rather accepted, contradicting our assumption about $H^{\left(j_{\ell}\right)}$. Combining these statements gives that any outcome in $R(s)$ is in $V\left(t^{*}, b_{s}\right)$.

Proof of Theorem 3. We consider the generic stepup procedure defined in Section 3.2 .1 with step values given by (3.24). Fix $\theta \in \Theta$ such that $\mathcal{T}(\theta)$ is nonempty, and omit θ from the notation. We will show that γ_{1} - $\mathrm{FDP} \leq \alpha$, the other claim being similar. For $s \in[J]$ let $\gamma(s)=\left\lfloor\gamma_{1} s\right\rfloor+1$ and let $T(s)$ denote the event that at least $\gamma(s)$ true null hypotheses are rejected, and
let $R(s)$ be the event on the left-hand side of (S2.1). We claim that

$$
R(s) \cap T(s) \subseteq \begin{cases}V\left(\gamma(s) \vee(s+|\mathcal{T}|-J), b_{s}\right), & \text { if } \gamma(s) \leq|\mathcal{T}| \tag{S2.4}\\ \emptyset, & \text { otherwise }\end{cases}
$$

By Lemma 2 we have $R(s) \cap T(s) \subseteq V\left(t^{*}, b_{s}\right) \cap T(s)$, and to finish the proof of (S2.4) we show that, on any outcome in the latter event, defined analogously to S2.2), $t^{*} \geq \gamma(s) \vee(s+|\mathcal{T}|-J)$ if s is such that $\gamma(s) \leq|\mathcal{T}|$ and then use that $V(\cdot, b)$ is non-increasing; the other case of $(\mathrm{S2.4})$ is trivial by the definition of $R(s)$ and $T(s)$. We recall that this and other inequalities involving the random variable t^{*} should be interpreted as holding with $P\left(\cdot \mid V\left(t^{*}, b_{s}\right) \cap T(s)\right)$-probability 1, this event assumed without loss of generality to have positive probability. We know that $t^{*} \geq \gamma(s)$ by definition of $T(s)$. On the other hand, t^{*} is equal to the number s of null hypotheses rejected minus the number of false null hypotheses rejected, the latter bounded above by $J-|\mathcal{T}|$, hence $t^{*} \geq s+|\mathcal{T}|-J$.

With (S2.4) established we have

$$
\begin{gather*}
\gamma_{1} \text { - } \mathrm{FDP}=\bigcup_{1 \leq s \leq J} R(s) \cap T(s) \subseteq \bigcup_{1 \leq s \leq J, \gamma(s) \leq|\mathcal{T}|} V\left(\gamma(s) \vee(s+|\mathcal{T}|-J), b_{s}\right) \\
=\bigcup_{|\mathcal{T}|-J+1 \leq s \leq|\mathcal{T}|, \gamma(J+s-|\mathcal{T}|) \leq|\mathcal{T}|} V\left(\gamma(J+s-|\mathcal{T}|) \vee s, b_{J+s-|\mathcal{T}|}\right) . \tag{S2.5}
\end{gather*}
$$

For s in the range of the union in (S2.5), let $\sigma(s)=\gamma(J+s-|\mathcal{T}|) \vee s$, which is a non-decreasing sequence of consecutive integers taking the values
$1,2, \ldots, s_{1}$ for some $s_{1} \leq|\mathcal{T}|$ by virtue of the restrictions in (S2.5). For $s \in\left[s_{1}\right]$ let $\sigma^{-1}(s)=\max \left\{s^{\prime}: \sigma\left(s^{\prime}\right)=s\right\}$. If $\sigma(s)=\sigma(s+1)$ then using the non-increasing property of $V(s, \cdot)$ we have

$$
\begin{equation*}
V\left(\sigma(s), b_{J+s-|\mathcal{T}|}\right) \cup V\left(\sigma(s+1), b_{J+s+1-|\mathcal{T}|}\right) \subseteq V\left(\sigma(s+1), b_{J+s+1-|\mathcal{T}|}\right) \tag{S2.6}
\end{equation*}
$$

By collapsing terms in (S2.5) according to (S2.6), we have that the union in (S2.5) is contained in

$$
\bigcup_{s=1}^{s_{1}} V\left(s, b_{J+\sigma^{-1}(s)-|\mathcal{T}|}\right) .
$$

Denote $S_{2}\left(|\mathcal{T}|, \gamma_{1},\left\{\delta_{j}\right\}\right)$ and $D_{2}\left(\gamma_{1},\left\{\delta_{j}\right\}\right)$ by S_{2} and D_{2}, respectively. Applying Lemma 1 to this last with $\zeta_{s}=\alpha_{J+\sigma^{-1}(s)-|\mathcal{T}|}$ and $b_{s}^{\prime}=b_{J+\sigma^{-1}(s)-|\mathcal{T}|}$, and recalling that $s_{1} \leq|\mathcal{T}|$, we have

$$
\begin{align*}
& \frac{D_{2}}{|\mathcal{T}| \alpha} \cdot P\left(\mathrm{FDP}>\gamma_{1}\right) \leq \frac{D_{2}}{|\mathcal{T}| \alpha} \cdot P\left(\bigcup_{s=1}^{s_{1}} V\left(s, b_{J+\sigma^{-1}(s)-|\mathcal{T}|}\right)\right) \\
& \leq \frac{D_{2}}{|\mathcal{T}| \alpha} \cdot|\mathcal{T}|\left(\alpha_{J+\sigma^{-1}(1)-|\mathcal{T}|}+\sum_{1<s \leq s_{1}} \frac{\alpha_{J+\sigma^{-1}(s)-|\mathcal{T}|}-\alpha_{J+\sigma^{-1}(s-1)-|\mathcal{T}|}}{s}\right) \\
& \quad=\delta_{J+\sigma^{-1}(1)-|\mathcal{T}|}+\sum_{1<s \leq s_{1}} \frac{\delta_{J+\sigma^{-1}(s)-|\mathcal{T}|}-\delta_{J+\sigma^{-1}(s-1)-|\mathcal{T}|}}{s} . \tag{S2.7}
\end{align*}
$$

We claim that (S2.7) is equal to

$$
\begin{equation*}
S_{2} /|\mathcal{T}|=\delta_{1}+\sum_{|\mathcal{T}|-J+1<s \leq|\mathcal{T}|,|\mathcal{T}| \geq\left\lfloor\gamma_{1}(J-|\mathcal{T}|+s)\right\rfloor+1} \frac{\delta_{J-|\mathcal{T}|+s}-\delta_{J-|\mathcal{T}|+s-1}}{s \vee\left(\left\lfloor\gamma_{1}(J-|\mathcal{T}|+s)\right\rfloor+1\right)}, \tag{S2.8}
\end{equation*}
$$

which would complete the proof since $S_{2} \leq D_{2}$. Note that the denominator in (S2.8) is $\sigma(s)$. If $\sigma^{-1}(1)=|\mathcal{T}|-J+1$ then the first term in both S2.7)
and (S2.8) is δ_{1}. Otherwise, $\sigma^{-1}(1)=s_{2}>|\mathcal{T}|-J+1$, and the first $J+s_{2}-|\mathcal{T}|$ summands in S2.8) are

$$
\begin{aligned}
\delta_{1}+\frac{\delta_{2}-}{\sigma(|\mathcal{T}|-} \delta_{1} & J+2) \\
& =\delta_{1}+\frac{\delta_{2}-\delta_{1}}{1}+\ldots+\frac{\delta_{J+s_{2}-|\mathcal{T}|}-\delta_{J+s_{2}-|\mathcal{T}|-1}}{\sigma\left(s_{2}\right)} \\
1 & \delta_{J+s_{2}-|\mathcal{T}|-\delta_{J+s_{2}-|\mathcal{T}|-1}}^{1}=\delta_{J+s_{2}-|\mathcal{T}|}
\end{aligned}
$$

which is the first summand in (S2.7) in this case. Proceeding in this way one may verify the claim term by term, completing the proof.

Proof of Theorem 4. We consider the generic stepup procedure defined in Section 3.2 .1 with step values given by (3.25). We will show that the procedure satisfies $k_{1}-\mathrm{FWER}_{1}(\theta) \leq \alpha$, the other claim being similar. Fix $\theta \in \Theta$ such that $|\mathcal{T}(\theta)| \geq k_{1}$, since otherwise $k_{1}-\mathrm{FWER}_{1}(\theta)=0$, and omit θ from the notation. For $s \in[J]$ let $T(s)$ denote the event that at least k_{1} true null hypotheses are rejected and let $R(s)$ be the event on the left-hand side of (S2.1). We claim that

$$
\begin{equation*}
R(s) \cap T(s) \subseteq V\left(k_{1} \vee(s+|\mathcal{T}|-J), b_{s}\right) \quad \text { for all } \quad s \in[J] . \tag{S2.9}
\end{equation*}
$$

By Lemma 2 we have $R(s) \cap T(s) \subseteq V\left(t^{*}, b_{s}\right) \cap T(s)$, the latter defined analogously to (S2.2), and to finish the proof of (S2.9) we show that, on any outcome in the latter event, $t^{*} \geq k_{1} \vee(s+|\mathcal{T}|-J)$ and use that $V(\cdot, b)$ is non-increasing. We recall that this and other inequalities involving the
random variable t^{*} should be interpreted as holding with $P\left(\cdot \mid V\left(t^{*}, b_{s}\right) \cap\right.$ $T(s)$)-probability 1 , this event assumed without loss of generality to have positive probability. We know that $t^{*} \geq k_{1}$ by definition of $T(s)$. On the other hand, t^{*} is equal to the number s of null hypotheses rejected minus the number of false null hypotheses rejected, the latter bounded above by $J-|\mathcal{T}|$, hence $t^{*} \geq s+|\mathcal{T}|-J$.

With (S2.9) established we have

$$
\begin{align*}
\bigcup_{k_{1} \leq s \leq J} R(s) \cap T(s) & \subseteq \bigcup_{k_{1} \leq s \leq J} V\left(k_{1} \vee(s+|\mathcal{T}|-J), b_{s}\right) \\
& =\left\{\bigcup_{k_{1} \leq s \leq J-|\mathcal{T}|+k_{1}} V\left(k_{1}, b_{s}\right)\right\} \cup\left\{\bigcup_{J-|\mathcal{T}|+k_{1}<s \leq J} V\left(s+|\mathcal{T}|-J, b_{s}\right)\right\} \\
& \subseteq V\left(k_{1}, b_{J-|\mathcal{T}|+k_{1}}\right) \cup\left\{\bigcup_{J-|\mathcal{T}|+k_{1}<s \leq J} V\left(s+|\mathcal{T}|-J, b_{s}\right)\right\} \tag{S2.11}\\
& =\bigcup_{J-|\mathcal{T}|+k_{1} \leq s \leq J} V\left(s+|\mathcal{T}|-J, b_{s}\right)=\bigcup_{k_{1} \leq s \leq|\mathcal{T}|} V\left(s, b_{|\mathcal{T}|-J+s}\right) \tag{S2.12}
\end{align*}
$$

where the inclusion in S2.11) follows from the facts that $b_{s} \geq b_{J-|\mathcal{T}|+k_{1}}$ for $s \leq J-|\mathcal{T}|+k_{1}$ and the $V\left(k_{1}, \cdot\right)$ are non-increasing. The $k_{1}-\mathrm{FWER}_{1}$ is the probability of the event on the left-hand side of (S2.10), and applying Lemma 1 to the last union in w2.12 with $t_{0}=|\mathcal{T}|, \zeta_{0}=\ldots=\zeta_{k_{1}-1}=0$, $\zeta_{s}=\alpha_{|\mathcal{T}|-J+s}$ for $k_{1} \leq s \leq|\mathcal{T}|, b_{1}^{\prime}=\ldots=b_{k_{1}-1}^{\prime}=\infty$, and $b_{s}^{\prime}=b_{|\mathcal{T}|-J+s}$ for
$k_{1} \leq s \leq|\mathcal{T}|$, we have

$$
\begin{aligned}
k_{1}-\mathrm{FWER}_{1} \leq|\mathcal{T}|\left(\frac{\alpha_{|\mathcal{T}|-J+k_{1}}}{k_{1}}\right. & \left.+\sum_{k_{1}<s \leq|\mathcal{T}|} \frac{\alpha_{|\mathcal{T}|-J+s}-\alpha_{|\mathcal{T}|-J+s-1}}{s}\right) \\
& =\left(\frac{\alpha}{D_{3}\left(k_{1},\left\{\delta_{j}\right\}\right)}\right) S_{3}\left(k_{1},|\mathcal{T}|,\left\{\delta_{j}\right\}\right) \leq \alpha .
\end{aligned}
$$

S3 Proof of Theorem 7

We verify the first parts of (5.35) and (5.36); the other parts are similar. We have
$0 \leq \alpha_{w}+\widetilde{\beta}_{w}=\alpha_{w}+\frac{\beta_{1}\left(1-\alpha_{w}\right)}{1-\alpha_{1}}-1+1=\frac{-\left(1-\alpha_{w}\right)\left(1-\alpha_{1}-\beta_{1}\right)}{1-\alpha_{1}}+1 \leq 1$,
using $\alpha_{1}+\beta_{1} \leq 1$ for the last inequality. It is simple algebra to check that $B_{w}^{(j)}$ in (5.34) can be written as $B_{W}\left(\alpha_{w}, \widetilde{\beta}_{w}\right)$, and $A_{1}^{(j)}$ in (5.34) can be written as $A_{W}\left(\alpha_{w}, \widetilde{\beta}_{w}\right)$ for any $w \in[J]$. Then

$$
\begin{aligned}
p_{w}^{(j)} & =P_{h^{(j)}}\left(\Lambda^{(j)}(n) \geq B_{w}^{(j)} \text { some } n, \Lambda^{(j)}\left(n^{\prime}\right)>A_{1}^{(j)} \text { all } n^{\prime}<n\right) \\
& =P_{h^{(j)}}\left(\Lambda^{(j)}(n) \geq B_{W}\left(\alpha_{w}, \widetilde{\beta}_{w}\right) \text { some } n, \Lambda^{(j)}\left(n^{\prime}\right)>A_{W}\left(\alpha_{w}, \widetilde{\beta}_{w}\right) \text { all } n^{\prime}<n\right) \\
& =\alpha_{W}^{(j)}\left(\alpha_{w}, \widetilde{\beta}_{w}\right)
\end{aligned}
$$

by definition of $\alpha_{W}^{(j)}$.

